Due: 15:40, 12.12.

Write your solution of each problem on a separate sheet of paper. One part will be marked for credit.

Problem 1: Decide whether following series converege (conditionally), converge absolutely or diverge:

- (a) $\sum_{n=1}^{\infty} \frac{\sin n}{n^2}$
- (b) $\sum_{n=1}^{\infty} \frac{2|\cos \frac{n\pi}{2}| + (-1)^n n}{\sqrt{(n+1)^3}}$

Problem 2: For every $x \in \mathbb{R}$ decide, whether the following sequences are convergent (conditionally), absolutely convergent or divergent:

- (a) $\sum_{n=1}^{\infty} \frac{(2x)^n}{n}$
- (b) $\sum_{n=1}^{\infty} (-nx)^n$

Problem 3:

- (a) Using Bernoulli's inequality show that the sequence $\left((1+\frac{1}{n})^n\right)$ is non-decreasing.
- (b) Use Binomial Theorem to show that $(1 + \frac{1}{n})^n \leq \sum_{k=0}^n \frac{1}{k!}$.
- (c) Conclude that $\lim_{n\to\infty} (1+\frac{1}{n})^n$ exists and is at most e. (Use that $e = \sum_{k=0}^{\infty} \frac{1}{k!}$.)

Mathematical analysis I — Homework 10

Due: 15:40, 12.12.

Write your solution of each problem on a separate sheet of paper. One part will be marked for credit.

Problem 1: Decide whether following series converge (conditionally), converge absolutely or diverge:

- (a) $\sum_{n=1}^{\infty} \frac{\sin n}{n^2}$
- (b) $\sum_{n=1}^{\infty} \frac{2|\cos \frac{n\pi}{2}| + (-1)^n n}{\sqrt{(n+1)^3}}$

Problem 2: For every $x \in \mathbb{R}$ decide, whether the following sequences are convergent (conditionally), absolutely convergent or divergent:

- (a) $\sum_{n=1}^{\infty} \frac{(2x)^n}{n}$
- (b) $\sum_{n=1}^{\infty} (-nx)^n$

Problem 3:

- (a) Using Bernoulli's inequality show that the sequence $\left(\left(1+\frac{1}{n}\right)^n\right)$ is non-decreasing.
- (b) Use Binomial Theorem to show that $(1 + \frac{1}{n})^n \leq \sum_{k=0}^n \frac{1}{k!}$.
- (c) Conclude that $\lim_{n\to\infty} (1+\frac{1}{n})^n$ exists and is at most e. (Use that $e = \sum_{k=0}^{\infty} \frac{1}{k!}$.)