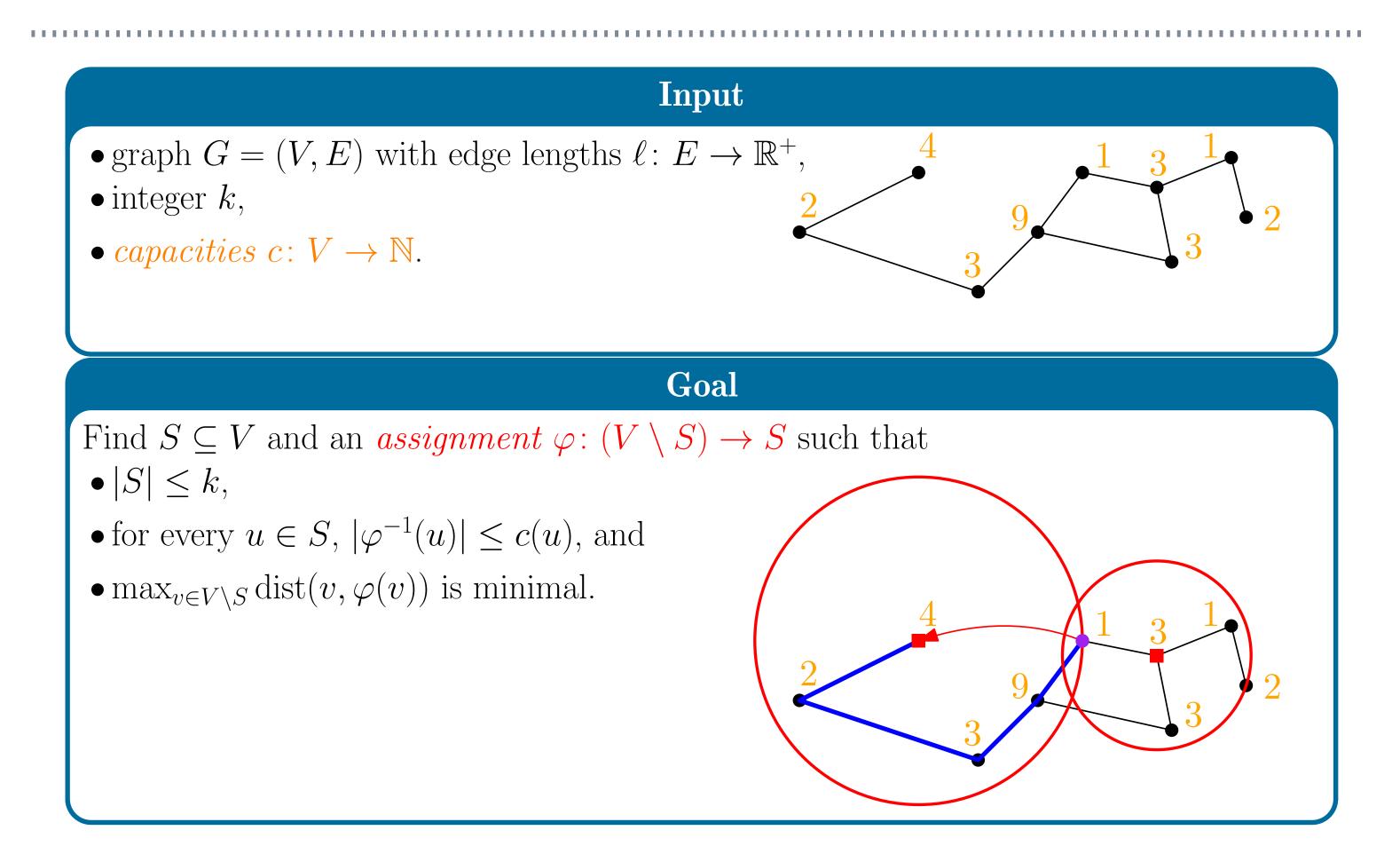
GENERALIZED k-CENTER: DISTINGUISHING DOUBLING AND HIGHWAY DIMENSION Andreas Emil Feldmann <feldmann.a.e@gmail.com>, Tung Anh Vu <vu.tunganh96@gmail.com>

