Mathematical analysis I — Homework 7

Due: 15:40, 21.11.

Write your solution of each problem on a separate sheet of paper. One part will be marked for credit.

Problem 1: Find limits of the following sequences

- (a) $\lim_{n\to\infty} \left(\frac{n-1}{3n}\right)^n$
- (b) $\lim_{n\to\infty} \left(1-\frac{1}{n}\right)^{n^2}$

Problem 2: Find the limit of the sequence $\left(\frac{n!-3^n}{n^{10}-2^n}\right)$ or show it does not exist.

Problem 3: **Due date postponed to 28.11.!** Compute the limit of a recursively defined sequence $a_1 = 1$ and $a_{n+1} = \frac{1}{2} \left(a_n + \frac{c}{a_n} \right)$, where c is a positive real. Using this, calculate $\sqrt{7}$ with precision to four decimal places. Justify why is your result precise enough without using value of $\sqrt{7}$.

Mathematical analysis I — Homework 7

Due: 15:40, 21.11.

Write your solution of each problem on a separate sheet of paper. One part will be marked for credit.

Problem 1: Find limits of the following sequences

- (a) $\lim_{n\to\infty} \left(\frac{n-1}{3n}\right)^n$
- (b) $\lim_{n\to\infty} \left(1-\frac{1}{n}\right)^{n^2}$

Problem 2: Find the limit of the sequence $\left(\frac{n!-3^n}{n^{10}-2^n}\right)$ or show it does not exist.

Problem 3: Due date postponed to 28.11.! Compute the limit of a recursively defined sequence $a_1 = 1$ and $a_{n+1} = \frac{1}{2} \left(a_n + \frac{c}{a_n} \right)$, where c is a positive real. Using this, calculate $\sqrt{7}$ with precision to four decimal places. Justify why is your result precise enough without using value of $\sqrt{7}$.