Lecture 9 (17.4.2019)
(translated and adapted from lecture notes by Martin Klazar)

Theorem $35\left(\partial \Rightarrow\right.$ differential). Let $U \subset \mathbb{R}^{m}$ is a neighborhood of a point $\mathbf{a} \in \mathbb{R}^{m}$. If a function $f: U \rightarrow \mathbb{R}$ has all partial derivatives on U and they are continuous at \mathbf{a}, then f is differentiable at \mathbf{a}.

Proof. We consider only the case of two variables x and $y(m=2)$. For more variables, the proof is similar (but more technical). We might assume that the point $\mathbf{a}=\mathbf{o}$ and U is a ball $B(\mathbf{o}, \gamma)$ for some $\gamma>0$. Let $\mathbf{h}=\left(h_{1}, h_{2}\right) \in U$ (so, $\|b h\|<\gamma)$ and $\mathbf{h}^{\prime}=\left(h_{1}, 0\right)$. Difference $f(\mathbf{h})-f(\mathbf{o})$ can be expressed as a sum of differences along both coordinate axes:

$$
f(\mathbf{h})-f(\mathbf{o})=\left(f(\mathbf{h})-f\left(\mathbf{h}^{\prime}\right)\right)+\left(f\left(\mathbf{h}^{\prime}\right)-f(\mathbf{o})\right)
$$

Segments $\mathbf{h}^{\prime} \mathbf{h}$ and $\mathbf{o h}^{\prime}$ lie inside U, so f is defined on them, morever, f depends only on variable y on the former and only on variable x on the latter segment. Thus, Lagrange mean value Theorem (for single variable) yields:

$$
f(\mathbf{h})-f(\mathbf{o})=\frac{\partial f}{\partial y}\left(\zeta_{\mathbf{2}}\right) \cdot h_{2}+\frac{\partial f}{\partial x}\left(\zeta_{\mathbf{1}}\right) \cdot h_{1},
$$

where $\zeta_{\mathbf{1}}$ and $\zeta_{\mathbf{2}}$ are internal points of segments $\mathbf{o h}^{\prime}$ and $\mathbf{h}^{\prime} \mathbf{h}$, respectively. In particular, the points ζ_{1} and ζ_{2} lie inside $B(\mathbf{o},\|\mathbf{h}\|)$, so by continuity of both partial derivatives at \mathbf{o}, we have

$$
\frac{\partial f}{\partial y}\left(\zeta_{2}\right)=\frac{\partial f}{\partial y}(\mathbf{o})+\alpha\left(\zeta_{2}\right) \text { and } \frac{\partial f}{\partial x}\left(\zeta_{\mathbf{1}}\right)=\frac{\partial f}{\partial x}(\mathbf{o})+\beta\left(\zeta_{1}\right),
$$

where $\alpha(\mathbf{h})$ i $\beta(\mathbf{h})$ are $o(1)$ as $\mathbf{h} \rightarrow \mathbf{o}$ (i.e., for every $\varepsilon>0$ there is $\delta>0$, such that $\|\mathbf{h}\|<\delta \Rightarrow|\alpha(\mathbf{h})|<\varepsilon \cdot 1=\varepsilon$ and the same holds for $\beta(h))$. Thus

$$
f(\mathbf{h})-f(\mathbf{o})=\frac{\partial f}{\partial y}(\mathbf{o}) \cdot h_{2}+\frac{\partial f}{\partial x}(\mathbf{o}) \cdot h_{1}+\alpha\left(\zeta_{\mathbf{2}}\right) h_{2}+\beta\left(\zeta_{\mathbf{1}}\right) h_{1} .
$$

By triangle inequality, and inequalities $0<\left\|\zeta_{\mathbf{1}}\right\|,\left\|\zeta_{\mathbf{2}}\right\|<\|\mathbf{h}\|$ and $\left|h_{1}\right|,\left|h_{2}\right| \leq$ $\|\mathbf{h}\|$ it follows that if $\|\mathbf{h}\|<\delta$, then

$$
\left|\alpha\left(\zeta_{\mathbf{2}}\right) h_{2}+\beta\left(\zeta_{\mathbf{1}}\right) h_{1}\right| \leq\left|\alpha\left(\zeta_{\mathbf{2}}\right)\right| \cdot\|\mathbf{h}\|+\left|\beta\left(\zeta_{\mathbf{1}}\right)\right| \cdot\|\mathbf{h}\| \leq 2 \varepsilon\|\mathbf{h}\| .
$$

Thus, $\alpha\left(\zeta_{\mathbf{2}}\right) h_{2}+\beta\left(\zeta_{\mathbf{1}}\right) h_{1}=o(\|\mathbf{h}\|)$ for $\mathbf{h} \rightarrow \mathbf{o}$. So by definition of the total differential, f is differentiable at o.

