Mathematical analysis I - Tutorial 4

http://kam.mff.cuni.cz/~tereza/teaching.html

Problem 1: Decide whether the following sequences are monotone. If yes, are they increasing, decreasing, non-increasing or non-decreasing?
a) $\left(2^{-n}\right)_{n=1}^{\infty}$
b) $\left(2 n+(-1)^{n}\right)_{n=1}^{\infty}$
c) $(\sin n)_{n=1}^{\infty}$
d) $\left(\frac{1}{1+n^{2}}\right)_{n=1}^{\infty}$
e) $\left(\frac{n+1}{n+2}\right)_{n=1}^{\infty}$
f) $(\sqrt{n+1}-\sqrt{n})_{n=1}^{\infty}$

Problem 2: A sequence $\left(a_{n}\right)$ is known to be increasing.
a) Might it have an upper bound?
b) Might it have a lower bound?
c) Must it have an upper bound?
d) Must is have a lower bound?

Give a numerical example to illustrate each possibility or impossibility.

Problem 3: If a sequence is not bounded above, must it contain
a) a positive term,
b) an infinite number of positive terms?

Problem 4: Think of examples to show that:
a) an increasing sequence need not tend to infinity;
b) a sequence that tends to infinity need not be increasing;
c) a sequence with no upper bound need not tend to infinity.

Problem 5: Justify that the following properties do not imply that a sequence tends to zero (i.e. its limit is zero).
a) A sequence in which each term is strictly less than its predecessor.
b) A sequence in which each term is strictly less than its predecessor while remaining positive.
c) A sequence in which, for sufficiently large n, each term is less than some small positive number.
d) A sequence with arbitrarily small terms.

Use the following sequences for your arguments.

$$
a_{n}=3-n, \quad b_{n}=\frac{n+1}{n}, \quad c_{n}=-\frac{1}{10}, \quad d_{n}=\left\{\begin{array}{l}
1 \text { for } n \text { odd } \\
\frac{1}{2^{n}} \text { for } n \text { even }
\end{array}\right.
$$

Problem 6: For the sequence $a_{n}=1+\frac{1}{\sqrt{n}}$, find n_{0} such that for every $n \geq n_{0}$
a) $\left|a_{n}-1\right|<0,1$
a) $\left|a_{n}-1\right|<0,01$

Problem 7: Prove that the sequence $a_{n}=\frac{(-1)^{n}}{n}$ does not converge to 2.

Problem 8: Using the definition, find (and prove) limits of the following sequences:
a) $\left(\frac{1}{n}\right)_{n=1}^{\infty}$
b) $(\log n)_{n=1}^{\infty}$
c) $\left(\frac{1}{1+n^{2}}\right)_{n=1}^{\infty}$
d) $\lim _{n \rightarrow \infty}(-1)^{n}$
e) $\lim _{n \rightarrow \infty} \cos (-1)^{n}$
f) $\lim _{n \rightarrow \infty}(-1)^{n!}$
g) $\lim _{n \rightarrow \infty} \frac{(-1)^{n}}{n}$
h) $\lim _{n \rightarrow \infty} \cos \left(\frac{n \pi}{4}\right)$
i) $\lim _{n \rightarrow \infty} \frac{2 n+1}{3 n-2}$

Mathematical analysis I - Homework 4

Due: 15:40, 31.10.
Write your solution of each problem on a separate sheet of paper. One part will be marked for credit.

Problem 1: Find limits of the following sequences. For given $\varepsilon>0$, find suitable n_{0} from the definition of the limit.
a) $\left(\frac{2 n}{n-1}\right)_{n=2}^{\infty}$
b) $(\sqrt{n+1}-\sqrt{n})_{n=1}^{\infty}$

Problem 2: Decide and prove whether the sequence $\left(a_{n}\right)$ defined as $a_{1}=1$ and $a_{n+1}=\sqrt{a_{n}+1}$ is bounded and monotone or eventually monotone. If it is monotone, show whether it is increasing, decreasing, nonincreasing or non-decreasing and whether it is bounded. Conclude that the sequence must have a proper limit (you do not have to find it.)

Problem 3: Prove that a sequence $\left(a_{n}\right)$ cannot have a proper limit $a \in \mathbb{R}$ and an improper limit ∞ at the same time.

