Bounds on functionality and symmetric difference

Tung Anh Vu

joint with

Pavel Dvořák, Lukáš Folwarczný, Michal Opler, Pavel Pudlák, and Robert Šámal.

Matoušek prize lecture

7th March 2024

Graph functionality – definition

- Consider a graph G. Put A(x, y) = 1 iff $\{x, y\} \in E(G)$.
- Vertex $y \in V(G)$ is a function of $x_1, \ldots, x_k \in V(G) \setminus \{y\}$ iff

- $\operatorname{fun}_G(y) \coloneqq \operatorname{minimal} k$ such that y is a function of some k vertices
- $\operatorname{fun}(G) \coloneqq \max_{H \subseteq \operatorname{ind} G} \min_{y \in V(H)} \operatorname{fun}_H(y)$
- Seed of this idea in [Atminas, Collins, Lozin, Zamaraev 2015]
- Defined in [Alecu, Atminas, Lozin 2021]

• By putting f identically 0, we get $fun_G(y) \le deg(y)$ and thus

 $fun(G) \leq degeneracy \ of \ G$

- If fun(G) ≤ k then G can be represented using n((k + 1) log(n) + 2^k) bits of information.
- So if every graph $G \in \mathcal{G}$ has bounded functionality then \mathcal{G} contains at most $2^{O(n \log n)}$ graphs on n vertices.
- Kind of a reverse to the *Implicit graph conjecture*, which motivated this research (but was recently disproved [Hatami and Hatami 2022]).

Theorem (AAL 2021)

For any graph G:

 $\operatorname{fun}(G) \le 2\operatorname{cwd}(G) - 1$

Theorem (AAL 2021)

There exists a function g such that for any graph G:

 $\operatorname{vc}(G) \le g(\operatorname{fun}(G)).$

Theorem (AAL 2021)

- $fun(unit interval graphs) \le 2.$
- $\operatorname{fun}(\operatorname{line graphs}) \leq 6.$
- $fun(permutation graphs) \leq 8.$
- fun(intersection graphs of 3-uniform hypergraphs) ≤ 462 .

Theorem (Dallard, Lozin, Milanič, Štorgel, Zamaraev 2023) fun(*interval graphs*) ≤ 8 .

Theorem (Bounds on functionality)

There exists a graph on n vertices with functionality $\Omega(\sqrt{n})$.

fun $(G) \leq \mathcal{O}(\sqrt{n \log n})$ for every graph G.

Theorem (Random graphs)

W.h.p.

$$C_1 \log n \le \operatorname{fun}(G(n, 1/2)) \le C_2 \log n$$

Theorem (Informal)

"Determining the functionality of a vertex is NP-hard."

Given $u, v \in V(G)$, let $sd_G(u, v)$ be the number of vertices different from u and v that are adjacent to exactly one of u and v.

• It is noted by [AAL 2021] that $fun(G) \leq sd(G) + 1$.

INT_n – interval graphs on n vertices

Theorem

Any interval graph $G \in INT_n$ has symmetric difference at most $O(\sqrt[3]{n})$.

Theorem

There is an interval graph $G \in INT_n$ of symmetric difference at least $\Omega(\sqrt[4]{n})$.

"Small" graph with "large" functionality – proof

Theorem

Consider a finite projective plane of order k and its bipartite incidence graph G. Then we have $fun(G) \ge k$.

- In a finite projective plane of order k, each line has k + 1 points and each point lies on k + 1 lines. The total number of points, as well as lines, is $k^2 + k + 1$.
- Let ℓ be a line of the projective plane.
- Symmetry \Rightarrow it is enough to show $\operatorname{fun}_G(\ell) \ge k$.

"Small" graph with "large" functionality – proof

Theorem

Consider a finite projective plane of order k and its bipartite incidence graph G. Then we have $fun(G) \ge k$.

- Proof by contradiction: Let p_1, \ldots, p_a and ℓ_1, \ldots, ℓ_b be points and lines such that ℓ is a function of these and $a + b \le k 1$.
- We claim that then there exist points q_1 and q_2 satisfying:
 - 1. q_1 and q_2 are distinct from all p_1, \ldots, p_a .
 - 2. Neither q_1 nor q_2 is incident to any of the lines ℓ_1, \ldots, ℓ_b .
 - 3. q_1 is incident to ℓ , but q_2 is not.
- The existence of these two points then implies that ℓ is not a function of p_1, \ldots, p_a and ℓ_1, \ldots, ℓ_b which is the desired contradiction.

"Small" graph with "large" functionality – proof

Theorem

Consider a finite projective plane of order k and its bipartite incidence graph G. Then we have $fun(G) \ge k$.