Lagrange Mean Value Theorem can be generalized for functions of several variables as follows.

Theorem 36 (Lagrange Mean Value Theorem for several variables). Let $U \subset$ \mathbb{R}^{m} be an open set containing a segment $u=\mathbf{a b}$ with endpoints \mathbf{a} and \mathbf{b} and let $f: U \rightarrow \mathbb{R}$ be a function which is continuous at every point of u and differentiable at every internal point of u. Then there exists an internal point ζ of u satisfying

$$
f(\mathbf{b})-f(\mathbf{a})=\mathrm{D} f(\zeta)(\mathbf{b}-\mathbf{a}) .
$$

In other words, difference of functional values at endpoints of the segment equals value of differential at some internal point of the segment for the vector of the segment.

Proof. Idea: Apply Lagrange Mean Value Theorem of single variable for an auxiliary function $F(t)=f(\mathbf{a}+t(\mathbf{b}-\mathbf{a}))$ and $t \in[0,1]$.

We say that an open set $D \subset \mathbb{R}^{m}$ is connected, if every two of its points can be connected by a broken line contained in D. Examples of connected open sets: an open ball in \mathbb{R}^{m}, whole \mathbb{R}^{m} and $\mathbb{R}^{3} \backslash L$, where L is the union of finitely many lines. On the other hand, $B \backslash R$, where B is an open ball \mathbb{R}^{3} and R a plane intersecting B, is an open set which is not connected.

Corollary 37 ($\partial=0 \Rightarrow f \equiv$ const.). If a function f of m variables has zero differential at every point of an open connected set U, then f is constant on U. The same conclusion holds if f has all partial derivatives on U zero.

Proof. Idea: Consider two points of U and a broken line connecting them. Apply Lagrange Mean Value Theorem for several variables for each segment of the broken line.

Calculating partial derivatives and differentials. For two functions f, g : $U \rightarrow \mathbb{R}$, defined on a neighborhood $U \subset \mathbb{R}^{m}$ of a point $\mathbf{a} \in U$ that have a partial derivative with repect to x_{i} at a point a, formulae for partial derivative their sum, product and quotient are analogous to those for single variable:

$$
\begin{aligned}
\partial_{i}(\alpha f+\beta g)(\mathbf{a}) & =\alpha \partial_{i} f(\mathbf{a})+\beta \partial_{i} g(a) \\
\partial_{i}(f g)(a) & =g(\mathbf{a}) \partial_{i} f(\mathbf{a})+f(\mathbf{a}) \partial_{i} g(\mathbf{a}) \\
\partial_{i}(f / g)(\mathbf{a}) & =\frac{g(\mathbf{a}) \partial_{i} f(\mathbf{a})-f(\mathbf{a}) \partial_{i} g(\mathbf{a})}{g(\mathbf{a})^{2}} \quad(\text { if } g(\mathbf{a}) \neq 0)
\end{aligned}
$$

Similarly, for differentials, we have:
Theorem 38 (Arithmetic of differentials). Let $U \subset \mathbb{R}^{m}$ is a neighborhood of a and $f, g: U \rightarrow \mathbb{R}$ are functions differentiable at \mathbf{a}.
(i) $\alpha f+\beta g$ is differentiable at \mathbf{a} and

$$
\mathrm{D}(\alpha f+\beta g)(\mathbf{a})=\alpha \mathrm{D} f(\mathbf{a})+\beta \mathrm{D} g(\mathbf{a}) .
$$

for any $\alpha, \beta \in \mathbb{R}$,
(ii) $f g$ is differentiable at a and

$$
\mathrm{D}(f g)(\mathbf{a})=g(\mathbf{a}) \mathrm{D} f(\mathbf{a})+f(\mathbf{a}) \mathrm{D} g(\mathbf{a})
$$

