Lecture 7 (3.4.2019)

(partially translated and adapted from lecture notes by Martin Klazar)

Multivariable calculus

We will work in m-dimensional Euclidean space $\mathbb{R}^{m}, m \in \mathbb{N}$, which is a set of all ordered m-tuples of reals $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{m}\right)$ with $x_{i} \in \mathbb{R}$. It is an m dimensional vector space over \mathbb{R} - we can sum and subtract its elements and we can multiply them by real constants. We introduce a notion of distance in \mathbb{R}^{m}, using (Euclidean) norm wich is a mapping $\|\cdot\|: \mathbb{R}^{m} \rightarrow[0,+\infty)$ defined as

$$
\|\mathbf{x}\|=\sqrt{x_{1}^{2}+x_{2}^{2}+\ldots+x_{m}^{2}} .
$$

Euclidean norm has the following properties ($a \in \mathbb{R}, \mathbf{x}, \mathbf{y} \in \mathbb{R}^{m}$):
(i) (positivity) $\|\mathbf{x}\| \geq 0$ a $\|\mathbf{x}\|=0 \Longleftrightarrow \mathbf{x}=\mathbf{o}=(0,0, \ldots, 0)$,
(ii) (homogenity) $\|a \mathbf{x}\|=|a| \cdot\|\mathbf{x}\|$ and
(iii) (triangle inequality) $\|\mathbf{x}+\mathbf{y}\| \leq\|\mathbf{x}\|+\|\mathbf{y}\|$.

Using the norm, we define (Euclidean) distance $d(\mathbf{x}, \mathbf{y}): \mathbb{R}^{m} \times \mathbb{R}^{m} \rightarrow[0,+\infty)$ between two points x and y in \mathbb{R}^{m} as

$$
d(\mathbf{x}, \mathbf{y})=\|\mathbf{x}-\mathbf{y}\|=\sqrt{\left(x_{1}-y_{1}\right)^{2}+\left(x_{2}-y_{2}\right)^{2}+\ldots+\left(x_{m}-y_{m}\right)^{2}} .
$$

Properties of Euclidean distance ($\mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathbb{R}^{m}$):
(i) (positivity) $d(\mathbf{x}, \mathbf{y}) \geq 0$ and $d(\mathbf{x}, \mathbf{y})=0 \Longleftrightarrow \mathbf{x}=\mathbf{y}$,
(ii) (symmetry) $d(\mathbf{x}, \mathbf{y})=d(\mathbf{y}, \mathbf{x})$ and
(iii) (triangle inequality) $d(\mathbf{x}, \mathbf{y}) \leq d(\mathbf{x}, \mathbf{z})+d(\mathbf{z}, \mathbf{y})$.

With exception of triangle inequality (deriving of which requires more effort), these properties of norm and distance follow easily form the definition.
(Open) ball $B(\mathbf{a}, r)$ with radius $r>0$ and center $\mathbf{a} \in \mathbb{R}^{m}$ is the set of points in \mathbb{R}^{m} with distance from a less than r :

$$
B(\mathbf{a}, r)=\left\{\mathbf{x} \in \mathbb{R}^{m} \mid\|\mathbf{x}-\mathbf{a}\|<r\right\} .
$$

Open set in \mathbb{R}^{m} is a subset $M \subset \mathbb{R}^{m}$ such that for every point $\mathbf{x} \in M$ there is a ball with center \mathbf{x} contained in M :

$$
M \text { is open } \Longleftrightarrow \forall \mathbf{x} \in M \exists r>0: B(\mathbf{x}, r) \subset M
$$

Following properties of open sets in \mathbb{R}^{m} can be derived as a simple exercise:
(i) sets \emptyset a \mathbb{R}^{m} are open,
(ii) union $\bigcup_{i \in I} A_{i}$ of any system $\left\{A_{i} \mid i \in I\right\}$ of open sets A_{i} is an open set
(iii) intersection of two (finitely many) open sets is an open set.

Intersection of infinitely many open sets might not be open. Neighborhood of a point $\mathbf{a} \in \mathbb{R}^{m}$ is any open set in \mathbb{R}^{m} containing a.

We will consider functions $f: M \rightarrow \mathbb{R}, f=f\left(x_{1}, x_{2}, \ldots, x_{m}\right)$, defined on $M \subset \mathbb{R}^{m}$ and mappings

$$
f: M \rightarrow \mathbb{R}^{n}, M \subset \mathbb{R}^{m}, f=\left(f_{1}, f_{2}, \ldots, f_{n}\right)
$$

where $f_{i}=f_{i}\left(x_{1}, x_{2}, \ldots, x_{m}\right)$ are coordinate functions. Our goal will be to generalize derivative as a linear approximation and a notion of integral to functions of several variables.

