
Lecture 8 (10.4.2019)
(partially translated and adapted from lecture notes by Martin Klazar)

Multivariable calculus

The following theorem gives a method how to compute multivariable Rie-
mann integral by computing ”ordinary” integrals.

Theorem 29 (Fubini). Let X ⊂ Rm, Y ⊂ Rn and Z = X×Y ⊂ Rm+n be m−,
n−, and m + n-dimensional boxes, respectively. Let f : Z → R, f ∈ R(Z).
Then integrals

∫
Z
f ,
∫
X

(
∫
Y
f) and

∫
Y

(
∫
X
f) exist and are all equal.

Integrals
∫
X

(
∫
Y
f) and

∫
Y

(
∫
X
f) have the following meaning. Define a

function F : X → R as F (x) =
∫
Y
f(x,y) dy, whenever

∫
Y
f(x,y) dy exists

and by arbitrary value from the interval [
∫
Y
f(x,y) dy,

∫
Y
f(x,y) dy] otherwise.

We then interpret
∫
X

(
∫
Y
f) as

∫
X
F . We define a function G : Y → R and

interpret
∫
Y

(
∫
X
f) analogously as

∫
Y
G.

By repeated application of Fubini Theorem, one can derive the following.

Corollary 30. Let I = [a1, b1] × · · · × [an, bn] be a box and let f : I → R,
f ∈ R(I). Then∫

I

f =

∫ bn

an

(∫ bn−1

an−1

· · ·
(
· · ·
∫ b1

a1

f(x1, . . . xn) dx1

)
· · · dxn−1

)
dxn.

Note that the order of variables can be chosen arbitrarily.

Directional derivative, partial derivative, total
differential

Let U ⊂ Rm be a neighborhood of a point a and f : U → R be a function.
Directional derivative of f at a point a in direction v ∈ Rm\{o} is defined as
a limit

Dvf(a) := lim
t→0

f(a + tv)− f(a)

t
,

if it exists. Imagine that U is an area in three dimensional Euclidean space,
where f is a function of temperature in a given point and a particle moving
through the area. Directional derivatives Dvf(a) corresponds to immediate
change of temperature of surroundings of a particle in a moment when it is at
a point a and has velocity v.

Partial derivative of a function f at a point a with respect to the i-th vari-
able xi is a directional derivative Deif(a), where ei the i-th vector of canonical
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basis, i.e., ei = (0, 0, . . . , 0, 1, 0, 0, . . . , 0) has i-th coordinate 1 and all other co-
ordinates 0. We denote partial derivative by ∂f

∂xi
(a) (or, as a shortcut ∂if(a).

Thus, partial derivative equals to the following limit.

∂f

∂xi
(a) = lim

h→0

f(a1, . . . , ai−1, ai + h, ai+1, . . . , am)− f(a1, a2, . . . , am)

h
.

The vector of values of all partial derivatives of a function f at a point a
is called the gradient of f at a and is denoted ∇f(a).

∇f(a) := ( ∂f
∂x1

(a), ∂f
∂x2

(a), . . . , ∂f
∂xm

(a)) .

A function f : U → R, U ⊆ Rm, is differentable at a ∈ U if there exists a
linear mapping L : Rm → R, such that

lim
h→o

f(a + h)− f(a)− L(h)

‖h‖
= 0 .

This mapping L is called (total) differential (or total derivative) of f at a
and is denoted by Df(a).

More generally, a mapping f : U → Rnis differentiable at a ∈ U , if there
exists a linear mapping L : Rm → Rn satisfying

lim
h→o

‖f(a + h)− f(a)− L(h)‖
‖h‖

= 0

(note that norm in the norm in the denominator is in Rm and the norm in
the numerator in Rn). Again, we call L differential and denote it by Df(a).
An important difference between directional and partial derivatives, which are
simply real numbers, and the differential is, that the differential is a more
complex object — a linear mapping.

Differentiability is a stronger property than existence of directional and
partial derivatives. (Moreover, existence of all partial/directional derivatives
at a point does not even imply continuity!)

One can calculate partial derivative with respect to xi using the same meth-
ods as computing derivatives of functions of single variable — by treating all
the variables except xi as constants.

Theorem 31 (Properties of differential). Let f = (f1, f2, . . . , fn) : U → Rn

be a mapping and U ⊂ Rm a neighborhood of a.

