Mathematical analysis I - Homework 3

Due: 15:40, 23.10.
Write your solution of each problem on a separate sheet of paper. One part will be marked for credit.

Problem 1: Let $A=\{a \in \mathbb{R}:-3<a \leq 1\}$ and $B=\{\in \mathbb{R}:-3<b<1\}$. Which statements are true?
(a) $\forall a \in A \exists b \in B b<a$
(b) $\exists b \in B \forall a \in A b<a$
(c) $\forall b \in B \exists a \in A b<a$
(d) $\exists a \in A \forall b \in B b<a$

Problem 2: Decide whether the function $f: \mathbb{N} \rightarrow \mathbb{N}$ defined as $f(x)=x(x+1) / 2-x+1$ is injective and surjective. Prove it.

Problem 3: Prove density of rational and irrational numbers: show that for any who reals a, b such that $a<b$, there exist $r \in \mathbb{Q}$ and $s \in \mathbb{R} \backslash \mathbb{Q}$.
Hint: First part: First show that there is a natural number n such that $1 / n<b-a$. Then argue, that there exists an integer m such that $a<m / n<b$. Second part: Pick your favourite irrational number j and find s in the form $j+p / q$, where p and q are integers, using the first part of the statement. Note that the sum of rational and irrational number is irrational.

Mathematical analysis I - Homework 3

Due: 15:40, 23.10.

Write your solution of each problem on a separate sheet of paper. One part will be marked for credit.

Problem 1: Let $A=\{a \in \mathbb{R}:-3<a \leq 1\}$ and $B=\{\in \mathbb{R}:-3<b<1\}$. Which statements are true?
(a) $\forall a \in A \exists b \in B b<a$
(b) $\exists b \in B \forall a \in A b<a$
(c) $\forall b \in B \exists a \in A b<a$
(d) $\exists a \in A \forall b \in B b<a$

Problem 2: Decide whether the function $f: \mathbb{N} \rightarrow \mathbb{N}$ defined as $f(x)=x(x+1) / 2-x+1$ is injective and surjective. Prove it.

Problem 3: Prove density of rational and irrational numbers: show that for any who reals a, b such that $a<b$, there exist $r \in \mathbb{Q}$ and $s \in \mathbb{R} \backslash \mathbb{Q}$.

Hint: First part: First show that there is a natural number n such that $1 / n<b-a$. Then argue, that there exists an integer m such that $a<m / n<b$. Second part: Pick your favourite irrational number j and find s in the form $j+p / q$, where p and q are integers, using the first part of the statement. Note that the sum of rational and irrational number is irrational.