University of Sheffield

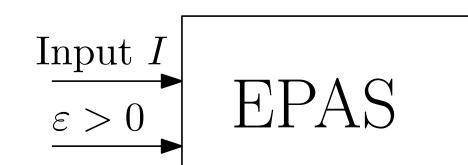
Capacitated k-Center (CkC)



Polynomial algorithms: state of the art

• Cygan, Hajiaghayi, Khuller. 2012: CKC is NP-hard to even $(3 - \varepsilon)$ -approximate. • An, Bhaskara, Chekuri, Gupta, Madan, Svensson. 2015: CKC can be 9-approximated. **Can we overcome this lower bound in special settings?** E.g., Euclidean spaces, real world, planar graphs,...

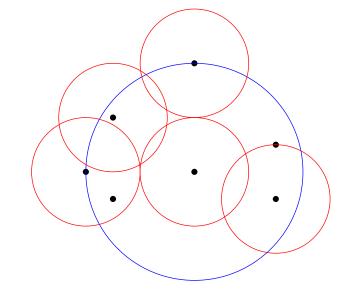
Efficient Parameterized Approximation Scheme



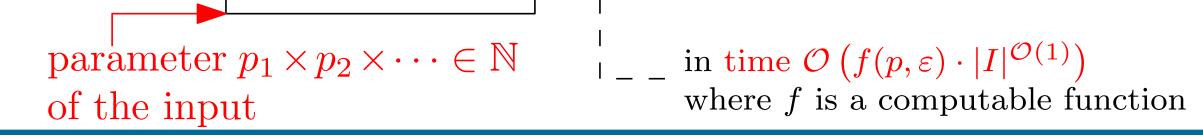
solution at most $(1 + \varepsilon)$ times worse than the optimum

Doubling dimension (Δ)

... of graph G = (V, E) is the smallest $\Delta \in \mathbb{N}$ such that • the ball B(u, r) for every $u \in V$ and every $r \in \mathbb{R}^+$ • is contained in $\bigcup_{v \in U} B(v, r/2)$ for some $U \subseteq V$ with $|U| \leq 2^{\Delta}$. $\rightsquigarrow d$ -dimensional ℓ_q metrics have doubling dimension $\mathcal{O}(d)$.



Overcoming lower bounds in special settings



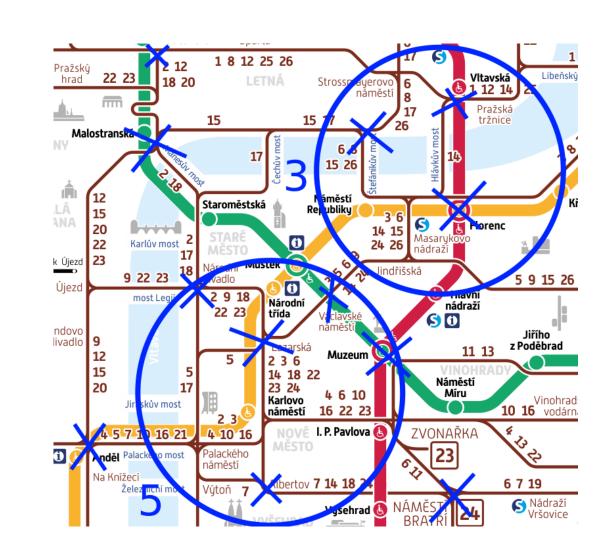
Highway dimension (h)

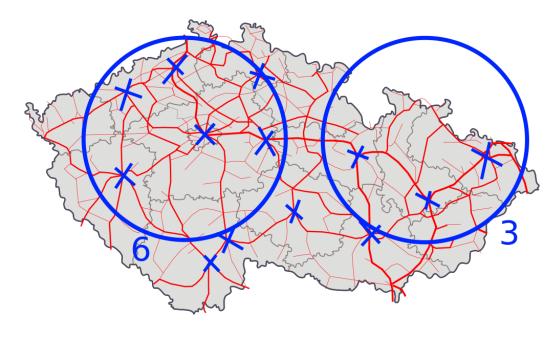
Shortest Path Cover

- G: edge-weighted graph. Fix a scale $r \in \mathbb{R}^+$.
- \mathcal{P}_r : set of paths of G such that
- -they are a shortest path between their endpoints,
- -their length is more than r and at most 2r. shortest path cover $SPC_r(G)$: hitting set for \mathcal{P}_r .

