Lecture 9 (17.4.2019)

(translated and adapted from lecture notes by Martin Klazar)

Theorem 35 (0 = differential). Let U C R™ is a neighborhood of a point
a € R™. If a function f: U — R has all partial derivatives on U and they
are continuous at a, then f is differentiable at a.

Proof. We consider only the case of two variables x and y (m = 2). For more
variables, the proof is similar (but more technical). We might assume that the
point a = o and U is a ball B(o,~) for some v > 0. Let h = (hy, hy) € U (so,
|bh|| < ) and h' = (hy,0). Difference f(h) — f(0) can be expressed as a sum
of differences along both coordinate axes:

f(h) = f(o) = (f(h) — f(h')) + (f(h') = f(0)) .

Segments h'h and oh’ lie inside U, so f is defined on them, morever, f
depends only on variable y on the former and only on variable x on the latter
segment. Thus, Lagrange mean value Theorem (for single variable) yields:

f af

f(h) — f(o) = (Cz) h2+—(C1) hy,

where (; and (s are internal pomts of segments oh’ and h'h, respectively.
In particular, the points (; and (3 lie inside B(o, ||h||), so by continuity of both
partial derivatives at o, we have

f of

f
5,0 +alG) and

F i@ - 2= o)+ 1),

where a(h) i B(h) are o(1) as h — o (i.e., for every € > 0 there is § > 0, such
that ||h|| < 6 = |a(h)| < e-1 = ¢ and the same holds for §(h)). Thus

F0) = F(0) = 5(0) o+ Z(0) b + alGa)ha + Bl

By triangle inequality, and inequalities 0 < ||(1]], ||C2]] < ||h|| and |hq], [he| <
|h| it follows that if ||h|| < §, then

|(G2)ha + B(C)M| < [e(C2)] - [l + [5(Co)] - [[h]] < 2e[[h[ .

Thus, a(C2)he + B(C1)h1 = o(||h]|) for h — o. So by definition of the total
differential, f is differentiable at o. ]

Lagrange Mean Value Theorem can be generalized for functions of several
variables as follows.
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Theorem 36 (Lagrange Mean Value Theorem for several variables). Let U C
R™ be an open set containing a segment u = ab with endpoints a and b and
let f: U — R be a function which is continuous at every point of u and
differentiable at every internal point of w. Then there exists an internal point
¢ of u satisfying
f(b) = f(a) =Df(()(b—a).

In other words, difference of functional values at endpoints of the segment
equals value of differential at some internal point of the segment for the vector
of the segment.

Proof. Idea: Apply Lagrange Mean Value Theorem of single variable for an
auxiliary function F'(t) = f(a+t(b —a)) and t € [0, 1]. O

We say that an open set D C R™ is connected, if every two of its points can
be connected by a broken line contained in D. Examples of connected open
sets: an open ball in R™, whole R™ and R3\ L, where L is the union of finitely
many lines. On the other hand, B\R, where B is an open ball R? and R a
plane intersecting B, is an open set which is not connected.

Corollary 37 (0 =0 = f = const.). If a function f of m variables has zero
differential at every point of an open connected set U, then f is constant on
U. The same conclusion holds if f has all partial derivatives on U zero.

Proof. Idea: Consider two points of U and a broken line connecting them.
Apply Lagrange Mean Value Theorem for several variables for each segment
of the broken line.

O

Calculating partial derivatives and differentials. For two functions f, g :
U — R, defined on a neighborhood U C R™ of a point a € U that have a
partial derivative with repect to x; at a point a, formulae for partial derivative
their sum, product and quotient are analogous to those for single variable:

Oi(af + Bg)(a) = adif(a)+ B0ig(a)
9(fg)(a) = g(a)o;f(a)+ f(a)dig(a)
9(a)0;f(a) — f(a)dig(a)

o.f/9)@) T (i g(a) #0) .

Similarly, for differentials, we have:

Theorem 38 (Arithmetic of differentials). Let U C R™ is a neighborhood of
aand f,g: U — R are functions differentiable at a.

(i) af + By is differentiable at a and

D(af + Bg)(a) = aDf(a) + fDg(a) .
for any o, B € R,
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(ii) fg is differentiable at a and
D(fg)(a) = g(a)Df(a) + f(a)Dg(a) .

