Bounds on functionality and symmetric difference

Tung Anh Vu

joint with
Pavel Dvořák, Lukáš Folwarczný, Michal Opler, Pavel Pudlák, and Robert Šámal.

Matoušek prize lecture 7th March 2024

Graph functionality - definition

- Consider a graph G. Put $A(x, y)=1$ iff $\{x, y\} \in E(G)$.
- Vertex $y \in V(G)$ is a function of $x_{1}, \ldots, x_{k} \in V(G) \backslash\{y\}$ iff

$$
\begin{aligned}
& \exists f:\{0,1\}^{k} \rightarrow\{0,1\} \\
& \forall z \in V(G) \backslash\left\{y, x_{1}, \ldots, x_{k}\right\}: \\
& A(y, z)=f\left(A\left(x_{1}, z\right), \ldots, A\left(x_{k}, z\right)\right)
\end{aligned}
$$

- $\operatorname{fun}_{G}(y):=$ minimal k such that y is a function of some k vertices
- fun $(G):=\max _{H \subseteq \subseteq_{\text {ind }} G} \min _{y \in V(H)} \operatorname{fun}_{H}(y)$
- Seed of this idea in [Atminas, Collins, Lozin, Zamaraev 2015]
- Defined in [Alecu, Atminas, Lozin 2021]

Graph functionality - motivation

- By putting f identically 0 , we get $\operatorname{fun}_{G}(y) \leq \operatorname{deg}(y)$ and thus

$$
\text { fun }(G) \leq \text { degeneracy of } G
$$

- If fun $(G) \leq k$ then G can be represented using $n\left((k+1) \log (n)+2^{k}\right)$ bits of information.
- So if every graph $G \in \mathcal{G}$ has bounded functionality then \mathcal{G} contains at most $2^{O(n \log n)}$ graphs on n vertices.
- Kind of a reverse to the Implicit graph conjecture, which motivated this research (but was recently disproved [Hatami and Hatami 2022]).

Known results - general

Theorem (AAL 2021)
For any graph G :

$$
\operatorname{fun}(G) \leq 2 \operatorname{cwd}(G)-1
$$

Theorem (AAL 2021)

There exists a function g such that for any graph G :

$$
\operatorname{vc}(G) \leq g(\operatorname{fun}(G))
$$

Known results - concrete graph classes

Theorem (AAL 2021)

- fun $($ unit interval graphs $) \leq 2$.
- fun(line graphs) ≤ 6.
- fun $($ permutation graphs $) \leq 8$.
- fun(intersection graphs of 3-uniform hypergraphs) ≤ 462.

Theorem (Dallard, Lozin, Milanič, Štorgel, Zamaraev 2023) fun $($ interval graphs $) \leq 8$.

Our results I

Theorem (Bounds on functionality)

There exists a graph on n vertices with functionality $\Omega(\sqrt{n})$. fun $(G) \leq \mathcal{O}(\sqrt{n \log n})$ for every graph G.

Theorem (Random graphs)

W.h.p.

$$
C_{1} \log n \leq \operatorname{fun}(G(n, 1 / 2)) \leq C_{2} \log n
$$

Theorem (Informal)

"Determining the functionality of a vertex is NP-hard."

Symmetric difference

Given $u, v \in V(G)$, let $\operatorname{sd}_{G}(u, v)$ be the number of vertices different from u and v that are adjacent to exactly one of u and v.

- It is noted by [AAL 2021] that $\operatorname{fun}(G) \leq \operatorname{sd}(G)+1$.

Our results II

INT_{n} - interval graphs on n vertices

Theorem

Any interval graph $G \in \mathrm{INT}_{n}$ has symmetric difference at most $O(\sqrt[3]{n})$.

Theorem

There is an interval graph $G \in \mathrm{INT}_{n}$ of symmetric difference at least $\Omega(\sqrt[4]{n})$.

"Small" graph with "large" functionality - proof

Theorem

Consider a finite projective plane of order k and its bipartite incidence graph G. Then we have $\operatorname{fun}(G) \geq k$.

- In a finite projective plane of order k, each line has $k+1$ points and each point lies on $k+1$ lines. The total number of points, as well as lines, is $k^{2}+k+1$.
- Let ℓ be a line of the projective plane.
- Symmetry \Rightarrow it is enough to show $\operatorname{fun}_{G}(\ell) \geq k$.

"Small" graph with "large" functionality - proof

Theorem

Consider a finite projective plane of order k and its bipartite incidence graph G. Then we have fun $(G) \geq k$.

- Proof by contradiction: Let p_{1}, \ldots, p_{a} and $\ell_{1}, \ldots, \ell_{b}$ be points and lines such that ℓ is a function of these and $a+b \leq k-1$.
- We claim that then there exist points q_{1} and q_{2} satisfying:

1. q_{1} and q_{2} are distinct from all p_{1}, \ldots, p_{a}.
2. Neither q_{1} nor q_{2} is incident to any of the lines $\ell_{1}, \ldots, \ell_{b}$.
3. q_{1} is incident to ℓ, but q_{2} is not.

- The existence of these two points then implies that ℓ is not a function of p_{1}, \ldots, p_{a} and $\ell_{1}, \ldots, \ell_{b}$ which is the desired contradiction.

"Small" graph with "large" functionality - proof

Theorem

Consider a finite projective plane of order k and its bipartite incidence graph G. Then we have fun $(G) \geq k$.