First, we generalize concept of continuity. Let $U \subset \mathbb{R}^{m}$ be a neighborhood of a point $\mathbf{a} \in \mathbb{R}^{m}$. We say that a function $f: U \rightarrow \mathbb{R}$ is continuous at \mathbf{a}, if

$$
\forall \varepsilon>0 \exists \delta>0:\|\mathbf{x}-\mathbf{a}\|<\delta \Rightarrow|f(\mathbf{x})-f(\mathbf{a})|<\varepsilon
$$

More generally, a mapping $f: U \rightarrow \mathbb{R}^{n}$, is continuous at a if

$$
\forall \varepsilon>0 \exists \delta>0:\|\mathbf{x}-\mathbf{a}\|<\delta \Rightarrow\|f(\mathbf{x})-f(\mathbf{a})\|<\varepsilon
$$

i.e., we replace absolute value (which is the norm in \mathbb{R}^{1}) by norm in \mathbb{R}^{n}.

Similarly, we can generalize the notion of limit of a function:

$$
\lim _{\mathbf{x} \rightarrow \mathbf{a}} f(\mathbf{x})=c \Leftrightarrow \forall \varepsilon>0 \exists \delta>0: \mathbf{x} \in B(\mathbf{a}, \delta) \backslash\{\mathbf{a}\} \Rightarrow|f(\mathbf{x})-c|<\varepsilon .
$$

Multivarible Riemann Integral

First, we generalize a notion of Riemann integral to multivariable functions, defining multivariable analogues of partition of an interval and upper and lower Riemann sum.

An n-dimensional box is a Cartesian product of closed intervals

$$
I=\left[a_{1}, b_{1}\right] \times\left[a_{2}, b_{2}\right] \times \cdots \times\left[a_{n}, b_{n}\right]
$$

where $-\infty<a_{i}<b_{i}<\infty, i=1, \ldots, n$. For instance, for 2-dimensional box is a closed rectangle with sides parallel to the axes.

Volume of a box is defined as $|I|=\prod_{i=1}^{n}\left(b_{i}-a_{i}\right)$. A partition of a box is a set of boxes

$$
D=\left\{\left[c_{1}^{j_{1}}, c_{1}^{j_{1}+1}\right] \times \cdots \times\left[c_{n}^{j_{n}}, c_{n}^{j_{n}+1}\right] \mid 0 \leq j_{i}<k_{i}, 1 \leq i \leq n\right\},
$$

where $a_{i}=c_{i}^{0}<c_{i}^{1}<\cdots<c_{i}^{k_{i}}=b_{i}$ are some partitions of the intervals $\left[a_{i}, b_{i}\right]$, $i=1, \ldots, n$. Norm of a partition is defined as

$$
\lambda(D)=\max _{0 \leq j_{i}<k_{i}, 1 \leq i \leq n}\left(c_{i}^{j+1}-c_{i}^{j}\right),
$$

i.e., as a maximal "length of an edge of a sub-box".

One can now define a partition with points and generalize a Riemann definition of integral. However, we will proceed by generalizing Darboux definition of the integral.

Let I be a box with a partition D and let $f: I \rightarrow \mathbb{R}$ be a function. For every box $J \in D$ we define $m(J)=\inf _{\mathbf{x} \in J} f(\mathbf{x})$ and $M(J)=\sup _{\mathbf{x} \in J} f(\mathbf{x})$. We define lower and upper Riemann sum as

$$
s(f, D)=\sum_{J \in D}|J| \cdot m(J), \quad S(f, D)=\sum_{J \in D}|J| \cdot M(J)
$$

and lower and upper integral as

$$
\begin{aligned}
& \underline{\int_{I}} f=\sup (\{s(f, D) \mid D \text { is a partition of } I\}), \\
& \overline{\int_{I}} f=\inf (\{S(f, D) \mid D \text { is a partition of } I\}) .
\end{aligned}
$$

Similarly as in one dimension, the following inequalities hold

$$
s(f, D) \leq \int_{\underline{I}} f \leq \bar{\int}_{I} f \leq S(f, D)
$$

Integral of f on I is then defined as a real number

$$
\int_{I} f=\underline{\int_{I}} f=\overline{\int_{I}} f
$$

if upper integral equals lower integral.
We denote the set of functions which have integral on I by $\mathcal{R}(I)$.
We say that a set $E \subseteq \mathbb{R}^{m}$ has measure zero if for every $\varepsilon>0$ exists a sequence of boxes I_{1}, I_{2}, \ldots in \mathbb{R}^{m}, such that $\sum_{n=1}^{\infty}\left|I_{n}\right|<\varepsilon$ and $E \subset \cup_{n=1}^{\infty} I_{n}$.

Theorem 28. Let $I \subseteq \mathbb{R}^{m}$ be a box and $f: I \rightarrow \mathbb{R}$ is a well defined function. Then $f \in \mathcal{R}(I)$ if and only if f is bounded and a set its points of discontinuity has measure zero.

Integral over a bounded set $E \subset \mathbb{R}^{m}$ which is not a box: A characteristic function of a set E is a function $\chi_{E}: \mathbb{R}^{m} \rightarrow\{0,1\}$ defined as $\chi_{e}(\mathbf{x})=1$ if $\mathbf{x} \in E$ and $\chi_{e}(\mathbf{x})=0$ otherwise. Let I be a box containing E. Volume of E is defined as $\operatorname{vol}(E)=\int_{I} \chi_{E}$, if the integral exists. Finally, we define $\int_{E} f=\int_{I} f(\mathbf{x}) \cdot \chi_{E}$.