1. Differential of f at a is unique (if it exists).

2. A mapping f is differentiable at a, if and only if each coordinate function
fi is differentiable at a.

3. If f is differentiable at a, then f is continuous at a.
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Theorem 32 (Differential ⇒ ∂). Let U ⊂ Rm be a neighborhood of a point
a and f : U → R a function differentiable at a. Then f has all partial
derivatives at a and their values determine the differential:

Df(a)(h) =
∂f

∂x1
(a) · h1 +

∂f

∂x2
(a) · h2 + · · ·+ ∂f

∂xm
(a) · hm

= 〈∇f(a),h〉

(i.e., value of the differential at h is a scalar product of h and a gradient
of f at a). Moreover, f then also has all directional derivatives at a and
Dvf(a) = Df(a)(v).

Proof. (Will be added.)

The differential of a mapping f : U → Rn, a mapping L = Df(a) : Rm → Rn,
can be described by an n×m matrix, where L(h) is the result of multiplication
of h by the matrix:

L(h) =


L(h)1
L(h)2

...
L(h)n

 =


l1,1 l1,2 . . . l1,m
l2,1 l2,2 . . . l2,m
...

... · · · ...
ln,1 ln,2 . . . ln,m




h1
h2
...
hm

 .

where i-th row of this matrix is a gradient of the coordinate function fi at a
point a:

li,j =
∂fi
∂xj

(a) .

Corollary 33 (Jacobi matrix). Differential of a mapping f : U → Rn at a
point a, where U ⊂ Rm is a neighborhood of a and f has coordinate functions
f = (f1, f2, . . . , fn), is determined by Jacobi matrix if the mapping f at a point
a:

(
∂fi
∂xj

(a)

)n,m

i,j=1

=


∂f1
∂x1

(a) ∂f1
∂x2

(a) . . . ∂f1
∂xm

(a)
∂f2
∂x1

(a) ∂f2
∂x2

(a) . . . ∂f2
∂xm

(a)
...

... · · · ...
∂fn
∂x1

(a) ∂fn
∂x2

(a) . . . ∂fn
∂xm

(a)

 .

If the Jacobi matrix is a square matrix, its determinant is called jacobian.

Theorem 34 (∂ ⇒ differential). Let U ⊂ Rm is a neighborhood of a point
a ∈ Rm. If a function f : U → R has all partial derivatives on U and they
are continuous at a, then f is differentiable at a.
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Geometry of partial derivatives and differentials.
We now generalize the notion of tangent line to a graph of a function of

one variable to a tangent (hyper-)plane to a graph of a function of several
variables. For simplicity, we consider only tangent planes for functions of two
variables, general tangent hyperplanes are defined in an analogous way (but
are hard to imagine).

Let (x0, y0) ∈ U ⊂ R2, where U is an open set in a plane, and f : U → R
is a function. Its graph

Gf = {(x, y, z) ∈ R3 | (x, y) ∈ U, z = f(x, y)}

is a surface in three dimensional Euclidean space. On Gf , there exists a
point (x0, y0, z0), such that z0 = f(x0, y0). Assume that f is differentiable at
(x0, y0). Then, there exists a unique linear functions of two variables L(x, y)
(i.e. L(x, y) = α+ βx+ γy), such that a graph of L(x, y) contains (x0, y0, z0),
and it satisfies

lim
(x,y)→(x0,y0)

f(x, y)− L(x, y)

d((x, y), (x0, y0))
= 0.

Specifically, it is a function

T (x, y) = z0 +
∂f

∂x
(x0, y0) · (x− x0) +

∂f

∂y
(x0, y0) · (y − y0) .

It follows from the uniqueness of a diffenential, because T (x, y) = z0+Df(x0, y0)(x−
x0, y − y0). Graph of T (x, y)

GT = {(x, y, z) ∈ R3 | (x, y) ∈ R2, z = T (x, y)}

is called the tangent plane to the graph of f at (x0, y0, z0).
Equation of the tangent plane z = T (x, y) can be rewritten in the form

∂f

∂x
(x0, y0) · (x− x0) +

∂f

∂y
(x0, y0) · (y − y0)− (z − z0) = 0 ,

alternatively 〈n, (x− x0, y − y0, z − z0)〉 = 0 ,

where n ∈ R3 je vektor

n =

(
∂f

∂x
(x0, y0),

∂f

∂y
(x0, y0),−1

)
.

Denoting x = (x, y, z) and x0 = (x0, y0, z0), we can express GT as

GT = {x ∈ R3 | 〈n,x− x0〉 = 0} .

That is, the tangent plane consists of all points whose direction from x0 is
perpendicular to n. Vector n is called a normal vector of the graph of f at x0.
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