- There are $k+1$ points on each line and every two lines intersect in one point.
- Therefore there exists a point on ℓ which is distinct from each p_{i} and it is not incident with any ℓ_{i}. This is the point q_{1}.
- The total number of points is $k^{2}+k+1$. The total number of points incident to $\ell, \ell_{1}, \ldots, \ell_{b}$ is at most $(b+1)(k+1)$ and we have a points p_{1}, \ldots, p_{a}. This is the total of $(b+1)(k+1)+a \leq(a+b+1)(k+1) \leq k(k+1)<k^{2}+k+1$. This implies the existence of the point q_{2}.

Determining the functionality of a vertex is hard - proof

"Equivalent" view of functionality:

- Suppose that y is a function of vertices x_{1}, \ldots, x_{k}.
- For vertices $a, b \in V \backslash\left\{y, x_{1}, \ldots, x_{k}\right\}$ define relation \sim as follows:

$$
a \sim b \Leftrightarrow A\left(a, x_{i}\right)=A\left(b, x_{i}\right) \quad \forall i \in[k]
$$

- Then \sim has at most 2^{k} equivalence classes.
- And all vertices in a single equivalence class have the same adjacency with y.

Determining the functionality of a vertex is hard - proof

- We reduce from Dominating Set to "determining whether a vertex v is a function of at most k vertices."
- Given (G, k) an instance of dominating set, we add
- a vertex v connected to all vertices of $V(G)$, and
- a set I of $k+1$ isolated vertices
- resulting in graph H, where $V(H)=V(G) \cup\{v\} \cup I$.
\Rightarrow
- Any two vertices of $V(G)$ or I have the same adjacency with v.

Determining the functionality of a vertex is hard - proof

\Leftarrow

- Suppose that v is a function of some vertices $u_{1}, \ldots, u_{k} \in V(H)$.
- We claim that $\left\{u_{1}, \ldots, u_{k}\right\} \cap V(G)$ is a dominating set in G.
- Assume it is not for contradiction.
- Then there exists $x \in V(G)$ such that it is not adjacent to any u_{1}, \ldots, u_{k}.
- At least one $y \in I$ is not adjacent to v.
- x and y have the same neighbourhood with u_{1}, \ldots, u_{k} but $A(x, v) \neq A(y, v)$.

Upper bound - Proof

Theorem

Let G be a graph on n vertices. Then $\operatorname{fun}(G)=\mathcal{O}(\sqrt{n \log n})$.

- Fix a constant $c>2$.
- We show that there is a $v \in V(G): \operatorname{fun}_{G}(v) \leq d(n):=\sqrt{c n \log n}$.
- As $d(n)$ is increasing, this suffices for the proof of the theorem.
- We write $d=d(n)$ and $P N(u, v)=(N(u) \Delta N(v)) \backslash\{u, v\}$.
- Case 1: There exist $u \neq v$ s.t. $s d(u, v)=|P N(u, v)|<d$.
- Then the set $P N(u, v) \cup\{u\}$ suffices to certify the neighborhood of v.
- We are done with this case.

Upper bound - Proof continued

- Case 2: All sets $P N(u, v)$ have size at least d.
- Choose $v \in V(G)$ arbitrarily.
- Choose a random set $S \subseteq V(G)$ by independently putting each vertex of $G-v$ to S with probability $p=d / n$.
- The probability that adjacency to v is not certified by S is equal to

$$
\operatorname{Pr}\left(\exists u_{1} \in N(v) \backslash S, u_{2} \notin N(v) \cup S \cup\{v\}: S \cap P N\left(u_{1}, u_{2}\right)=\emptyset\right) .
$$

- We estimate this using the union bound by

$$
\sum_{u_{1}, u_{2}}(1-p)^{\left|P N\left(u_{1}, u_{2}\right)\right|-1} \leq n^{2}(1-p)^{d-1}
$$

- The probability that S is "bad for v " is at most $n^{2} e^{-p(d-1)}$, which is $o(1)$ whenever $c>2$.

Upper bound - Proof continued

- The expected size of S is $p \cdot(n-1)=\frac{n-1}{n} d$.
- By Markov inequality: $P(|S|>d) \leq \frac{n-1}{n}$.
- This means that with positive probability $|S| \leq d$ and S certifies adjacency to v.

Random graphs - Rough sketch of proofs

- $G=G(n, 1 / 2)$
- Lower bound: directly estimate $P\left(\right.$ fun $\left.(v)<\frac{1}{2} \log n\right)<\frac{1}{n^{\log n}}$, then use union bound to get $P\left(\right.$ fun $\left.(G)<\frac{1}{2} \log n\right)=o(1)$.
- Upper bound: we in fact show, that w.h.p. every induced $H \subset G(n, 1 / 2)$ has a distinguishing subset of size $C \log n$, from this the result about functionality follows directly. But having to prove this for 2^{n} subgraphs requires us to get much tighter bounds for each of the subgraphs. We use Poisson approximation for "balls-into-bins" together with custom Chernoff-type bound.

Open problems

- What is the maximum functionality of a graph on n vertices? (Are projective planes the worst?)
- What is the complexity of computing functionality? (Should be hard, put unclear how to prove it.)
- What is $\operatorname{maxsd}(G)$ for $G \in \operatorname{INT}_{n}$?
($n^{1 / 4}$ or $n^{1 / 3}$?)

