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Graph functionality – definition

• Consider a graph G. Put A(x, y) = 1 iff {x, y} ∈ E(G).
• Vertex y ∈ V (G) is a function of x1, . . . , xk ∈ V (G) \ {y} iff

∃f : {0, 1}k → {0, 1}
∀z ∈ V (G) \ {y, x1, . . . , xk} :

A(y, z) = f(A(x1, z), . . . , A(xk, z))
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• funG(y) := minimal k such that y is a function of some k vertices
• fun(G) := max

H⊆indG
min

y∈V (H)
funH(y)

• Seed of this idea in [Atminas, Collins, Lozin, Zamaraev 2015]
• Defined in [Alecu, Atminas, Lozin 2021]
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Graph functionality – motivation

• By putting f identically 0, we get funG(y) ≤ deg(y) and thus

fun(G) ≤ degeneracy of G

• If fun(G) ≤ k then G can be represented using n
(
(k + 1) log(n) + 2k

)
bits of

information.

• So if every graph G ∈ G has bounded functionality then G contains at most
2O(n logn) graphs on n vertices.

• Kind of a reverse to the Implicit graph conjecture, which motivated this
research (but was recently disproved [Hatami and Hatami 2022]).
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Known results – general

Theorem (AAL 2021)
For any graph G:

fun(G) ≤ 2cwd(G)− 1

Theorem (AAL 2021)
There exists a function g such that for any graph G:

vc(G) ≤ g(fun(G)).
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Known results – concrete graph classes

Theorem (AAL 2021)

• fun(unit interval graphs) ≤ 2.

• fun(line graphs) ≤ 6.

• fun(permutation graphs) ≤ 8.

• fun(intersection graphs of 3-uniform hypergraphs) ≤ 462.

Theorem (Dallard, Lozin, Milanič, Štorgel, Zamaraev 2023)
fun(interval graphs) ≤ 8.
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Our results I

Theorem (Bounds on functionality)

There exists a graph on n vertices with functionality Ω(
√
n).

fun(G) ≤ O(
√
n log n) for every graph G.

Theorem (Random graphs)
W.h.p.

C1 log n ≤ fun(G(n, 1/2)) ≤ C2 log n

Theorem (Informal)
“Determining the functionality of a vertex is NP-hard.”
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Symmetric difference

Given u, v ∈ V (G), let sdG(u, v) be the
number of vertices different from u and v that
are adjacent to exactly one of u and v.

u v

N(u) \ {v} N(v) \ {u}

sd(u, v)

• It is noted by [AAL 2021] that fun(G) ≤ sd(G) + 1.
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Our results II

INTn – interval graphs on n vertices

Theorem

Any interval graph G ∈ INTn has symmetric difference at most O( 3
√
n).

Theorem

There is an interval graph G ∈ INTn of symmetric difference at least Ω( 4
√
n).
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“Small” graph with “large” functionality – proof

Theorem
Consider a finite projective plane of order k and its bipartite incidence graph G.
Then we have fun(G) ≥ k.

• In a finite projective plane of order k, each line has k+1 points and each point
lies on k + 1 lines. The total number of points, as well as lines, is k2 + k + 1.

• Let ℓ be a line of the projective plane.

• Symmetry ⇒ it is enough to show funG(ℓ) ≥ k.
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“Small” graph with “large” functionality – proof

Theorem
Consider a finite projective plane of order k and its bipartite incidence graph G.
Then we have fun(G) ≥ k.

• Proof by contradiction: Let p1, . . . , pa and ℓ1, . . . , ℓb be points and lines such
that ℓ is a function of these and a+ b ≤ k − 1.

• We claim that then there exist points q1 and q2 satisfying:
1. q1 and q2 are distinct from all p1, . . . , pa.
2. Neither q1 nor q2 is incident to any of the lines ℓ1, . . . , ℓb.
3. q1 is incident to ℓ, but q2 is not.

• The existence of these two points then implies that ℓ is not a function of
p1, . . . , pa and ℓ1, . . . , ℓb which is the desired contradiction.
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“Small” graph with “large” functionality – proof

Theorem
Consider a finite projective plane of order k and its bipartite incidence graph G.
Then we have fun(G) ≥ k.

• There are k + 1 points on each line and every two lines intersect in one point.

• Therefore there exists a point on ℓ which is distinct from each pi and it is not
incident with any ℓi. This is the point q1.

