
Lecture 5 (20.3.2018)
(translated and slightly adapted from lecture notes by Martin Klazar)

Theorem 21 (1st Fundamental Theorem of Calculus). Let f ∈ R(a, b) and
function F : [a, b]→ R be defined as

F (x) =

∫ x

a

f .

Then

(i) F is continuous on [a, b] and

(ii) at every point of continuity x0 ∈ [a, b] of f there exists finite derivative
F ′(x0) and F ′(x0) = f(x0) (this applies one-sided if x0 = a or x0 = b).

Proof. Let c > 0 be the upper bound for |f(x)|, a ≤ x ≤ b (f is integrable and
therefore bounded). For every two points x, x0 ∈ [a, b] we have

|F (x)− F (x0)| =
∣∣∣ ∫ x

a

f −
∫ x0

a

f
∣∣∣ =

∣∣∣ ∫ x

x0

f
∣∣∣ ≤ |x− x0|c ,

according to the definition of F , linearity
∫

in integration limits and estimate∫
by upper sum for a trivial partition of the interval with end points x and x0.

Thus, for x→ x0, we have F (x)→ F (x0). Therefore, F is continuous in x0.
Let x0 ∈ [a, b] be a point of continuity of f . We have δ > 0 that f(x0)−ε <

f(x) < f(x0) + ε once |x− x0| < δ. For 0 < x− x0 < δ then

f(x0)− ε ≤
∫ x
x0
f

x− x0
=
F (x)− F (x0)

x− x0
≤ f(x0) + ε ,

according to the trivial estimate of
∫ x
x0
f by lower and upper sums for trivial

partition (x0, x). For −δ < x − x0 < 0 the same inequalities apply (both the
numerator and the denominator of the fraction will change sign). For x→ x0,

x 6= x0, we have F (x)−F (x0)
x−x0 → f(x0), or F ′(x0) = f(x0).

Corollary 22 (Continuous function has a primitive function). If f : [a, b]→
R is continuous on [a, b], then f has a primitive function F on [a, b].

Proof. Just use the previous theorem and let F (x) =
∫ x
a
f .

Theorem 23 (2nd Fundamental Theorem of Calculus). If f ∈ R(a, b) and
F : [a, b]→ R is primitive to f on [a, b], then∫ b

a

f = F (b)− F (a) .
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Proof. Let D = (a0, a1, . . . , ak) be any partition of [a, b]. Using Lagrange’s
mean value theorem for each interval Ii = [ai−1, ai] and the function F , we
get

F (b)− F (a) =
k∑
i=1

(F (ai)− F (ai−1)) =
k∑
i=1

f(ci)(ai − ai−1) ,

for some points ai < ci < ai+1 (since F ′(ci) = f(ci)). Thus, (since infIi f ≤
f(ci) ≤ supIi f)

s(f,D) ≤ F (b)− F (a) ≤ S(f,D) .

Then, from integrability of f , it follows that F (b)− F (a) =
∫ b
a
f .

For a function F : [a, b]→ R we denote the difference of functional values
in endpoints of the interval by

F |ba := F (b)− F (a) .

Previous results put together yield the following.

Corollary 24 (
∫

and primitive function). If f : [a, b] → R is continuous on
[a, b], then f ∈ R(a, b), f has a primitive function F on [a, b] and∫ b

a

f = F |ba = F (b)− F (a) .

Newton integral.
Let f : (a, b) → R be such that a primitive function F of f on (a, b) has

one sided limits F (a+) = limx→a+ F (x) a F (b−) = limx→b− F (x). We define
Newton integral of f on (a, b) as

(N)

∫ b

a

f = F (b−)− F (a+) .

Since different primitive functions of f differ by an additive constant, this
difference does not depend on the choice of F and the definition is correct. The
set of functions which are Newton integrable on (a, b) is denoted by N (a, b).
We denote by C(a, b) the set of functions continuous on [a, b].

Theorem 25 (comparison of Newton and Riemann
∫

).

(i) C(a, b) ⊂ N (a, b) ∩R(a, b) .

(ii) If f ∈ N (a, b) ∩R(a, b), then

(N)

∫ b

a

f = (R)

∫ b

a

f .

(iii) The sets N (a, b)\R(a, b) and R(a, b)\N (a, b) are nonempty.
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Proof. If f is continuous on [a, b], by theorem from previous lecture, f ∈
R(a, b) and by First fundamental theorem of calculus, F (x) =

∫ x
a
f is a primi-

tive function to f on [a, b]. We have F (a+) = F (a) = 0 a F (b−) = F (b) =
∫ b
a
f ,

thus f ∈ N (a, b).
Let f ∈ N (a, b) ∩ R(a, b). Since f ∈ N (a, b), f has a primitive function

F on (a, b) with one sided limits F (a+) and F (b−). Since f ∈ R(a, b), f ∈
R(a+ δ, b− δ) for every δ > 0 and by Second fundamental theorem of calculus
we have

(R)

∫ b−δ

a+δ

f = F (b− δ)− F (a+ δ) .

For δ → 0+ the left hand side tends to (R)
∫ b
a
f (f is bounded on [a, b], thus

integrals of f on [a, a+ δ] and [b− δ, b] tend to 0) and left hand side tends to

F (b−)− F (a+) = (N)
∫ b
a
f .

Function f(x) = x−1/2 : (0, 1] → R, f(0) = 42, has Newton integral
on (0, 1): F (x) = 2x1/2 is primitive function of f on (0, 1), F (0+) = 0 and

F (1−) = 2, thus (N)
∫ 1

0
f = 2. However, f is not bounded on [0, 1] and

therefore f 6∈ R(0, 1). Function sgn(x) is non-decreasing on [−1, 1] and thus
Riemann integrable on [−1, 1]. On the other hand, sgn(x) does not have
Newton integral on (−1, 1) — as we showed on the first lecture, sgn(x) does
not have a primitive function on (−1, 1).

Next we state variants of methods of computing primitive functions for
definite integrals.

Theorem 26 (Integration by parts for definite integral). Let f, g : [a, b]→ R
be functions with continuous derivatives f ′ and g′ on [a, b] . Then,∫ b

a

fg′ = fg|ba −
∫ b

a

f ′g .

Theorem 27 (Substitution for definite integral). Let ϕ : [α, β] → [a, b] and
f : [a, b] → R are two functions such that ϕ has continuous derivative on
[α, β] and ϕ(α) = a, ϕ(β) = b or ϕ(α) = b, ϕ(β) = a. If

(i) f is continous on [a, b], or

(ii) if ϕ is strictly monotonous on [α, β] and f ∈ R(a, b)

then ∫ β

α

f(ϕ)ϕ′ =

∫ ϕ(β)

ϕ(α)

f =


∫ b
a
f or∫ a

b
f = −

∫ b
a
f .

Proof of (i). The function f is continuous, so it has a primitive function F .
Derivative of a composed function F (ϕ) on [α, β] is F (ϕ)′ = f(ϕ)ϕ′. So, F (ϕ)
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is on [α, β] a primitive function of f(ϕ)ϕ′. The function f(ϕ)ϕ′ is continu-
ous (since product of two continuous functions is continuous) on [α, β], thus,
f(ϕ)ϕ′ ∈ R(α, β). Thus, applying 2nd fundamental theorem of calculus twice
(the first and the third equality), we have∫ β

α

f(ϕ)ϕ′ = F (ϕ)|βα = F |ϕ(β)ϕ(α) =

∫ ϕ(β)

ϕ(α)

f .
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