
Lecture 7 (3.4.2019)
(partially translated and adapted from lecture notes by Martin Klazar)

Multivariable calculus

We will work in m-dimensional Euclidean space Rm, m ∈ N, which is a set
of all ordered m-tuples of reals x = (x1, x2, . . . , xm) with xi ∈ R. It is an m-
dimensional vector space over R — we can sum and subtract its elements and
we can multiply them by real constants. We introduce a notion of distance in
Rm, using (Euclidean) norm wich is a mapping ‖ · ‖ : Rm → [0,+∞) defined
as

‖x‖ =
√
x21 + x22 + . . .+ x2m .

Euclidean norm has the following properties (a ∈ R, x,y ∈ Rm):

(i) (positivity) ‖x‖ ≥ 0 a ‖x‖ = 0 ⇐⇒ x = o = (0, 0, . . . , 0),

(ii) (homogenity) ‖ax‖ = |a| · ‖x‖ and

(iii) (triangle inequality) ‖x + y‖ ≤ ‖x‖+ ‖y‖.

Using the norm, we define (Euclidean) distance d(x,y) : Rm×Rm → [0,+∞)
between two points x and y in Rm as

d(x,y) = ‖x− y‖ =
√

(x1 − y1)2 + (x2 − y2)2 + . . .+ (xm − ym)2 .

Properties of Euclidean distance (x,y, z ∈ Rm):

(i) (positivity) d(x,y) ≥ 0 and d(x,y) = 0 ⇐⇒ x = y,

(ii) (symmetry) d(x,y) = d(y,x) and

(iii) (triangle inequality) d(x,y) ≤ d(x, z) + d(z,y).

With exception of triangle inequality (deriving of which requires more ef-
fort), these properties of norm and distance follow easily form the definition.

(Open) ball B(a, r) with radius r > 0 and center a ∈ Rm is the set of points
in Rm with distance from a less than r:

B(a, r) = {x ∈ Rm | ‖x− a‖ < r} .

Open set in Rm is a subset M ⊂ Rm such that for every point x ∈M there is
a ball with center x contained in M :

M is open ⇐⇒ ∀x ∈M ∃r > 0 : B(x, r) ⊂M .

Following properties of open sets in Rm can be derived as a simple exercise:

(i) sets ∅ a Rm are open,
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(ii) union
⋃

i∈I Ai of any system {Ai | i ∈ I} of open sets Ai is an open set

(iii) intersection of two (finitely many) open sets is an open set.

Intersection of infinitely many open sets might not be open. Neighborhood
of a point a ∈ Rm is any open set in Rm containing a.

We will consider functions f : M → R, f = f(x1, x2, . . . , xm), defined on
M ⊂ Rm and mappings

f : M → Rn, M ⊂ Rm, f = (f1, f2, . . . , fn) ,

where fi = fi(x1, x2, . . . , xm) are coordinate functions. Our goal will be to
generalize derivative as a linear approximation and a notion of integral to
functions of several variables.

First, we generalize concept of continuity. Let U ⊂ Rm be a neighborhood
of a point a ∈ Rm. We say that a function f : U → R is continuous at a, if

∀ε > 0 ∃δ > 0 : ‖x− a‖ < δ ⇒ |f(x)− f(a)| < ε .

More generally, a mapping f : U → Rn, is continuous at a if

∀ε > 0 ∃δ > 0 : ‖x− a‖ < δ ⇒ ‖f(x)− f(a)‖ < ε ,

i.e., we replace absolute value (which is the norm in R1) by norm in Rn.
Similarly, we can generalize the notion of limit of a function:

lim
x→a

f(x) = c⇔ ∀ε > 0 ∃δ > 0 : x ∈ B(a, δ) \ {a} ⇒ |f(x)− c| < ε.

Multivarible Riemann Integral

First, we generalize a notion of Riemann integral to multivariable functions,
defining multivariable analogues of partition of an interval and upper and lower
Riemann sum.

An n-dimensional box is a Cartesian product of closed intervals

I = [a1, b1]× [a2, b2]× · · · × [an, bn]

where −∞ < ai < bi <∞, i = 1, . . . , n. For instance, for 2-dimensional box is
a closed rectangle with sides parallel to the axes.

Volume of a box is defined as |I| =
∏n

i=1(bi − ai). A partition of a box is a
set of boxes

D = {[cj11 , c
j1+1
1 ]× · · · × [cjnn , c

jn+1
n ]|0 ≤ ji < ki, 1 ≤ i ≤ n},

where ai = c0i < c1i < · · · < ckii = bi are some partitions of the intervals [ai, bi],
i = 1, . . . , n. Norm of a partition is defined as

λ(D) = max
0≤ji<ki,1≤i≤n

(cj+1
i − cji ),
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i.e., as a maximal ”length of an edge of a sub-box”.
One can now define a partition with points and generalize a Riemann defi-

nition of integral. However, we will proceed by generalizing Darboux definition
of the integral.

Let I be a box with a partition D and let f : I → R be a function. For
every box J ∈ D we define m(J) = infx∈J f(x) and M(J) = supx∈J f(x). We
define lower and upper Riemann sum as

s(f,D) =
∑
J∈D

|J | ·m(J), S(f,D) =
∑
J∈D

|J | ·M(J)

and lower and upper integral as∫
I

f = sup({s(f,D)|D is a partition of I}),

∫
I

f = inf({S(f,D)|D is a partition of I}).

Similarly as in one dimension, the following inequalities hold

s(f,D) ≤
∫
I

f ≤
∫
I

f ≤ S(f,D).

Integral of f on I is then defined as a real number∫
I

f =

∫
I

f =

∫
I

f

if upper integral equals lower integral.
We denote the set of functions which have integral on I by R(I).
We say that a set E ⊆ Rm has measure zero if for every ε > 0 exists a

sequence of boxes I1, I2, . . . in Rm, such that
∑∞

n=1 |In| < ε and E ⊂ ∪∞n=1In.

Theorem 28. Let I ⊆ Rm be a box and f : I → R is a well defined function.
Then f ∈ R(I) if and only if f is bounded and a set its points of discontinuity
has measure zero.

Integral over a bounded set E ⊂ Rm which is not a box: A characteristic
function of a set E is a function χE : Rm → {0, 1} defined as χe(x) = 1 if x ∈ E
and χe(x) = 0 otherwise. Let I be a box containing E. Volume of E is defined
as vol(E) =

∫
I
χE, if the integral exists. Finally, we define

∫
E
f =

∫
I
f(x) ·χE.
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