
Lecture 6 (27.3.2019)
(translated and slightly adapted from lecture notes by Martin Klazar)

Applications of integrals
We estimate factorial n! = 1 · 2 · . . . · n as follows: for f(x) = log x :

[1,+∞) → [0,+∞) and a partition D = (1, 2, . . . , n + 1) of interval [1, n + 1]
we have

s(f,D) =
n∑

i=1

1 · log i = log(n!) a S(f,D) =
n∑

i=1

1 · log(i+ 1) = log((n+ 1)!) .

Since s(f,D) <
∫ n+1

1
log x = (n + 1) log(n + 1) − (n + 1) + 1 < S(f,D), for

n ≥ 2 we get estimate

n log n− n+ 1 < log(n!) < (n+ 1) log(n+ 1)− n

and so

e
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)n
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(
n+ 1

e
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Similarly we estimate harmonic numbers Hn,

Hn = 1 +
1

2
+

1

3
+ . . .+

1

n
.

For a function f(x) = 1/x : (0,+∞) → (0,+∞) and a partition D =
(1, 2, . . . , n+ 1) of interval [1, n+ 1] we have that

s(f,D) =
n∑

i=1

1 · 1

i+ 1
= Hn+1 − 1 a S(f,D) =

n∑
i=1

1 · 1

i
= Hn .

Since s(f,D) <
∫ n+1

1
1/x = log(n+ 1) < S(f,D), for n ≥ 2 we get

log(n+ 1) < Hn < 1 + log n .

Similarly one can estimate also sums of infinite series, but we need integral
over infinite domain to do that.

For a ∈ R and f : [a,+∞)→ R such that f ∈ R(a, b) for every b > a, we
define ∫ +∞

a

f := lim
b→+∞

∫ b

a

f ,

if the limit exists (we allow±∞). We say that the integral converges if and only
if the limit is a real number and we say that the integral diverges otherwise.
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Theorem 26 (Integral criterion of convergence). Let a be and integer and
f : [a,+∞) → R be a function which is non-negative and non-increasing on
[a,+∞). Then,

∞∑
n=a

f(n) = f(a) + f(a+ 1) + f(a+ 2) + . . . < +∞ ⇐⇒
∫ +∞

a

f < +∞ .

So, the series converges if and only if the corresponding integral converges.

Proof. The sequence of partial sums of the series is non-decreasing and there-
fore it has a limit which is either real or +∞. Since f is monotone, f ∈ R(a, b)

for every real b > a. Moreover, since f is non-negative,
∫ b′

a
f ≥

∫ b

a
f , if b′ ≥ b.

Then limb→+∞
∫ b

a
f exists and is either real or +∞. For some integer b > a,

consider the partition D = (a, a+1, a+2, . . . , b) of [a, b]. We have the following
inequalities:

b∑
i=a+1

f(i) = s(f,D) ≤
∫ b

a

f ≤ S(f,D) =
b−1∑
i=a

f(i) .

It follows that bounded partial sums imply bounded integrals
∫ b

a
f for any

integer b > a and the other way round. Thus, both limits are either real or
+∞.

Now we can easily decide convergence of

∞∑
n=1

1

ns
, s > 0 .

For s 6= 1, we have∫ +∞

1

dx

xs
=

x1−s

1− s

∣∣∣∣+∞
1

= (1− s)−1( lim
x→+∞

x1−s − 1) ,

this equals +∞ for 0 < s < 1 and (s− 1)−1 for s > 1. For s = 1 we have∫ +∞

1

dx

x
= log x|+∞1 = lim

x→+∞
log x = +∞ .

Thus, by integral criterion the series converges if and only if s > 1.
Next, consider the series

∞∑
n=2

1

n log n
.

Here, ∫ +∞

2

dx

x log x
= log log x|+∞2 = lim

x→+∞
log log x− log log 2 = +∞ .
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By integral criterion the series diverges. Exercise: analyze convergence of∑
n≥2 1/n(log n)s, s > 1.
We have already shown estimates of factorial using integrals. Now we show

how to extend factorial to a smooth function on [1,+∞).

