Mathematical analysis I - Homework 5

Due: 15:40, 7.11.

Write your solution of each problem on a separate sheet of paper. One part will be marked for credit.

Problem 1: Using arithmetic of limits, calculate the following limits. You can use the statement from Problem 3 as a fact.
(a) $\lim _{n \rightarrow \infty} \frac{3 n^{2}+n}{-n^{2}+4 n}$
(b) $\lim _{n \rightarrow \infty} \frac{\sqrt{3 x^{2}+6}}{5-2 x}$
(c) $\lim _{n \rightarrow \infty} \sqrt{n+5}-\sqrt{n-1}$

Problem 2: Compute the limit of the sequence $\left(a_{n}\right)$, where $a_{n}=\sin \left(\frac{3}{5} \pi n\right)$ or prove it does not exist. (Argument of \sin is in radians, that is, $\left.\sin \frac{\pi}{2}=1, \sin 2 \pi=0\right)$.

Problem 3: Prove that if a sequence of non-negative reals $\left(a_{n}\right)$ has limit $a \in \mathbb{R}$ (note that a must be non-negative), then $\lim _{n \rightarrow \infty} \sqrt{a_{n}}=\sqrt{a}$.

Mathematical analysis I - Homework 5

Due: 15:40, 7.11.

Write your solution of each problem on a separate sheet of paper. One part will be marked for credit.

Problem 1: Using arithmetic of limits, calculate the following limits. You can use the statement from Problem 3 as a fact.
(a) $\lim _{n \rightarrow \infty} \frac{3 n^{2}+n}{-n^{2}+4 n}$
(b) $\lim _{n \rightarrow \infty} \frac{\sqrt{3 x^{2}+6}}{5-2 x}$
(c) $\lim _{n \rightarrow \infty} \sqrt{n+5}-\sqrt{n-1}$

Problem 2: Compute the limit of the sequence $\left(a_{n}\right)$, where $a_{n}=\sin \left(\frac{3}{5} \pi n\right)$ or prove it does not exist. (Argument of \sin is in radians, that is, $\left.\sin \frac{\pi}{2}=1, \sin 2 \pi=0\right)$.

Problem 3: Prove that if a sequence of non-negative reals $\left(a_{n}\right)$ has limit $a \in \mathbb{R}$ (note that a must be non-negative), then $\lim _{n \rightarrow \infty} \sqrt{a_{n}}=\sqrt{a}$.

