Lecture 6 (27.3.2019)

(translated and slightly adapted from lecture notes by Martin Klazar)

Applications of integrals

We estimate factorial $n! = 1 \cdot 2 \cdot \ldots \cdot n$ as follows: for $f(x) = \log x$: $[1, +\infty) \rightarrow [0, +\infty)$ and a partition $D = (1, 2, \ldots, n+1)$ of interval [1, n+1] we have

$$s(f,D) = \sum_{i=1}^{n} 1 \cdot \log i = \log(n!) \text{ a } S(f,D) = \sum_{i=1}^{n} 1 \cdot \log(i+1) = \log((n+1)!) \cdot \log(n+1) = \log(n+1)!$$

Since $s(f, D) < \int_{1}^{n+1} \log x = (n+1) \log(n+1) - (n+1) + 1 < S(f, D)$, for $n \ge 2$ we get estimate

$$n\log n - n + 1 < \log(n!) < (n+1)\log(n+1) - n$$

and so

$$e\left(\frac{n}{e}\right)^n < n! < e\left(\frac{n+1}{e}\right)^{n+1}$$

Similarly we estimate harmonic numbers H_n ,

$$H_n = 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{n}$$
.

For a function f(x) = 1/x: $(0, +\infty) \rightarrow (0, +\infty)$ and a partition D = (1, 2, ..., n+1) of interval [1, n+1] we have that

$$s(f,D) = \sum_{i=1}^{n} 1 \cdot \frac{1}{i+1} = H_{n+1} - 1$$
 a $S(f,D) = \sum_{i=1}^{n} 1 \cdot \frac{1}{i} = H_n$.

Since $s(f, D) < \int_{1}^{n+1} 1/x = \log(n+1) < S(f, D)$, for $n \ge 2$ we get

$$\log(n+1) < H_n < 1 + \log n \; .$$

Similarly one can estimate also sums of infinite series, but we need integral over infinite domain to do that.

For $a \in \mathbb{R}$ and $f : [a, +\infty) \to \mathbb{R}$ such that $f \in \mathcal{R}(a, b)$ for every b > a, we define

$$\int_{a}^{+\infty} f := \lim_{b \to +\infty} \int_{a}^{b} f ,$$

if the limit exists (we allow $\pm \infty$). We say that the integral converges if and only if the limit is a real number and we say that the integral diverges otherwise.

Theorem 26 (Integral criterion of convergence). Let a be and integer and $f: [a, +\infty) \to \mathbb{R}$ be a function which is non-negative and non-increasing on $[a, +\infty)$. Then,

So, the series converges if and only if the corresponding integral converges.

Proof. The sequence of partial sums of the series is non-decreasing and therefore it has a limit which is either real or $+\infty$. Since f is monotone, $f \in \mathcal{R}(a, b)$ for every real b > a. Moreover, since f is non-negative, $\int_a^{b'} f \ge \int_a^b f$, if $b' \ge b$. Then $\lim_{b\to+\infty} \int_a^b f$ exists and is either real or $+\infty$. For some integer b > a, consider the partition $D = (a, a+1, a+2, \ldots, b)$ of [a, b]. We have the following inequalities:

$$\sum_{i=a+1}^{b} f(i) = s(f, D) \le \int_{a}^{b} f \le S(f, D) = \sum_{i=a}^{b-1} f(i) .$$

It follows that bounded partial sums imply bounded integrals $\int_a^b f$ for any integer b > a and the other way round. Thus, both limits are either real or $+\infty$.

Now we can easily decide convergence of

$$\sum_{n=1}^{\infty} \frac{1}{n^s}, \ s > 0$$

For $s \neq 1$, we have

$$\int_{1}^{+\infty} \frac{dx}{x^{s}} = \left. \frac{x^{1-s}}{1-s} \right|_{1}^{+\infty} = (1-s)^{-1} (\lim_{x \to +\infty} x^{1-s} - 1) ,$$

this equals $+\infty$ for 0 < s < 1 and $(s-1)^{-1}$ for s > 1. For s = 1 we have

$$\int_{1}^{+\infty} \frac{dx}{x} = \log x |_{1}^{+\infty} = \lim_{x \to +\infty} \log x = +\infty .$$

Thus, by integral criterion the series converges if and only if s > 1.

Next, consider the series

$$\sum_{n=2}^{\infty} \frac{1}{n \log n}$$

Here,

$$\int_{2}^{+\infty} \frac{dx}{x \log x} = \log \log x |_{2}^{+\infty} = \lim_{x \to +\infty} \log \log x - \log \log 2 = +\infty.$$

By integral criterion the series diverges. Exercise: analyze convergence of $\sum_{n\geq 2} 1/n(\log n)^s$, s>1.

We have already shown estimates of factorial using integrals. Now we show how to extend factorial to a smooth function on $[1, +\infty)$.

