Mathematical analysis I — Homework 2

Due: 15:40, 17.10.

Write your solution of each problem on a separate sheet of paper. One part will be marked for credit.

Problem 1: Determine suprema, infima, minima and maxima of the following sets in real numbers, if they exist. Justify your answers.

- (a) $M_2 = \{2^{2^k} | k \in \mathbb{Z}\}$
- (b) $M_3 = \{\frac{1}{1 + \ln n} | n \in \mathbb{N} \}$

Problem 2: For any two sets A an B, prove that

- (a) $A \subseteq B$ if and only if $A \cap B = A$
- (b) $A \subseteq B$ if and only if $A \cup B = B$

Deduce from the previous two statements that $A \cap B = A$ if and only if $A \cup B = B$.

Problem 3: Define C as a set of all rational numbers q from interval (0,1) such that every digit (i.e., each of 0,1,2,3,4,5,6,7,8 and 9) appears infinitely many times in the decimal expansion of q. E.g., $0,\overline{0123456789} \in C$, but $0,0123456789\overline{12} \notin C$. Also $\pi-3 \notin C$, since it is irrational. (Recall that rational numbers have finite or periodic decimal expansion.) Decide whether C has supremum, infimum, minimum and maximum and find them if they exist.

Mathematical analysis I — Homework 2

Due: 15:40, 17.10.

Write your solution of each problem on a separate sheet of paper. One part will be marked for credit.

Problem 1: Determine suprema, infima, minima and maxima of the following sets in real numbers, if they exist. Justify your answers.

- (a) $M_2 = \{2^{2^k} | k \in \mathbb{Z}\}$
- (b) $M_3 = \{ \frac{1}{1 + \ln n} | n \in \mathbb{N} \}$

Problem 2: For any two sets A an B, prove that

- (a) $A \subseteq B$ if and only if $A \cap B = A$
- (b) $A \subseteq B$ if and only if $A \cup B = B$

Deduce from the previous two statements that $A \cap B = A$ if and only if $A \cup B = B$.

Problem 3: Define C as a set of all rational numbers q from interval (0,1) such that every digit (i.e., each of 0,1,2,3,4,5,6,7,8 and 9) appears infinitely many times in the decimal expansion of q. E.g., $0,\overline{0123456789} \in C$, but $0,0123456789\overline{12} \notin C$. Also $\pi-3 \notin C$, since it is irrational. (Recall that rational numbers have finite or periodic decimal expansion.) Decide whether C has supremum, infimum, minimum and maximum and find them if they exist.