Lecture 5 (20.3.2018)

(translated and slightly adapted from lecture notes by Martin Klazar)

Theorem 21 (1st Fundamental Theorem of Calculus). Let $f \in \mathcal{R}(a, b)$ and function $F : [a, b] \to \mathbb{R}$ be defined as

$$F(x) = \int_a^x f \; .$$

Then

- (i) F is continuous on [a, b] and
- (ii) at every point of continuity $x_0 \in [a, b]$ of f there exists finite derivative $F'(x_0)$ and $F'(x_0) = f(x_0)$ (this applies one-sided if $x_0 = a$ or $x_0 = b$).

Proof. Let c > 0 be the upper bound for $|f(x)|, a \le x \le b$ (f is integrable and therefore bounded). For every two points $x, x_0 \in [a, b]$ we have

$$|F(x) - F(x_0)| = \left| \int_a^x f - \int_a^{x_0} f \right| = \left| \int_{x_0}^x f \right| \le |x - x_0|c ,$$

according to the definition of F, linearity \int in integration limits and estimate \int by upper sum for a trivial partition of the interval with end points x and x_0 . Thus, for $x \to x_0$, we have $F(x) \to F(x_0)$. Therefore, F is continuous in x_0 .

Let $x_0 \in [a, b]$ be a point of continuity of f. We have $\delta > 0$ that $f(x_0) - \varepsilon < f(x) < f(x_0) + \varepsilon$ once $|x - x_0| < \delta$. For $0 < x - x_0 < \delta$ then

$$f(x_0) - \varepsilon \le \frac{\int_{x_0}^x f}{x - x_0} = \frac{F(x) - F(x_0)}{x - x_0} \le f(x_0) + \varepsilon ,$$

according to the trivial estimate of $\int_{x_0}^x f$ by lower and upper sums for trivial partition (x_0, x) . For $-\delta < x - x_0 < 0$ the same inequalities apply (both the numerator and the denominator of the fraction will change sign). For $x \to x_0$, $x \neq x_0$, we have $\frac{F(x) - F(x_0)}{x - x_0} \to f(x_0)$, or $F'(x_0) = f(x_0)$.

Corollary 22 (Continuous function has a primitive function). If $f : [a, b] \rightarrow \mathbb{R}$ is continuous on [a, b], then f has a primitive function F on [a, b].

Proof. Just use the previous theorem and let $F(x) = \int_a^x f$.

Theorem 23 (2nd Fundamental Theorem of Calculus). If $f \in \mathcal{R}(a, b)$ and $F : [a, b] \to \mathbb{R}$ is primitive to f on [a, b], then

$$\int_{a}^{b} f = F(b) - F(a) \; .$$

Proof. Let $D = (a_0, a_1, \ldots, a_k)$ be any partition of [a, b]. Using Lagrange's mean value theorem for each interval $I_i = [a_{i-1}, a_i]$ and the function F, we get

$$F(b) - F(a) = \sum_{i=1}^{k} (F(a_i) - F(a_{i-1})) = \sum_{i=1}^{k} f(c_i)(a_i - a_{i-1}) ,$$

for some points $a_i < c_i < a_{i+1}$ (since $F'(c_i) = f(c_i)$). Thus, (since $\inf_{I_i} f \leq f(c_i) \leq \sup_{I_i} f$)

$$s(f, D) \le F(b) - F(a) \le S(f, D) .$$

Then, from integrability of f, it follows that $F(b) - F(a) = \int_a^b f$.

For a function $F: [a, b] \to \mathbb{R}$ we denote the difference of functional values in endpoints of the interval by

$$F|_a^b := F(b) - F(a) \; .$$

Previous results put together yield the following.

Corollary 24 (\int and primitive function). If $f : [a, b] \to \mathbb{R}$ is continuous on [a, b], then $f \in \mathcal{R}(a, b)$, f has a primitive function F on [a, b] and

$$\int_{a}^{b} f = F|_{a}^{b} = F(b) - F(a) \; .$$

Newton integral.

Let $f: (a, b) \to \mathbb{R}$ be such that a primitive function F of f on (a, b) has one sided limits $F(a^+) = \lim_{x \to a^+} F(x)$ a $F(b^-) = \lim_{x \to b^-} F(x)$. We define Newton integral of f on (a, b) as

$$(N)\int_{a}^{b} f = F(b^{-}) - F(a^{+}) \,.$$

Since different primitive functions of f differ by an additive constant, this difference does not depend on the choice of F and the definition is correct. The set of functions which are Newton integrable on (a, b) is denoted by $\mathcal{N}(a, b)$. We denote by C(a, b) the set of functions continuous on [a, b].

