Mathematical analysis I - Homework 10

Due: 15:40, 12.12.
Write your solution of each problem on a separate sheet of paper. One part will be marked for credit.

Problem 1: Decide whether following series converege (conditionally), converge absolutely or diverge:
(a) $\sum_{n=1}^{\infty} \frac{\sin n}{n^{2}}$
(b) $\sum_{n=1}^{\infty} \frac{2\left|\cos \frac{n \pi}{2}\right|+(-1)^{n} n}{\sqrt{(n+1)^{3}}}$

Problem 2: For every $x \in \mathbb{R}$ decide, whether the following sequences are convergent (conditionally), absolutely convergent or divergent:
(a) $\sum_{n=1}^{\infty} \frac{(2 x)^{n}}{n}$
(b) $\sum_{n=1}^{\infty}(-n x)^{n}$

Problem 3:
(a) Using Bernoulli's inequality show that the sequence $\left(\left(1+\frac{1}{n}\right)^{n}\right)$ is non-decreasing.
(b) Use Binomial Theorem to show that $\left(1+\frac{1}{n}\right)^{n} \leq \sum_{k=0}^{n} \frac{1}{k!}$.
(c) Conclude that $\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}$ exists and is at most e. (Use that $e=\sum_{k=0}^{\infty} \frac{1}{k!}$.)

Mathematical analysis I - Homework 10

Due: 15:40, 12.12.

Write your solution of each problem on a separate sheet of paper. One part will be marked for credit.

Problem 1: Decide whether following series converege (conditionally), converge absolutely or diverge:
(a) $\sum_{n=1}^{\infty} \frac{\sin n}{n^{2}}$
(b) $\sum_{n=1}^{\infty} \frac{2\left|\cos \frac{n \pi}{2}\right|+(-1)^{n} n}{\sqrt{(n+1)^{3}}}$

Problem 2: For every $x \in \mathbb{R}$ decide, whether the following sequences are convergent (conditionally), absolutely convergent or divergent:
(a) $\sum_{n=1}^{\infty} \frac{(2 x)^{n}}{n}$
(b) $\sum_{n=1}^{\infty}(-n x)^{n}$

Problem 3:

(a) Using Bernoulli's inequality show that the sequence $\left(\left(1+\frac{1}{n}\right)^{n}\right)$ is non-decreasing.
(b) Use Binomial Theorem to show that $\left(1+\frac{1}{n}\right)^{n} \leq \sum_{k=0}^{n} \frac{1}{k!}$.
(c) Conclude that $\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}$ exists and is at most e. (Use that $e=\sum_{k=0}^{\infty} \frac{1}{k!}$.)

