Lecture 6 (27.3.2019)

(translated and slightly adapted from lecture notes by Martin Klazar)

Applications of integrals

We estimate factorial $n!=1 \cdot 2 \cdot \ldots \cdot n$ as follows: for $f(x)=\log x$: $[1,+\infty) \rightarrow[0,+\infty)$ and a partition $D=(1,2, \ldots, n+1)$ of interval $[1, n+1]$ we have
$s(f, D)=\sum_{i=1}^{n} 1 \cdot \log i=\log (n!)$ a $S(f, D)=\sum_{i=1}^{n} 1 \cdot \log (i+1)=\log ((n+1)!)$.
Since $s(f, D)<\int_{1}^{n+1} \log x=(n+1) \log (n+1)-(n+1)+1<S(f, D)$, for $n \geq 2$ we get estimate

$$
n \log n-n+1<\log (n!)<(n+1) \log (n+1)-n
$$

and so

$$
e\left(\frac{n}{e}\right)^{n}<n!<e\left(\frac{n+1}{e}\right)^{n+1} .
$$

Similarly we estimate harmonic numbers H_{n},

$$
H_{n}=1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{n}
$$

For a function $f(x)=1 / x:(0,+\infty) \rightarrow(0,+\infty)$ and a partition $D=$ $(1,2, \ldots, n+1)$ of interval $[1, n+1]$ we have that

$$
s(f, D)=\sum_{i=1}^{n} 1 \cdot \frac{1}{i+1}=H_{n+1}-1 \text { a } S(f, D)=\sum_{i=1}^{n} 1 \cdot \frac{1}{i}=H_{n} .
$$

Since $s(f, D)<\int_{1}^{n+1} 1 / x=\log (n+1)<S(f, D)$, for $n \geq 2$ we get

$$
\log (n+1)<H_{n}<1+\log n .
$$

Similarly one can estimate also sums of infinite series, but we need integral over infinite domain to do that.

For $a \in \mathbb{R}$ and $f:[a,+\infty) \rightarrow \mathbb{R}$ such that $f \in \mathcal{R}(a, b)$ for every $b>a$, we define

$$
\int_{a}^{+\infty} f:=\lim _{b \rightarrow+\infty} \int_{a}^{b} f
$$

if the limit exists (we allow $\pm \infty$). We say that the integral converges if and only if the limit is a real number and we say that the integral diverges otherwise.

Theorem 26 (Integral criterion of convergence). Let a be and integer and $f:[a,+\infty) \rightarrow \mathbb{R}$ be a function which is non-negative and non-increasing on $[a,+\infty)$. Then,

$$
\sum_{n=a}^{\infty} f(n)=f(a)+f(a+1)+f(a+2)+\ldots<+\infty \Longleftrightarrow \int_{a}^{+\infty} f<+\infty
$$

So, the series converges if and only if the corresponding integral converges.
Proof. The sequence of partial sums of the series is non-decreasing and therefore it has a limit which is either real or $+\infty$. Since f is monotone, $f \in \mathcal{R}(a, b)$ for every real $b>a$. Moreover, since f is non-negative, $\int_{a}^{b^{\prime}} f \geq \int_{a}^{b} f$, if $b^{\prime} \geq b$. Then $\lim _{b \rightarrow+\infty} \int_{a}^{b} f$ exists and is either real or $+\infty$. For some integer $b>a$, consider the partition $D=(a, a+1, a+2, \ldots, b)$ of $[a, b]$. We have the following inequalities:

$$
\sum_{i=a+1}^{b} f(i)=s(f, D) \leq \int_{a}^{b} f \leq S(f, D)=\sum_{i=a}^{b-1} f(i) .
$$

It follows that bounded partial sums imply bounded integrals $\int_{a}^{b} f$ for any integer $b>a$ and the other way round. Thus, both limits are either real or $+\infty$.

Now we can easily decide convergence of

$$
\sum_{n=1}^{\infty} \frac{1}{n^{s}}, s>0 .
$$

For $s \neq 1$, we have

$$
\int_{1}^{+\infty} \frac{d x}{x^{s}}=\left.\frac{x^{1-s}}{1-s}\right|_{1} ^{+\infty}=(1-s)^{-1}\left(\lim _{x \rightarrow+\infty} x^{1-s}-1\right)
$$

this equals $+\infty$ for $0<s<1$ and $(s-1)^{-1}$ for $s>1$. For $s=1$ we have

$$
\int_{1}^{+\infty} \frac{d x}{x}=\left.\log x\right|_{1} ^{+\infty}=\lim _{x \rightarrow+\infty} \log x=+\infty
$$

Thus, by integral criterion the series converges if and only if $s>1$.
Next, consider the series

$$
\sum_{n=2}^{\infty} \frac{1}{n \log n}
$$

Here,

$$
\int_{2}^{+\infty} \frac{d x}{x \log x}=\left.\log \log x\right|_{2} ^{+\infty}=\lim _{x \rightarrow+\infty} \log \log x-\log \log 2=+\infty
$$

By integral criterion the series diverges. Exercise: analyze convergence of $\sum_{n>2} 1 / n(\log n)^{s}, s>1$.

We have already shown estimates of factorial using integrals. Now we show how to extend factorial to a smooth function on $[1,+\infty)$.