Theorem 25 (comparison of Newton and Riemann \int).

(i) $C(a,b) \subset \mathcal{N}(a,b) \cap \mathcal{R}(a,b)$.

(ii) If $f \in \mathcal{N}(a,b) \cap \mathcal{R}(a,b)$, then

$$(N)\int_a^b f = (R)\int_a^b f$$

(iii) The sets $\mathcal{N}(a,b) \setminus \mathcal{R}(a,b)$ and $\mathcal{R}(a,b) \setminus \mathcal{N}(a,b)$ are nonempty.

Proof. If f is continuous on [a, b], by theorem from previous lecture, $f \in \mathcal{R}(a, b)$ and by First fundamental theorem of calculus, $F(x) = \int_a^x f$ is a primitive function to f on [a, b]. We have $F(a^+) = F(a) = 0$ a $F(b^-) = F(b) = \int_a^b f$, thus $f \in \mathcal{N}(a, b)$.

Let $f \in \mathcal{N}(a,b) \cap \mathcal{R}(a,b)$. Since $f \in \mathcal{N}(a,b)$, f has a primitive function F on (a,b) with one sided limits $F(a^+)$ and $F(b^-)$. Since $f \in \mathcal{R}(a,b)$, $f \in \mathcal{R}(a+\delta,b-\delta)$ for every $\delta > 0$ and by Second fundamental theorem of calculus we have

$$(R)\int_{a+\delta}^{b-\delta} f = F(b-\delta) - F(a+\delta) .$$

For $\delta \to 0^+$ the left hand side tends to $(R) \int_a^b f(f)$ is bounded on [a, b], thus integrals of f on $[a, a + \delta]$ and $[b - \delta, b]$ tend to 0) and left hand side tends to $F(b^-) - F(a^+) = (N) \int_a^b f$.

Function $f(x) = x^{-1/2}$: $(0,1] \to \mathbb{R}$, f(0) = 42, has Newton integral on (0,1): $F(x) = 2x^{1/2}$ is primitive function of f on (0,1), $F(0^+) = 0$ and $F(1^-) = 2$, thus $(N) \int_0^1 f = 2$. However, f is not bounded on [0,1] and therefore $f \notin \mathcal{R}(0,1)$. Function $\operatorname{sgn}(x)$ is non-decreasing on [-1,1] and thus Riemann integrable on [-1,1]. On the other hand, $\operatorname{sgn}(x)$ does not have Newton integral on (-1,1) — as we showed on the first lecture, $\operatorname{sgn}(x)$ does not have a primitive function on (-1,1).

Next we state variants of methods of computing primitive functions for definite integrals.

Theorem 26 (Integration by parts for definite integral). Let $f, g : [a, b] \to \mathbb{R}$ be functions with continuous derivatives f' and g' on [a, b]. Then,

$$\int_a^b fg' = fg|_a^b - \int_a^b f'g \; .$$

Theorem 27 (Substitution for definite integral). Let $\varphi : [\alpha, \beta] \to [a, b]$ and $f : [a, b] \to \mathbb{R}$ are two functions such that φ has continuous derivative on $[\alpha, \beta]$ and $\varphi(\alpha) = a$, $\varphi(\beta) = b$ or $\varphi(\alpha) = b$, $\varphi(\beta) = a$. If

- (i) f is continuous on [a, b], or
- (ii) if φ is strictly monotonous on $[\alpha, \beta]$ and $f \in \mathcal{R}(a, b)$

then

$$\int_{\alpha}^{\beta} f(\varphi)\varphi' = \int_{\varphi(\alpha)}^{\varphi(\beta)} f = \begin{cases} \int_{a}^{b} f & or \\ \\ \int_{b}^{a} f = -\int_{a}^{b} f \end{cases}$$

Proof of (i). The function f is continuous, so it has a primitive function F. Derivative of a composed function $F(\varphi)$ on $[\alpha, \beta]$ is $F(\varphi)' = f(\varphi)\varphi'$. So, $F(\varphi)$ is on $[\alpha, \beta]$ a primitive function of $f(\varphi)\varphi'$. The function $f(\varphi)\varphi'$ is continuous (since product of two continuous functions is continuous) on $[\alpha, \beta]$, thus, $f(\varphi)\varphi' \in \mathcal{R}(\alpha, \beta)$. Thus, applying 2nd fundamental theorem of calculus twice (the first and the third equality), we have

$$\int_{\alpha}^{\beta} f(\varphi)\varphi' = F(\varphi)|_{\alpha}^{\beta} = F|_{\varphi(\alpha)}^{\varphi(\beta)} = \int_{\varphi(\alpha)}^{\varphi(\beta)} f \; .$$