Mathematical analysis I — Tutorial 4

http://kam.mff.cuni.cz/~tereza/teaching.html

Problem 1: Decide whether the following sequences are monotone. If yes, are they increasing, decreasing, non-increasing or non-decreasing?

a)
$$(2^{-n})_{n=1}^{\infty}$$

b) $(2n + (-1)^n)_{n=1}^{\infty}$
c) $(\sin n)_{n=1}^{\infty}$
d) $\left(\frac{1}{1+n^2}\right)_{n=1}^{\infty}$
f) $(\sqrt{n+1} - \sqrt{n})_{n=1}^{\infty}$

Problem 2: A sequence (a_n) is known to be increasing.

- a) Might it have an upper bound?
- b) Might it have a lower bound?

c) Must it have an upper bound?

d) Must is have a lower bound?

Give a numerical example to illustrate each possibility or impossibility.

Problem 3: If a sequence is not bounded above, must it contain

a) a positive term,

b) an infinite number of positive terms?

Problem 4: Think of examples to show that:

a) an increasing sequence need not tend to infinity;

b) a sequence that tends to infinity need not be increasing;

c) a sequence with no upper bound need not tend to infinity.

Problem 5: Justify that the following properties do not imply that a sequence tends to zero (i.e. its limit is zero).

- a) A sequence in which each term is strictly less than its predecessor.
- b) A sequence in which each term is strictly less than its predecessor while remaining positive.
- c) A sequence in which, for sufficiently large n, each term is less than some small positive number.
- d) A sequence with arbitrarily small terms.

Use the following sequences for your arguments.

$$a_n = 3 - n,$$
 $b_n = \frac{n+1}{n},$ $c_n = -\frac{1}{10},$ $d_n = \begin{cases} 1 \text{ for } n \text{ odd}, \\ \frac{1}{2^n} \text{ for } n \text{ even} \end{cases}$

Problem 6: For the sequence $a_n = 1 + \frac{1}{\sqrt{n}}$, find n_0 such that for every $n \ge n_0$

a) $|a_n - 1| < 0, 1$ a) $|a_n - 1| < 0, 01$

Problem 7: Prove that the sequence $a_n = \frac{(-1)^n}{n}$ does not converge to 2.

Problem 8: Using the definition, find (and prove) limits of the following sequences:

a)
$$\left(\frac{1}{n}\right)_{n=1}^{\infty}$$

b) $\left(\log n\right)_{n=1}^{\infty}$
c) $\left(\frac{1}{1+n^2}\right)_{n=1}^{\infty}$
d) $\lim_{n \to \infty} (-1)^n$
e) $\lim_{n \to \infty} \cos(-1)^n$
f) $\lim_{n \to \infty} (-1)^{n!}$
i) $\lim_{n \to \infty} \frac{2n+1}{3n-2}$

Mathematical analysis I — Homework 4

Due: 15:40, 31.10.

Write your solution of each problem on a separate sheet of paper. One part will be marked for credit.

Problem 1: Find limits of the following sequences. For given $\varepsilon > 0$, find suitable n_0 from the definition of the limit.

a)
$$\left(\frac{2n}{n-1}\right)_{n=2}^{\infty}$$
 b) $\left(\sqrt{n+1} - \sqrt{n}\right)_{n=1}^{\infty}$

Problem 2: Decide and prove whether the sequence (a_n) defined as $a_1 = 1$ and $a_{n+1} = \sqrt{a_n + 1}$ is bounded and monotone or eventually monotone. If it is monotone, show whether it is increasing, decreasing, nonincreasing or non-decreasing and whether it is bounded. Conclude that the sequence must have a proper limit (you do not have to find it.)

Problem 3: Prove that a sequence (a_n) cannot have a proper limit $a \in \mathbb{R}$ and an improper limit ∞ at the same time.