Mathematical analysis I — Tutorial 2

http://kam.mff.cuni.cz/~tereza/teaching.html

Problem 1: Prove that for any sets A, B, C we have that $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$. The proof should be in two parts: first show that if $x \in A \cup (B \cap C)$ then $x \in (A \cup B) \cap (A \cup C)$, then show the reverse. You should only use the definitions of \cup and \cap .

Problem 2: In real numbers, determine suprema and infima of the following sets (if they exist). Are these minima and maxima of the sets?:

a)
$$M = \left\{ -\frac{1}{n}, n \in \mathbb{N} \right\}$$

b) $M = \left\{ \frac{p}{p+q}, p, q \in \mathbb{N} \right\}$
c) $M = \left\{ \frac{n+(-1)^n}{n}, n \in \mathbb{N} \right\}$
d) $M = \left\{ n^{(-1)^n}, n \in \mathbb{N} \right\}$
e) $M = \{ 2^{-n} + 3^{-n} : n \in \mathbb{N} \}$
f) $M = \{ 2^{-n} + 3^{-n} : n \in \mathbb{Z} \}$
g) $M = \{ 5^{(-1)^j 3^k} : j, k \in \mathbb{Z} \}$

Problem 3: On the sets of integers ordered by inclusion, determine supremum and infimum of the following set. $M = \{\{1, 3, 5, 7, 9\}, \{2, 3, 5, 9\}, \{1, 5, 7, 9, 10\}, \{4, 5, 6, 9, 11\}\}.$

Problem 4: For bounded nonempty sets of reals $A \neq B$, describe suprema and infima of the following sets as exactly as possible, using suprema and infima of A and B.

a) $A \cup B$

b) $A \cap B$, assuming it is nonempty.

c) $A \setminus B$, assuming it is nonempty.

Mathematical analysis I — Tutorial 2

http://kam.mff.cuni.cz/~tereza/teaching.html

Problem 1: Prove that for any sets A, B, C we have that $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$. The proof should be in two parts: first show that if $x \in A \cup (B \cap C)$ then $x \in (A \cup B) \cap (A \cup C)$, then show the reverse. You should only use the definitions of \cup and \cap .

Problem 2: In real numbers, determine suprema and infima of the following sets (if they exist). Are these minima and maxima of the sets?:

a)
$$M = \left\{ -\frac{1}{n}, n \in \mathbb{N} \right\}$$

b) $M = \left\{ \frac{p}{p+q}, p, q \in \mathbb{N} \right\}$
c) $M = \left\{ \frac{n+(-1)^n}{n}, n \in \mathbb{N} \right\}$
d) $M = \left\{ n^{(-1)^n}, n \in \mathbb{N} \right\}$
e) $M = \{ 2^{-n} + 3^{-n} : n \in \mathbb{N} \}$
f) $M = \{ 2^{-n} + 3^{-n} : n \in \mathbb{Z} \}$
g) $M = \{ 5^{(-1)^j 3^k} : j, k \in \mathbb{Z} \}$

Problem 3: On the sets of integers ordered by inclusion, determine supremum and infimum of the following set. $M = \{\{1, 3, 5, 7, 9\}, \{2, 3, 5, 9\}, \{1, 5, 7, 9, 10\}, \{4, 5, 6, 9, 11\}\}.$

Problem 4: For bounded nonempty sets of reals $A \neq B$, describe suprema and infima of the following sets as exactly as possible, using suprema and infima of A and B.

a) $A \cup B$

b) $A \cap B$, assuming it is nonempty.

c) $A \setminus B$, assuming it is nonempty.