(iii) If $g(\mathbf{a}) \neq 0, f / g$ is differentiable at \mathbf{a} and

$$
\mathrm{D}(f / g)(\mathbf{a})=\frac{1}{g(\mathbf{a})^{2}}(g(\mathbf{a}) \mathrm{D} f(\mathbf{a})-f(\mathbf{a}) \mathrm{D} g(\mathbf{a}))
$$

Proof. Follows from Theorem 32 and formulae for partial derivatives.
The formula for linear combination can be easily generalized for vector valued functions $f, g: U \rightarrow \mathbb{R}^{n}$.

Next, we generalize a formula for derivative of a composed function to a composition of multivariable mappings. We use \circ for denoting composition, where $(g \circ f)(\mathbf{x})=g(f(\mathbf{x}))$.

Theorem 39 (Differential of a composed mapping). Let

$$
f: U \rightarrow V, g: V \rightarrow \mathbb{R}^{k}
$$

are two mappings where $U \subset \mathbb{R}^{m}$ is a neighborhood of a and $V \subset \mathbb{R}^{n}$ is a neighborhood of $\mathbf{b}=f(\mathbf{a})$. If the mapping f is differentiable at \mathbf{a} and g is differentialble at \mathbf{b}, the composed mapping

$$
g \circ f=g(f): U \rightarrow \mathbb{R}^{k}
$$

is differentiable at a and the total differential is a composition of differentials of f and g :

$$
\mathrm{D}(g \circ f)(\mathbf{a})=\mathrm{D} g(\mathbf{b}) \circ \mathrm{D} f(\mathbf{a})
$$

Since composition of linear mappings corresponds to multiplication of matrices, total differential of a composed mapping corresponds to a product of the Jacobi matrices.

Partial derivatives of higher orders. If the $f: U \rightarrow \mathbb{R}$ function defined on a neighborhood $U \subset \mathbb{R}^{m}$ of a point a has a partial derivative $F=\partial f x_{i}$ in each point U and this function $F: U \rightarrow \mathbb{R}$ has at a the partial derivative $\partial F x_{j}(\mathbf{a})$, we say that f has a partial derivative at the point a of the second order with respect to the variables x_{i} and x_{j} and we denote it

$$
\frac{\partial^{2} f}{\partial x_{j} \partial x_{i}}(\mathbf{a})
$$

or shortly by $\partial_{i} \partial_{j} f(\mathbf{a})$.
Similarly, we define higher order partial derivatives: if $f=f\left(x_{1}, x_{2}\right.$, ldots, $\left.x_{m}\right)$ has partial derivative $\left(i_{1}, i_{2}, \ldots, i_{k-1}, j \in\{1,2, \ldots, m\}\right)$

$$
F=\frac{\partial^{k-1} f}{\partial x_{i_{k-1}} \partial x_{i_{k-2}} \ldots \partial x_{i_{1}}}(x)
$$

at every point $x \operatorname{in} U$ and we say that f has partial derivative of order k with respect to the variables $x_{i_{1}}, \ldots, x_{i_{k-1}}, x_{j}$ in point \mathbf{a} and we denote its value by

$$
\frac{\partial^{k} f}{\partial x_{j} \partial x_{i_{k-1}} \ldots \partial x_{i_{1}}}(\mathbf{a}) .
$$

In general, order of variables in higher order derivatives matters. You can verify yourself that $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$,

$$
f(x, y)= \begin{cases}\frac{x y\left(x^{2}-y^{2}\right)}{x^{2}+y^{2}} & \text { pro } x^{2}+y^{2} \neq 0 \\ 0 & \text { pro } x^{2}+y^{2}=0\end{cases}
$$

has different mixed (i.e., with respect to two different variables) second order partial derivatives in the origin.

$$
\frac{\partial^{2} f}{\partial x \partial y}(0,0)=1 \quad \text { a } \quad \frac{\partial^{2} f}{\partial y \partial x}(0,0)=-1
$$

