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Capacitated k-Center (CkC)

Input

• graph G = (V,E) with edge lengths ` : E → R+,
• integer k,

• capacities c : V → N.
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Goal

Find S ⊆ V and an assignment ϕ : (V \ S)→ S such that
• |S| ≤ k,

• for every u ∈ S, |ϕ−1(u)| ≤ c(u), and

• maxv∈V \S dist(v, ϕ(v)) is minimal.
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Doubling dimension (∆)

. . . of graph G = (V,E) is the smallest ∆ ∈ N such that

• the ball B(u, r) for every u ∈ V and every r ∈ R+

• is contained in∪v∈UB(v, r/2) for some U ⊆ V with |U | ≤ 2∆.

 d-dimensional `q metrics have doubling dimension O(d).

Overcoming lower bounds in special settings

Capacitated k-Center

k-Center

k-Median, k-Means,
Facility Location

TSP, Steiner Tree

Highway dimension (h)

kk/εO(k∆) · poly(n)
Feldmann, Marx. 2020

2(1/ε)O(∆2) ·poly(n)
Cohen-Addad, Feldmann, Saulpic. 2021

exp{2O(∆) · (4∆ log n/ε)∆}

Talwar. 2004

f(k, h, ε) ·poly(n)†

†: f : computable function

Becker, Klein, Saulpic. 2018

n(2h/ε)O(1)

exp
{

polylog(n)O(log2(h/ε))
}Feldmann, Saulpic. 2021

Feldmann, Fung, Könemann, Post. 2018

kk/εO(k∆) · poly(n)

Theorem 2

∃c > 1: no c-approximation
in Oε (f(k, h) · poly(n))

†,§

Theorem 1

§: unless FPT = W[1]

Doubling Dimension (∆)

Designing PTAS’es/EPAS’es for low highway dimension graphs

Usual approach:

1. Obtain an EPAS for low doubling dimension graphs.

2. Generalize the approach to low highway dimension graphs.

E.g., the last two rows of the table above.
Theorems 1 and 2 combined show a first example of a problem where this approach is
not possible!

Hardness for highway dimension graphs (Theorem 1)

Approach

• Dom et al. (2008) show that CkC is W[1]-hard for low treewidth graphs.

• We add edge weights to this reduction to obtain the hardness result for low highway
dimension graphs.

V i
Ei,j

e = (v, w)

Dashed edges have weight 1 and full edges have weight 8.

Polynomial algorithms: state of the art

• Cygan, Hajiaghayi, Khuller. 2012: CkC is NP-hard to even (3− ε)-approximate.

• An, Bhaskara, Chekuri, Gupta, Madan, Svensson. 2015: CkC can be 9-approximated.

Can we overcome this lower bound in special settings?
E.g., Euclidean spaces, real world, planar graphs,. . .

Efficient Parameterized Approximation Scheme

EPAS

in time O
(
f(p, ε) · |I|O(1)

)
where f is a computable function

parameter p1×p2×· · · ∈ N
of the input

ε > 0
solution at most (1+ ε) times
worse than the optimum

Input I

Highway dimension (h)

Shortest Path Cover

•G: edge-weighted graph. Fix a scale r ∈ R+.

•Pr: set of paths of G such that

– they are a shortest path between their end-
points,

– their length is more than r and at most 2r.

shortest path cover SPCr(G): hitting set
for Pr.

Highway dimension

highway dimension of an edge-weighted
graph G:

• smallest integer h such that,

• for any scale r ∈ R+,

• there exists H := SPCr(G) so that,

• |H ∩B(u, 2r)| ≤ h for every u ∈ V (G).

Is approximation necessary in these special settings?

• Feldmann and Marx, 2020: k-Center is W[1]-hard in graphs of constant ∆ for param-
eters k, h, and pathwidth. ⇒ must approximate even in parameterized setting.

• Feder and Greene, 1988: k-Center is NP-hard to (1.822−ε) or (2−ε)-approximate in
two-dimensional Euclidean resp. Manhattan metric. ⇒ cannot parameterize only by ∆.

(Capacitated) k-Center algorithm (Theorem 2)

For better intuition, view the input graph as a metric space M = (X, dist) with dist
induced by shortest-path distances.

⇒ We get a (1 + ε)-approximate solution.

⇒ Guess the k-tuple near the optimum centers to get an EPAS with parameters k, ε, and ∆.

Capacities?

Optimum solution of cost OPT.

Net : Y ⊆ X such that

∀x ∈ X∃y ∈ Y : d(x, y) ≤ εOPT

∀y1 6= y2 ∈ Y : d(y1, y2) > εOPT

CkC obstacles

Replace every optimum center by its nearest net point.

It can be shown that |Y | ≤ k(1/ε)O(∆).

Solution verification?

Ambiguity?

M = (X,dist)

Dealing with CkC obstacles (sketch)

Capacities. Replace every optimum center with a nearest net point with the highest
capacity.
Ambiguity. View the k-tuple near the optimum center set as a multiset.
Solution verification. Reduce to network flows.