- There are k + 1 points on each line and every two lines intersect in one point.
- Therefore there exists a point on ℓ which is distinct from each p_i and it is not incident with any ℓ_i . This is the point q_1 .
- The total number of points is $k^2 + k + 1$. The total number of points incident to $\ell, \ell_1, \ldots, \ell_b$ is at most (b+1)(k+1) and we have a points p_1, \ldots, p_a . This is the total of $(b+1)(k+1) + a \leq (a+b+1)(k+1) \leq k(k+1) < k^2 + k + 1$. This implies the existence of the point q_2 .

"Equivalent" view of functionality:

- Suppose that y is a function of vertices x_1, \ldots, x_k .
- For vertices $a, b \in V \setminus \{y, x_1, \dots, x_k\}$ define relation ~ as follows:

$$a \sim b \Leftrightarrow A(a, x_i) = A(b, x_i) \qquad \forall i \in [k]$$

- Then \sim has at most 2^k equivalence classes.
- And all vertices in a single equivalence class have the same adjacency with y.

Determining the functionality of a vertex is hard – proof

- We reduce from DOMINATING SET to "determining whether a vertex v is a function of at most k vertices."
- Given (G, k) an instance of dominating set, we add
 - a vertex v connected to all vertices of V(G), and
 - a set I of k + 1 isolated vertices
- resulting in graph H, where $V(H) = V(G) \cup \{v\} \cup I$.
- \Rightarrow
 - Any two vertices of V(G) or I have the same adjacency with v.

\Leftarrow

- Suppose that v is a function of some vertices $u_1, \ldots, u_k \in V(H)$.
- We claim that $\{u_1, \ldots, u_k\} \cap V(G)$ is a dominating set in G.
- Assume it is not for contradiction.
- Then there exists $x \in V(G)$ such that it is not adjacent to any u_1, \ldots, u_k .
- At least one $y \in I$ is not adjacent to v.
- x and y have the same neighbourhood with u_1, \ldots, u_k but $A(x, v) \neq A(y, v)$.

Theorem

Let G be a graph on n vertices. Then $fun(G) = \mathcal{O}(\sqrt{n \log n})$.

- Fix a constant c > 2.
- We show that there is a $v \in V(G)$: $\operatorname{fun}_G(v) \leq d(n) := \sqrt{cn \log n}$.
- As d(n) is increasing, this suffices for the proof of the theorem.
- We write d = d(n) and $PN(u, v) = (N(u) \Delta N(v)) \setminus \{u, v\}.$
- Case 1: There exist $u \neq v$ s.t. sd(u, v) = |PN(u, v)| < d.
 - Then the set $PN(u, v) \cup \{u\}$ suffices to certify the neighborhood of v.
 - We are done with this case.

Upper bound – Proof continued

- Case 2: All sets PN(u, v) have size at least d.
 - Choose $v \in V(G)$ arbitrarily.
 - Choose a random set $S \subseteq V(G)$ by independently putting each vertex of G v to S with probability p = d/n.
 - The probability that adjacency to v is not certified by S is equal to

 $\Pr(\exists u_1 \in N(v) \setminus S, u_2 \notin N(v) \cup S \cup \{v\} : S \cap PN(u_1, u_2) = \emptyset).$

• We estimate this using the union bound by

$$\sum_{u_1, u_2} (1-p)^{|PN(u_1, u_2)| - 1} \le n^2 (1-p)^{d-1}$$

• The probability that S is "bad for v" is at most $n^2 e^{-p(d-1)}$, which is o(1) whenever c > 2.

Upper bound – Proof continued

- The expected size of S is $p \cdot (n-1) = \frac{n-1}{n}d$.
- By Markov inequality: $P(|S| > d) \le \frac{n-1}{n}$.
- This means that with positive probability $|S| \leq d$ and S certifies adjacency to v.

- G = G(n, 1/2)
- Lower bound: directly estimate $P(\operatorname{fun}(v) < \frac{1}{2} \log n) < \frac{1}{n^{\log n}}$, then use union bound to get $P(\operatorname{fun}(G) < \frac{1}{2} \log n) = o(1)$.
- Upper bound: we in fact show, that w.h.p. every induced $H \subset G(n, 1/2)$ has a distinguishing subset of size $C \log n$, from this the result about functionality follows directly. But having to prove this for 2^n subgraphs requires us to get much tighter bounds for each of the subgraphs. We use *Poisson approximation* for "balls-into-bins" together with *custom Chernoff-type bound*.

- What is the maximum functionality of a graph on *n* vertices? (Are projective planes the worst?)
- What is the complexity of computing functionality? (Should be hard, put unclear how to prove it.)
- What is $\max \operatorname{sd}(G)$ for $G \in \operatorname{INT}_n$? $(n^{1/4} \text{ or } n^{1/3}?)$