However, the order does not matter if the partial derivatives are continuous.
Theorem 40 (Usually $\partial_{x} \partial_{y} f=\partial_{y} \partial_{x} f$). Let $f: U \rightarrow \mathbb{R}$ be a function with second order partial derivatives $\partial_{j} \partial_{i} f$ a $\partial_{i} \partial_{j} f, i \neq j$ on a neighborhood $U \subset \mathbb{R}^{m}$ of a point \mathbf{a} which are continuous in \mathbf{a}. Then

$$
\partial_{j} \partial_{i} f(\mathbf{a})=\partial_{i} \partial_{j} f(\mathbf{a})
$$

Proof. We prove the statement for $m=2$, for $m>2$, the proof would be analogous but more tedious. Without loss of generality, we may assume that $\mathbf{a}=\mathbf{o}=(0,0)$. By continuity of the partial derivatives in the origin, it is enough to find for arbitrarily small $h>0$ two points σ, τ in the square $[0, h]^{2}$ satisfying $\partial_{x} \partial_{y} f(\sigma)=\partial_{y} \partial_{x} f(\tau)$. Then, for $h \rightarrow 0^{+}, \sigma, \tau \rightarrow \mathbf{o}$ and from a limit argument and continuity of the partial derivatives we get that $\partial_{x} \partial_{y} f(\mathbf{o})=\partial_{y} \partial_{x} f(\mathbf{o})$.

Given h, we find σ and τ as follows. We denote the corners of the square $\mathbf{a}=(0,0), \mathbf{b}=(0, h), \mathbf{c}=(h, 0), \mathbf{d}=(h, h)$ and we consider a value $f(\mathbf{d})-$ $f(\mathbf{b})-f(\mathbf{c})+f(\mathbf{a})$. It can be expressed in two different ways:

$$
\begin{aligned}
f(\mathbf{d})-f(\mathbf{b})-f(\mathbf{c})+f(\mathbf{a}) & =(f(\mathbf{d})-f(\mathbf{b}))-(f(\mathbf{c})-f(\mathbf{a}))=\psi(h)-\psi(0) \\
& =(f(\mathbf{d})-f(\mathbf{c}))-(f(\mathbf{b})-f(\mathbf{a}))=\phi(h)-\phi(0),
\end{aligned}
$$

where

$$
\psi(t)=f(h, t)-f(0, t) \text { and } \phi(t)=f(t, h)-f(t, 0) .
$$

We have that $\psi^{\prime}(t)=\partial_{y} f(h, t)-\partial_{y} f(0, t)$ and $\phi^{\prime}(t)=\partial_{x} f(t, h)-\partial_{x} f(t, 0)$. Lagrange mean value theorem gives two expresions

$$
\begin{aligned}
f(\mathbf{d})-f(\mathbf{b})-f(\mathbf{c})+f(\mathbf{a}) & =\psi^{\prime}\left(t_{0}\right) h=\left(\partial_{y} f\left(h, t_{0}\right)-\partial_{y} f\left(0, t_{0}\right)\right) h \\
& =\phi^{\prime}\left(s_{0}\right) h=\left(\partial_{x} f\left(s_{0}, h\right)-\partial_{x} f\left(s_{0}, 0\right)\right) h,
\end{aligned}
$$

where $0<s_{0}, t_{0}<h$ are intermediate points. Applying the theorem once more on differences of partial derivatives of f, we obtain the following
$f(\mathbf{d})-f(\mathbf{b})-f(\mathbf{c})+f(\mathbf{a})=\partial_{x} \partial_{y} f\left(s_{1}, t_{0}\right) h^{2}=\partial_{y} \partial_{x} f\left(s_{0}, t_{1}\right) h^{2}, s_{1}, t_{1} \in(0, h)$.
Points $\sigma=\left(s_{1}, t_{0}\right)$ and $\tau=\left(s_{0}, t_{1}\right)$ belong to $[0, h]^{2}$ and we have $\partial_{x} \partial_{y} f(\sigma)=$ $\partial_{y} \partial_{x} f(\tau)$ (since both sides equal to $\left.(f(\mathbf{d})-f(\mathbf{b})-f(\mathbf{c})+f(\mathbf{a})) / h^{2}\right)$.