Highway dimension

- dimension of an edge-weighted highway graph G:
- smallest integer h such that,
- for any scale $r \in \mathbb{R}^+$,
- there exists $H \coloneqq \operatorname{SPC}_r(G)$ so that, • $|H \cap B(u, 2r)| \le h$ for every $u \in V(G)$.





	Doubling Dimension (Δ)	Highway dimension (h)
CAPACITATED <i>k</i> -CENTER	$k^k / \varepsilon^{\mathcal{O}(k\Delta)} \cdot \operatorname{poly}(n)$	$\exists c > 1: \text{ no } c\text{-approximation} \\ \text{in } \mathcal{O}_{\varepsilon} \left(f(k,h) \cdot \operatorname{poly}(n) \right)^{\dagger, \S} \end{cases}$
	Theorem 2	Theorem 1
k-Center	$k^k / \varepsilon^{\mathcal{O}(k\Delta)} \cdot \operatorname{poly}(n)$	$f(k,h,\varepsilon) \cdot \mathrm{poly}(n)^{\dagger}$
	Feldmann, Marx. 2020	Becker, Klein, Saulpic. 2018
k-Median, k -Means, Facility Location	$2^{(1/\varepsilon)^{\mathcal{O}(\Delta^2)}} \cdot \operatorname{poly}(n)$	$n^{(2h/\varepsilon)^{\mathcal{O}(1)}}$
FACILITY LOCATION	Cohen-Addad, Feldmann, Saulpic. 2021	Feldmann, Saulpic. 2021
TSP, STEINER TREE	$\exp\{2^{\mathcal{O}(\Delta)} \cdot (4\Delta \log n/\varepsilon)^{\Delta}\}$	$\exp\left\{\operatorname{polylog}(n)^{\mathcal{O}(\log^2(h/\varepsilon))}\right\}$
	Talwar. 2004	Feldmann, Fung, Könemann, Post. 2018
$\dagger: f:$ computable function	§: unless $FPT = W[1]$	

Designing PTAS'es/EPAS'es for low highway dimension graphs

Usual approach:

- 1. Obtain an EPAS for low doubling dimension graphs.
- 2. Generalize the approach to low highway dimension graphs.

E.g., the last two rows of the table above.

Theorems 1 and 2 combined show a **first** example of a problem where this approach is not possible!

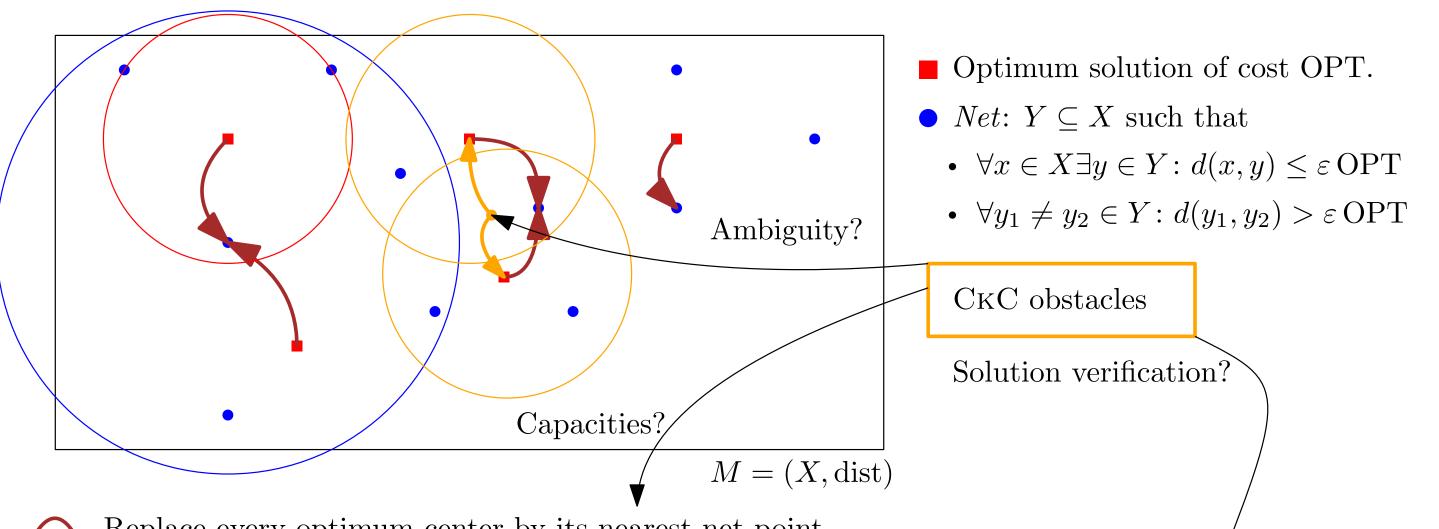
Hardness for highway dimension graphs (Theorem 1)