Theorem 27 (Gamma function). Function Γ defined as

Γ(x) :=

∫ +∞

0

tx−1e−t dt : [1,+∞)→ (0,+∞)

satisfies the following functional equation

Γ(x+ 1) = xΓ(x) .

on interval [1,+∞). Moreover, Γ(1) = 1 and Γ(n) = (n − 1)! for integers
n ≥ 2.

Proof. First, we show that Γ(x) is correctly defined. For every fixed x ≥ 1,
the integrand is a non-negative continuous function (for x = 1 and t = 0 we
let 00 = 1). Since limt→+∞ t

x−1e−t/2 = 0 (exponential grows faster than a
polynomial), for every t ∈ [0,+∞) we have the following inequality:

tx−1e−t = tx−1e−t/2 · e−t/2 ≤ ce−t/2 ,

where c > 0 is a constant depending only on x. Thus, integrals over finite
intervals [0, b] are defined, for b→ +∞ don’t decrease and have a finite limit:∫ b

0

tx−1e−t dt ≤
∫ b

0

ce−t/2 = c(1− e−b/2/2) dt < c .

The value Γ(x) is therefore defined for every x ≥ 1. For x = 1, we have

Γ(1) =

∫ +∞

0

e−t dt = (−e−t)|+∞0 = 0− (−1) = 1 .

Functional equation can be derived by integration per partes:

Γ(x+ 1) =

∫ +∞

0

txe−t dt = tx(−e−t)|+∞0 −
∫ +∞

0

xtx−1(−e−t) dt

= 0− 0 + x

∫ +∞

0

tx−1e−t dt

= xΓ(x) .

Values Γ(n) follow by induction.

Note that extending factorial to a function f on [1,+∞) satisfying f(x +
1) = xf(x) can be done in many ways, starting from any function defined on
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[1, 2) with f(1) = 1 and extending it. The advantage of Γ(x) is that it has
derivatives of all orders.

Finally, we give formulas for area, length of a curve and volume of solids
of revolution. We have essentially defined area U(a, b, f) (that is, points (x, y)
in a plane satisfying a ≤ x ≤ b a 0 ≤ y ≤ f(x)) under the graph of function f

as
∫ b

a
f .

For a function f : [a, b]→ R we define length of its graph G = {(x, f(x)) ∈
R2 | a ≤ x ≤ b} as a limit of length of a sequence of broken lines L with
endpoints of segments on G which ”approximate G”, where the length of a
longest segment of L tends to 0. For ”nice” functions f (for instance those with
continuous derivative), this limit exists and we can calculate it using Riemann
integral. A segment of L connecting points (x, f(x)) and (x + ∆, f(x + ∆))
has by Pythagoras theorem length

√
∆2 + (f(x+ ∆)− f(x))2 = ∆

√
1 +

(
f(x+ ∆)− f(x)

∆

)2

.

From this, one can derive the following formula:

Theorem (length of a curve). Let f : [a, b] → R be a function with
continuous derivative on [a, b] (so

√
1 + (f ′)2 ∈ R(a, b)). Then

délka({(x, f(x)) ∈ R2 | a ≤ x ≤ b}) =

∫ b

a

√
1 + (f ′(t))2 dt .

For a subset M ⊂ R3 we can define its volume as a limit, for n → ∞, of
the sume of volumes of 1/n3 cubes K in the set

{K = [ a
n
, a+1

n
]× [ b

n
, b+1

n
]× [ c

n
, c+1

n
] | a, b, c ∈ Z & K ⊂M} .

If M is ”nice”, this limit exists and can be computed using integral. In par-
ticular, if M is obtained by rotating some planar figure around the horizontal
axis, we get the following.

Theorem (volume of solid of revolution). Let f ∈ R(a, b) and f ≥ 0 on
[a, b]. For a volume of a body defined as

V = {(x, y, z) ∈ R3 | a ≤ x ≤ b &
√
y2 + z2 ≤ f(x)}

obtained by rotating a planar figure U(a, b, f) under the graph of a function f
around x-axis we have

volume(V ) = π

∫ b

a

f(t)2 dt .

The formula can be obtained by cutting V by planes perpendicular to x-axis
into slices of length ∆ > 0 and summing their volumes. Each slice is roughly
a cylinder with radius |f(x)| and height ∆.
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