Theorem 27 (Gamma function). Function Γ defined as

$$
\Gamma(x):=\int_{0}^{+\infty} t^{x-1} e^{-t} d t:[1,+\infty) \rightarrow(0,+\infty)
$$

satisfies the following functional equation

$$
\Gamma(x+1)=x \Gamma(x) .
$$

on interval $[1,+\infty)$. Moreover, $\Gamma(1)=1$ and $\Gamma(n)=(n-1)$! for integers $n \geq 2$.

Proof. First, we show that $\Gamma(x)$ is correctly defined. For every fixed $x \geq 1$, the integrand is a non-negative continuous function (for $x=1$ and $t=0$ we let $0^{0}=1$). Since $\lim _{t \rightarrow+\infty} t^{x-1} e^{-t / 2}=0$ (exponential grows faster than a polynomial), for every $t \in[0,+\infty)$ we have the following inequality:

$$
t^{x-1} e^{-t}=t^{x-1} e^{-t / 2} \cdot e^{-t / 2} \leq c e^{-t / 2}
$$

where $c>0$ is a constant depending only on x. Thus, integrals over finite intervals $[0, b]$ are defined, for $b \rightarrow+\infty$ don't decrease and have a finite limit:

$$
\int_{0}^{b} t^{x-1} e^{-t} d t \leq \int_{0}^{b} c e^{-t / 2}=c\left(1-e^{-b / 2} / 2\right) d t<c
$$

The value $\Gamma(x)$ is therefore defined for every $x \geq 1$. For $x=1$, we have

$$
\Gamma(1)=\int_{0}^{+\infty} e^{-t} d t=\left.\left(-e^{-t}\right)\right|_{0} ^{+\infty}=0-(-1)=1
$$

Functional equation can be derived by integration per partes:

$$
\begin{aligned}
\Gamma(x+1) & =\int_{0}^{+\infty} t^{x} e^{-t} d t=\left.t^{x}\left(-e^{-t}\right)\right|_{0} ^{+\infty}-\int_{0}^{+\infty} x t^{x-1}\left(-e^{-t}\right) d t \\
& =0-0+x \int_{0}^{+\infty} t^{x-1} e^{-t} d t \\
& =x \Gamma(x)
\end{aligned}
$$

Values $\Gamma(n)$ follow by induction.
Note that extending factorial to a function f on $[1,+\infty)$ satisfying $f(x+$ $1)=x f(x)$ can be done in many ways, starting from any function defined on
$[1,2)$ with $f(1)=1$ and extending it. The advantage of $\Gamma(x)$ is that it has derivatives of all orders.

Finally, we give formulas for area, length of a curve and volume of solids of revolution. We have essentially defined area $U(a, b, f)$ (that is, points (x, y) in a plane satisfying $a \leq x \leq b$ a $0 \leq y \leq f(x))$ under the graph of function f as $\int_{a}^{b} f$.

For a function $f:[a, b] \rightarrow \mathbb{R}$ we define length of its graph $G=\{(x, f(x)) \in$ $\left.\mathbb{R}^{2} \mid a \leq x \leq b\right\}$ as a limit of length of a sequence of broken lines L with endpoints of segments on G which "approximate G ", where the length of a longest segment of L tends to 0 . For "nice" functions f (for instance those with continuous derivative), this limit exists and we can calculate it using Riemann integral. A segment of L connecting points $(x, f(x))$ and $(x+\Delta, f(x+\Delta))$ has by Pythagoras theorem length

$$
\sqrt{\Delta^{2}+(f(x+\Delta)-f(x))^{2}}=\Delta \sqrt{1+\left(\frac{f(x+\Delta)-f(x)}{\Delta}\right)^{2}} .
$$

From this, one can derive the following formula:
Theorem (length of a curve). Let $f:[a, b] \rightarrow \mathbb{R}$ be a function with continuous derivative on $[a, b]$ (so $\left.\sqrt{1+\left(f^{\prime}\right)^{2}} \in \mathcal{R}(a, b)\right)$. Then

$$
\text { délka }\left(\left\{(x, f(x)) \in \mathbb{R}^{2} \mid a \leq x \leq b\right\}\right)=\int_{a}^{b} \sqrt{1+\left(f^{\prime}(t)\right)^{2}} d t
$$

For a subset $M \subset \mathbb{R}^{3}$ we can define its volume as a limit, for $n \rightarrow \infty$, of the sume of volumes of $1 / n^{3}$ cubes K in the set

$$
\left\{\left.K=\left[\frac{a}{n}, \frac{a+1}{n}\right] \times\left[\frac{b}{n}, \frac{b+1}{n}\right] \times\left[\frac{c}{n}, \frac{c+1}{n}\right] \right\rvert\, a, b, c \in \mathbb{Z} \& K \subset M\right\} .
$$

If M is "nice", this limit exists and can be computed using integral. In particular, if M is obtained by rotating some planar figure around the horizontal axis, we get the following.

Theorem (volume of solid of revolution). Let $f \in \mathcal{R}(a, b)$ and $f \geq 0$ on $[a, b]$. For a volume of a body defined as

$$
V=\left\{(x, y, z) \in \mathbb{R}^{3} \mid a \leq x \leq b \& \sqrt{y^{2}+z^{2}} \leq f(x)\right\}
$$

obtained by rotating a planar figure $U(a, b, f)$ under the graph of a function f around x-axis we have

$$
\operatorname{volume}(V)=\pi \int_{a}^{b} f(t)^{2} d t
$$

The formula can be obtained by cutting V by planes perpendicular to x-axis into slices of length $\Delta>0$ and summing their volumes. Each slice is roughly a cylinder with radius $|f(x)|$ and height Δ.

