Lecture 6 (27.3.2019)
(translated and slightly adapted from lecture notes by Martin Klazar)

Applications of integrals

We estimate factorial n! = 1-2-...-n as follows: for f(z) = logx :
[1,4+00) — [0,4+00) and a partition D = (1,2,...,n + 1) of interval [1,n + 1]
we have

s(f, Zl logi =log(n!) a S(f,D) Zl log(i+1) =log((n+1)!) .
Since s(f, D) < nH logz = (n+ 1)log(n+1)— (n+1)+1 < S(f,D), for
n > 2 we get estlmate

nlogn —n+1<log(n!) < (n+1)log(n+1) —n

n\" n+1 ntl
e(—) <nl<e
e e

Similarly we estimate harmonic numbers H,,

and so

11 1
Hy=1+=4-4...+=
+otgtet

For a function f(z) = 1/x : (0,400) — (0,+00) and a partition D =
(1,2,...,n+ 1) of interval [1,n + 1] we have that

221-ii1: w1 —1 a S(f,D) = 21
i=1

Since s(f, D) < [ 1/z =log(n+1) < S(f, D), for n > 2 we get

log(n+1) < H, <1+logn.

Similarly one can estimate also sums of infinite series, but we need integral
over infinite domain to do that.
For a € R and f: [a,+00) — R such that f € R(a,b) for every b > a, we

define
= lim / I
a b—+o0

if the limit exists (we allow +00). We say that the integral converges if and only
if the limit is a real number and we say that the integral diverges otherwise.
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Theorem 26 (Integral criterion of convergence). Let a be and integer and
f: la,+o0) = R be a function which is non-negative and non-increasing on
[a,+00). Then,

if(n):f(a)—l—f(a+1)+f(a—|—2)+...<+oo = +oof<+oo.

a

So, the series converges if and only if the corresponding integral converges.

Proof. The sequence of partial sums of the series is non-decreasing and there-
fore it has a limit which is either real or +00. Since f is monotone, f € R(a,b)

for every real b > a. Moreover, since f is non-negative, fab f> f; f,if vy >b.

Then limy_, o f; f exists and is either real or +00. For some integer b > a,
consider the partition D = (a,a+1,a+2,...,b) of [a, b]. We have the following
inequalities:

b

> 50 =sD)< [ <80 =3 5.

i=a+1

It follows that bounded partial sums imply bounded integrals f: f for any
integer b > a and the other way round. Thus, both limits are either real or
+00. [

Now we can easily decide convergence of

[e.e]

Z%,s>0.

n=1

For s # 1, we have

/+oo dx xlfs
1 s 1—s5

this equals +o0o for 0 < s <1 and (s —1)7! for s > 1. For s = 1 we have

+o0
=(1—-s)7' lim 27 —1),

T—r+00

1

—+00

+0o0 d
/ & logz|{> = lim logz = +oo.
1 T T—

Thus, by integral criterion the series converges if and only if s > 1.

Next, consider the series
oo

1
2;nlogn '

n=

Here,

too g
/ A loglogz|7>° = lim loglogx — loglog2 = 400 .
5 xlogx z—+00
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By integral criterion the series diverges. Exercise: analyze convergence of

2@2 1/n(logn)®, s > 1.
We have already shown estimates of factorial using integrals. Now we show
how to extend factorial to a smooth function on [1, +00).

Theorem 27 (Gamma function). Function I" defined as
+o00
[(x):= / t* et dt : [1,+00) — (0, +00)
0

satisfies the following functional equation
Fz+1)=2al'(z) .

on interval [1,+00). Moreover, I'(1) = 1 and I'(n) = (n — 1)! for integers
n > 2.

Proof. First, we show that I'(z) is correctly defined. For every fixed = > 1,
the integrand is a non-negative continuous function (for x = 1 and t = 0 we
let 0° = 1). Since lim,_, o t* 'e™*? = 0 (exponential grows faster than a
polynomial), for every ¢ € [0,4+00) we have the following inequality:

tiE—le—t — tm—le—t/2 . e—t/2 S Ce_t/2 ,

where ¢ > 0 is a constant depending only on x. Thus, integrals over finite
intervals [0, b] are defined, for b — +o00 don’t decrease and have a finite limit:

b b
/ t" et dt < / ce?=c(1—eb?/2)dt <c.
0 0

The value I'(x) is therefore defined for every x > 1. For x = 1, we have

I'(1) :/OJrooet dt=(—eNf*=0-(-1)=1.

Functional equation can be derived by integration per partes:

+00 +oo
Lz+1) = / tre tdt = t*(—e ")|g™ — / ot (—eh) dt
0 0
+oo
= 0—0+x/ e dt
0
= zal(x).
Values I'(n) follow by induction. O

Note that extending factorial to a function f on [1,+o00) satisfying f(z +
1) = zf(x) can be done in many ways, starting from any function defined on
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[1,2) with f(1) = 1 and extending it. The advantage of I'(z) is that it has
derivatives of all orders.

Finally, we give formulas for area, length of a curve and volume of solids
of revolution. We have essentially defined area U(a, b, f) (that is, points (x,y)
in a plane satisfying a <z <b a0 <y < f(x)) under the graph of function f
as fab f.

For a function f : [a,b] — R we define length of its graph G = {(z, f(z)) €
R? | a < x < b} as a limit of length of a sequence of broken lines L with
endpoints of segments on G which ”"approximate G”, where the length of a
longest segment of L tends to 0. For "nice” functions f (for instance those with
continuous derivative), this limit exists and we can calculate it using Riemann
integral. A segment of L connecting points (z, f(x)) and (z + A, f(z + A))
has by Pythagoras theorem length

\/A2+(f(93+A)—f(:p))2:A\/1+( A
From this, one can derive the following formula:

Theorem (length of a curve). Let f : [a,b] — R be a function with
continuous derivative on |a,b] (so \/1+ (f")? € R(a,b)). Then

délka({(z, f(z)) € R* |a <z < b}) = / VT (FO)? dt .

For a subset M C R3 we can define its volume as a limit, for n — oo, of
the sume of volumes of 1/n3 cubes K in the set

{K:[a a_—H]X[b ﬂ]x[%)%}|a,b,C€Z&KCM}

n’ n n’ n

If M is "nice”, this limit exists and can be computed using integral. In par-
ticular, if M is obtained by rotating some planar figure around the horizontal
axis, we get the following.

Theorem (volume of solid of revolution). Let f € R(a,b) and f >0 on
la,b]. For a volume of a body defined as

V=A{(z,y.2) eR’ |a<z<b&y*+22 < f(z)}

obtained by rotating a planar figure U(a, b, f) under the graph of a function f
around x-axis we have

volume(V') = 7T/bf(t)2 dt .

The formula can be obtained by cutting V' by planes perpendicular to z-axis
into slices of length A > 0 and summing their volumes. Each slice is roughly
a cylinder with radius |f(z)| and height A.
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