• The total number of points is k2 + k + 1. The total number of points incident
to ℓ, ℓ1, . . . , ℓb is at most (b+ 1)(k + 1) and we have a points p1, . . . , pa. This is
the total of (b+ 1)(k + 1) + a ≤ (a+ b+ 1)(k + 1) ≤ k(k + 1) < k2 + k + 1.
This implies the existence of the point q2.
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Determining the functionality of a vertex is hard – proof

“Equivalent” view of functionality:

• Suppose that y is a function of vertices x1, . . . , xk.

• For vertices a, b ∈ V \ {y, x1, . . . , xk} define relation ∼ as follows:

a ∼ b ⇔ A(a, xi) = A(b, xi) ∀i ∈ [k]

• Then ∼ has at most 2k equivalence classes.

• And all vertices in a single equivalence class have the same adjacency with y.
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Determining the functionality of a vertex is hard – proof

• We reduce from Dominating Set to “determining whether a vertex v is a
function of at most k vertices.”

• Given (G, k) an instance of dominating set, we add
• a vertex v connected to all vertices of V (G), and
• a set I of k + 1 isolated vertices

• resulting in graph H, where V (H) = V (G) ∪ {v} ∪ I.

⇒

• Any two vertices of V (G) or I have the same adjacency with v.

15/21



Determining the functionality of a vertex is hard – proof

⇐

• Suppose that v is a function of some vertices u1, . . . , uk ∈ V (H).

• We claim that {u1, . . . , uk} ∩ V (G) is a dominating set in G.

• Assume it is not for contradiction.

• Then there exists x ∈ V (G) such that it is not adjacent to any u1, . . . , uk.

• At least one y ∈ I is not adjacent to v.

• x and y have the same neighbourhood with u1, . . . , uk but A(x, v) ̸= A(y, v).
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Upper bound – Proof

Theorem

Let G be a graph on n vertices. Then fun(G) = O(
√
n log n).

• Fix a constant c > 2.

• We show that there is a v ∈ V (G): funG(v) ≤ d(n) :=
√
cn log n.

• As d(n) is increasing, this suffices for the proof of the theorem.

• We write d = d(n) and PN(u, v) =
(
N(u)∆N(v)

)
\ {u, v}.

• Case 1: There exist u ̸= v s.t. sd(u, v) = |PN(u, v)| < d.
• Then the set PN(u, v) ∪ {u} suffices to certify the neighborhood of v.
• We are done with this case.
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Upper bound – Proof continued

• Case 2: All sets PN(u, v) have size at least d.
• Choose v ∈ V (G) arbitrarily.
• Choose a random set S ⊆ V (G) by independently putting each vertex of G− v

to S with probability p = d/n.
• The probability that adjacency to v is not certified by S is equal to

Pr(∃u1 ∈ N(v) \ S, u2 /∈ N(v) ∪ S ∪ {v} : S ∩ PN(u1, u2) = ∅).

• We estimate this using the union bound by∑
u1,u2

(1− p)|PN(u1,u2)|−1 ≤ n2(1− p)d−1

• The probability that S is “bad for v” is at most n2e−p(d−1), which is o(1)

whenever c > 2.
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Upper bound – Proof continued

• The expected size of S is p · (n− 1) = n−1
n d.

• By Markov inequality: P (|S| > d) ≤ n−1
n .

• This means that with positive probability |S| ≤ d and S certifies adjacency to v.
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Random graphs – Rough sketch of proofs

• G = G(n, 1/2)

• Lower bound: directly estimate P (fun(v) < 1
2 log n) <

1
nlogn , then use union

bound to get P (fun(G) < 1
2 log n) = o(1).

• Upper bound: we in fact show, that w.h.p. every induced H ⊂ G(n, 1/2) has a
distinguishing subset of size C log n, from this the result about functionality
follows directly. But having to prove this for 2n subgraphs requires us to get
much tighter bounds for each of the subgraphs. We use Poisson approximation
for “balls-into-bins” together with custom Chernoff-type bound.
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Open problems

• What is the maximum functionality of a graph on n vertices?
(Are projective planes the worst?)

• What is the complexity of computing functionality?
(Should be hard, put unclear how to prove it.)

• What is max sd(G) for G ∈ INTn?
(n1/4 or n1/3?)
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