Is approximation necessary in these special settings?

- Feldmann and Marx, 2020: k-CENTER is W[1]-hard in graphs of constant Δ for parameters k, h, and pathwidth. \Rightarrow must approximate even in parameterized setting.
- Feder and Greene, 1988: k-CENTER is NP-hard to (1.822ε) or (2ε) -approximate in two-dimensional Euclidean resp. Manhattan metric. \Rightarrow cannot parameterize only by Δ .

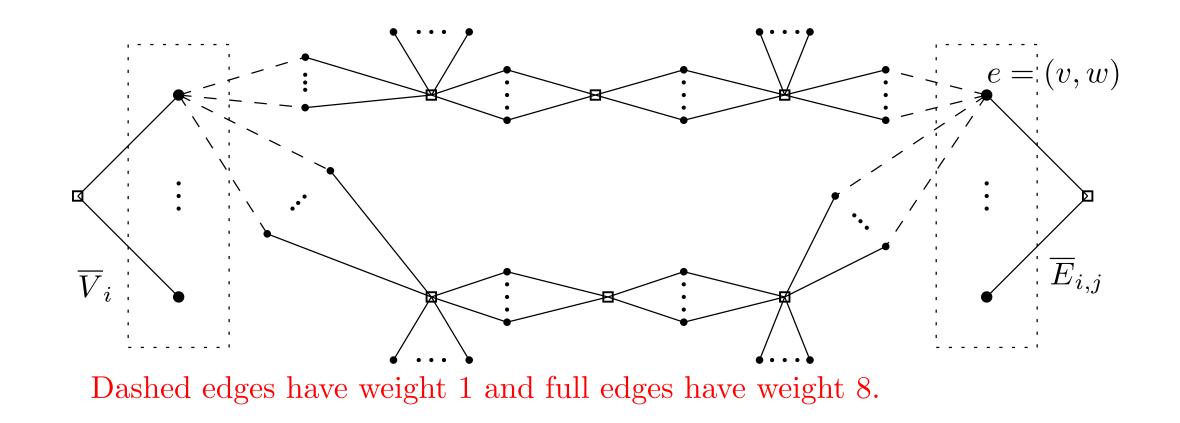
(Capacitated) k-Center algorithm (Theorem 2)

For better intuition, view the input graph as a metric space M = (X, dist) with dist induced by shortest-path distances.



Approach

• Dom et al. (2008) show that $C \ltimes C$ is W[1]-hard for low treewidth graphs. • We add edge weights to this reduction to obtain the hardness result for low highway dimension graphs.



- Replace every optimum center by its nearest net point.
 - \Rightarrow We get a $(1 + \varepsilon)$ -approximate solution.
- It can be shown that $|Y| \leq k(1/\varepsilon)^{\mathcal{O}(\Delta)}$.

 \Rightarrow Guess the k-tuple near the optimum centers to get an EPAS with parameters k, ε , and Δ .

Dealing with CkC obstacles (sketch)

Capacities. Replace every optimum center with a nearest net point with the highest capacity.

Ambiguity. View the k-tuple near the optimum center set as a multiset. **Solution verification.** Reduce to network flows.