Theorem 27 (Gamma function). Function Γ defined as

$$\Gamma(x) := \int_0^{+\infty} t^{x-1} e^{-t} dt : \ [1, +\infty) \to (0, +\infty)$$

satisfies the following functional equation

$$\Gamma(x+1) = x\Gamma(x) \; .$$

on interval $[1, +\infty)$. Moreover, $\Gamma(1) = 1$ and $\Gamma(n) = (n-1)!$ for integers $n \ge 2$.

Proof. First, we show that $\Gamma(x)$ is correctly defined. For every fixed $x \ge 1$, the integrand is a non-negative continuous function (for x = 1 and t = 0 we let $0^0 = 1$). Since $\lim_{t\to+\infty} t^{x-1}e^{-t/2} = 0$ (exponential grows faster than a polynomial), for every $t \in [0, +\infty)$ we have the following inequality:

$$t^{x-1}e^{-t} = t^{x-1}e^{-t/2} \cdot e^{-t/2} \le ce^{-t/2}$$

where c > 0 is a constant depending only on x. Thus, integrals over finite intervals [0, b] are defined, for $b \to +\infty$ don't decrease and have a finite limit:

$$\int_0^b t^{x-1} e^{-t} dt \le \int_0^b c e^{-t/2} = c(1 - e^{-b/2}/2) dt < c.$$

The value $\Gamma(x)$ is therefore defined for every $x \ge 1$. For x = 1, we have

$$\Gamma(1) = \int_0^{+\infty} e^{-t} dt = (-e^{-t})|_0^{+\infty} = 0 - (-1) = 1.$$

Functional equation can be derived by integration per partes:

$$\begin{split} \Gamma(x+1) &= \int_0^{+\infty} t^x e^{-t} \, dt = t^x (-e^{-t}) |_0^{+\infty} - \int_0^{+\infty} x t^{x-1} (-e^{-t}) \, dt \\ &= 0 - 0 + x \int_0^{+\infty} t^{x-1} e^{-t} \, dt \\ &= x \Gamma(x) \, . \end{split}$$

Values $\Gamma(n)$ follow by induction.

Note that extending factorial to a function f on $[1, +\infty)$ satisfying f(x + 1) = xf(x) can be done in many ways, starting from any function defined on

[1,2) with f(1) = 1 and extending it. The advantage of $\Gamma(x)$ is that it has derivatives of all orders.

Finally, we give formulas for area, length of a curve and volume of solids of revolution. We have essentially defined area U(a, b, f) (that is, points (x, y) in a plane satisfying $a \le x \le b$ a $0 \le y \le f(x)$) under the graph of function f as $\int_a^b f$.

For a function $f: [a, b] \to \mathbb{R}$ we define length of its graph $G = \{(x, f(x)) \in \mathbb{R}^2 \mid a \leq x \leq b\}$ as a limit of length of a sequence of broken lines L with endpoints of segments on G which "approximate G", where the length of a longest segment of L tends to 0. For "nice" functions f (for instance those with continuous derivative), this limit exists and we can calculate it using Riemann integral. A segment of L connecting points (x, f(x)) and $(x + \Delta, f(x + \Delta))$ has by Pythagoras theorem length

$$\sqrt{\Delta^2 + (f(x+\Delta) - f(x))^2} = \Delta \sqrt{1 + \left(\frac{f(x+\Delta) - f(x)}{\Delta}\right)^2}.$$

From this, one can derive the following formula:

Theorem (length of a curve). Let $f : [a,b] \to \mathbb{R}$ be a function with continuous derivative on [a,b] (so $\sqrt{1+(f')^2} \in \mathcal{R}(a,b)$). Then

délka
$$(\{(x, f(x)) \in \mathbb{R}^2 \mid a \le x \le b\}) = \int_a^b \sqrt{1 + (f'(t))^2} dt$$

For a subset $M \subset \mathbb{R}^3$ we can define its volume as a limit, for $n \to \infty$, of the sume of volumes of $1/n^3$ cubes K in the set

$$\left\{K = \left[\frac{a}{n}, \frac{a+1}{n}\right] \times \left[\frac{b}{n}, \frac{b+1}{n}\right] \times \left[\frac{c}{n}, \frac{c+1}{n}\right] \mid a, b, c \in \mathbb{Z} \& K \subset M\right\}.$$

If M is "nice", this limit exists and can be computed using integral. In particular, if M is obtained by rotating some planar figure around the horizontal axis, we get the following.

Theorem (volume of solid of revolution). Let $f \in \mathcal{R}(a, b)$ and $f \ge 0$ on [a, b]. For a volume of a body defined as

$$V = \{ (x, y, z) \in \mathbb{R}^3 \mid a \le x \le b \& \sqrt{y^2 + z^2} \le f(x) \}$$

obtained by rotating a planar figure U(a, b, f) under the graph of a function f around x-axis we have

volume
$$(V) = \pi \int_{a}^{b} f(t)^{2} dt$$
.

The formula can be obtained by cutting V by planes perpendicular to x-axis into slices of length $\Delta > 0$ and summing their volumes. Each slice is roughly a cylinder with radius |f(x)| and height Δ .