Mathematical analysis I - Tutorial 2

http://kam.mff.cuni.cz/~tereza/teaching.html

Problem 1: Prove that for any sets A, B, C we have that $A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$. The proof should be in two parts: first show that if $x \in A \cup(B \cap C)$ then $x \in(A \cup B) \cap(A \cup C)$, then show the reverse. You should only use the definitions of \cup and \cap.

Problem 2: In real numbers, determine suprema and infima of the following sets (if they exist). Are these minima and maxima of the sets?:
a) $M=\left\{-\frac{1}{n}, n \in \mathbb{N}\right\}$
b) $M=\left\{\frac{p}{p+q}, p, q \in \mathbb{N}\right\}$
c) $M=\left\{\frac{n+(-1)^{n}}{n}, n \in \mathbb{N}\right\}$
d) $M=\left\{n^{(-1)^{n}}, n \in \mathbb{N}\right\}$
e) $M=\left\{2^{-n}+3^{-n}: n \in \mathbb{N}\right\}$
f) $M=\left\{2^{-n}+3^{-n}: n \in \mathbb{Z}\right\}$
g) $M=\left\{5^{(-1)^{j} 3^{k}}: j, k \in \mathbb{Z}\right\}$

Problem 3: On the sets of integers ordered by inclusion, determine supremum and infimum of the following set. $M=\{\{1,3,5,7,9\},\{2,3,5,9\},\{1,5,7,9,10\},\{4,5,6,9,11\}\}$.

Problem 4: For bounded nonempty sets of reals A a B, describe suprema and infima of the following sets as exactly as possible, using suprema and infima of A and B.
a) $A \cup B$
b) $A \cap B$, assuming it is nonempty.
c) $A \backslash B$, assuming it is nonempty.

Mathematical analysis I - Tutorial 2

http://kam.mff.cuni.cz/~tereza/teaching.html

Problem 1: Prove that for any sets A, B, C we have that $A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$. The proof should be in two parts: first show that if $x \in A \cup(B \cap C)$ then $x \in(A \cup B) \cap(A \cup C)$, then show the reverse. You should only use the definitions of \cup and \cap.

Problem 2: In real numbers, determine suprema and infima of the following sets (if they exist). Are these minima and maxima of the sets?:
a) $M=\left\{-\frac{1}{n}, n \in \mathbb{N}\right\}$
b) $M=\left\{\frac{p}{p+q}, p, q \in \mathbb{N}\right\}$
c) $M=\left\{\frac{n+(-1)^{n}}{n}, n \in \mathbb{N}\right\}$
d) $M=\left\{n^{(-1)^{n}}, n \in \mathbb{N}\right\}$
e) $M=\left\{2^{-n}+3^{-n}: n \in \mathbb{N}\right\}$
f) $M=\left\{2^{-n}+3^{-n}: n \in \mathbb{Z}\right\}$
g) $M=\left\{5^{(-1)^{j} 3^{k}}: j, k \in \mathbb{Z}\right\}$

Problem 3: On the sets of integers ordered by inclusion, determine supremum and infimum of the following set. $M=\{\{1,3,5,7,9\},\{2,3,5,9\},\{1,5,7,9,10\},\{4,5,6,9,11\}\}$.

Problem 4: For bounded nonempty sets of reals A a B, describe suprema and infima of the following sets as exactly as possible, using suprema and infima of A and B.
a) $A \cup B$
b) $A \cap B$, assuming it is nonempty.
c) $A \backslash B$, assuming it is nonempty.

