Mathematical analysis I - Homework 6

Due: 15:40, 14.11.

Write your solution of each problem on a separate sheet of paper. One part will be marked for credit.

Problem 1: Calculate the following limits.
(a) $\lim _{n \rightarrow \infty} \frac{n^{4} 11^{n}+n^{9} 9^{n}}{7^{2 n}+1}$
(b) $\lim _{n \rightarrow \infty} \frac{2 n^{2}+4 n+n \sin n}{n \cos 3 n+(2 n+\sin n)^{2}}$

Problem 2: Calculate the following limits.
(a) $\lim _{n \rightarrow \infty} \sqrt[n]{3 n^{2}+n}$
(b) $\lim _{n \rightarrow \infty} \sqrt[n]{2^{n}-n}$

Problem 3: Let $\left(a_{n}\right)_{n=0}^{\infty}$ be a sequence if positive reals such that for some $0<r<1$ there is $n_{0} \in \mathbb{N}$ such that every $n \geq n_{0}$ satisfies $a_{n+1} / a_{n} \leq r$. Prove that then $\lim _{n \rightarrow \infty} a_{n}=0$. (Hint: First prove by induction that $a_{n} \leq r^{n} \cdot a_{n_{0}}$.) Use this to show that $n!$ grows much faster than 10^{n}, in other words, $\lim _{n \rightarrow \infty} \frac{10^{n}}{n!}=0$.

Mathematical analysis I - Homework 6

Due: 15:40, 14.11.

Write your solution of each problem on a separate sheet of paper. One part will be marked for credit.

Problem 1: Calculate the following limits.
(a) $\lim _{n \rightarrow \infty} \frac{n^{4} 11^{n}+n^{9} 9^{n}}{7^{2 n}+1}$
(b) $\lim _{n \rightarrow \infty} \frac{2 n^{2}+4 n+n \sin n}{n \cos 3 n+(2 n+\sin n)^{2}}$

Problem 2: Calculate the following limits.
(a) $\lim _{n \rightarrow \infty} \sqrt[n]{3 n^{2}+n}$
(b) $\lim _{n \rightarrow \infty} \sqrt[n]{2^{n}-n}$

Problem 3: Let $\left(a_{n}\right)_{n=0}^{\infty}$ be a sequence if positive reals such that for some $0<r<1$ there is $n_{0} \in \mathbb{N}$ such that every $n \geq n_{0}$ satisfies $a_{n+1} / a_{n} \leq r$. Prove that then $\lim _{n \rightarrow \infty} a_{n}=0$. (Hint: First prove by induction that $\left.a_{n} \leq r^{n} \cdot a_{n_{0}}.\right)$ Use this to show that $n!$ grows much faster than 10^{n}, in other words, $\lim _{n \rightarrow \infty} \frac{10^{n}}{n!}=0$.