(i11) If g(a) # 0, f/g is differentiable at a and

1
D = —— D — D :
(/9)(@) = 53 (9(2)DS (@) = f()Dy(a))
Proof. Follows from Theorem 32 and formulae for partial derivatives. [

The formula for linear combination can be easily generalized for vector
valued functions f,g: U — R".

Next, we generalize a formula for derivative of a composed function to a
composition of multivariable mappings. We use o for denoting composition,

where (g0 f)(x) = g(f(x)).
Theorem 39 (Differential of a composed mapping). Let

f: U=V, g: V>R

are two mappings where U C R™ is a neighborhood of a and V- C R" s a
neighborhood of b = f(a). If the mapping f is differentiable at a and g is
differentialble at b, the composed mapping

gof=g(f): U—=R"

15 differentiable at a and the total differential is a composition of differentials
of f and g:
D(go f)(a) =Dg(b) o Df(a) .

Since composition of linear mappings corresponds to multiplication of ma-
trices, total differential of a composed mapping corresponds to a product of
the Jacobi matrices.

Partial derivatives of higher orders. If the f : U — R function defined
on a neighborhood U C R™ of a point a has a partial derivative F' = 0fx;
in each point U and this function F': U — R has at a the partial derivative
O0Fz;(a), we say that f has a partial derivative at the point a of the second
order with respect to the variables x; and x; and we denote it

TS (a)
817]'81'1'

or shortly by 0;0; f(a).
Similarly, we define higher order partial derivatives: if f = f(xy, z2, ldots, z,,)
has partial derivative (i, ds,...,4k_1,J € {1,2,...,m})

akflf
F= (9xik71c9xik72 e (9@-1 (SC)
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at every point x inU and we say that f has partial derivative of order k with
respect to the variables x; , ..., x; ,,x; in point a and we denote its value by
oF f
02,0 Fr, )
L0544 - 0T

In general, order of variables in higher order derivatives matters. You can
verify yourself that f : R? — R,

zy(z?—y?) 2, .2
fog)=q oo Dor Y7
0 pro z°+y“ =0,
has different mized (i.e., with respect to two different variables) second order
partial derivatives in the origin.
O*f
0xdy

0 f
Oyox

(0,0)=1 a

(0,0) = —1.

However, the order does not matter if the partial derivatives are continuous.

Theorem 40 (Usually 0,0,f = 0,0,f). Let f : U — R be a function with
second order partial derivatives 0;0;f a 0;0;f, 1 # j on a neighborhood U C R™
of a point a which are continuous in a. Then

8J82f(a) = Gzajf(a) .

Proof. We prove the statement for m = 2, for m > 2, the proof would be
analogous but more tedious. Without loss of generality, we may assume that
a = o = (0,0). By continuity of the partial derivatives in the origin, it
is enough to find for arbitrarily small A > 0 two points o, 7 in the square
[0, h]? satisfying 0,0, f(0) = 0,0,f(7). Then, for h — 07 , 0,7 — o and
from a limit argument and continuity of the partial derivatives we get that
0,0, f(0) = 0,0, f (o).

Given h, we find ¢ and 7 as follows. We denote the corners of the square
a=(0,0), b=(0,h), c = (h,0),d = (h,h) and we consider a value f(d) —
f(b) — f(c) + f(a). It can be expressed in two different ways:

f(@) = f(b) = fle) + f(a) = (f(d) = f(b)) = (flc) = f(a)) = (k) = ¥(0)

where
¥(t) = f(h,t) — f(0,t) and ¢(t) = f(¢,h) — f(¢,0).
We have that ¢/(t) = 0,f(h,t) — 0,f(0,t) and ¢'(t) = 0, f(t,h) — 0. f(t,0).
Lagrange mean value theorem gives two expresions
f(d) = f(b) = f(c) + f(a) = ¥'(to)h = (0yf(h,to) — 9, f(0,t0))h
= ¢/(30)h = (0:f(s0,h) — 0w f(50,0))h ,
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where 0 < sq,ty < h are intermediate points. Applying the theorem once more
on differences of partial derivatives of f, we obtain the following

f(d) = f(b) — f(c) + f(a) = 8,0, f(s1,to)h* = 0,0, f (s0,t1)h*, s1,t1 € (0,h) .

Points o = (s1,t) and 7 = (s, t1) belong to [0, h]? and we have 9,0, f(0) =
9,0, f (1) (since both sides equal to (f(d) — f(b) — f(c) + f(a))/h?). O
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