Mathematical analysis I - Homework 7

Due: 15:40, 21.11.
Write your solution of each problem on a separate sheet of paper. One part will be marked for credit.

Problem 1: Find limits of the following sequences
(a) $\lim _{n \rightarrow \infty}\left(\frac{n-1}{3 n}\right)^{n}$
(b) $\lim _{n \rightarrow \infty}\left(1-\frac{1}{n}\right)^{n^{2}}$

Problem 2: Find the limit of the sequence $\left(\frac{n!-3^{n}}{n^{10}-2^{n}}\right)$ or show it does not exist.
Problem 3: Due date postponed to 28.11.! Compute the limit of a recursively defined sequence $a_{1}=1$ and $a_{n+1}=\frac{1}{2}\left(a_{n}+\frac{c}{a_{n}}\right)$, where c is a positive real. Using this, calculate $\sqrt{7}$ with precision to four decimal places. Justify why is your result precise enough without using value of $\sqrt{7}$.

Mathematical analysis I - Homework 7

Due: 15:40, 21.11.

Write your solution of each problem on a separate sheet of paper. One part will be marked for credit.

Problem 1: Find limits of the following sequences
(a) $\lim _{n \rightarrow \infty}\left(\frac{n-1}{3 n}\right)^{n}$
(b) $\lim _{n \rightarrow \infty}\left(1-\frac{1}{n}\right)^{n^{2}}$

Problem 2: Find the limit of the sequence $\left(\frac{n!-3^{n}}{n^{10}-2^{n}}\right)$ or show it does not exist.

Problem 3: Due date postponed to 28.11.! Compute the limit of a recursively defined sequence $a_{1}=1$ and $a_{n+1}=\frac{1}{2}\left(a_{n}+\frac{c}{a_{n}}\right)$, where c is a positive real. Using this, calculate $\sqrt{7}$ with precision to four decimal places. Justify why is your result precise enough without using value of $\sqrt{7}$.

