Lecture 5 (20.3.2018)

(translated and slightly adapted from lecture notes by Martin Klazar)
Theorem 21 (1st Fundamental Theorem of Calculus). Let $f \in \mathcal{R}(a, b)$ and function $F:[a, b] \rightarrow \mathbb{R}$ be defined as

$$
F(x)=\int_{a}^{x} f
$$

Then
(i) F is continuous on $[a, b]$ and
(ii) at every point of continuity $x_{0} \in[a, b]$ of f there exists finite derivative $F^{\prime}\left(x_{0}\right)$ and $F^{\prime}\left(x_{0}\right)=f\left(x_{0}\right)$ (this applies one-sided if $x_{0}=a$ or $x_{0}=b$).

Proof. Let $c>0$ be the upper bound for $|f(x)|, a \leq x \leq b$ (f is integrable and therefore bounded). For every two points $x, x_{0} \in[a, b]$ we have

$$
\left|F(x)-F\left(x_{0}\right)\right|=\left|\int_{a}^{x} f-\int_{a}^{x_{0}} f\right|=\left|\int_{x_{0}}^{x} f\right| \leq\left|x-x_{0}\right| c,
$$

according to the definition of F, linearity \int in integration limits and estimate \int by upper sum for a trivial partition of the interval with end points x and x_{0}. Thus, for $x \rightarrow x_{0}$, we have $F(x) \rightarrow F\left(x_{0}\right)$. Therefore, F is continuous in x_{0}.

Let $x_{0} \in[a, b]$ be a point of continuity of f. We have $\delta>0$ that $f\left(x_{0}\right)-\varepsilon<$ $f(x)<f\left(x_{0}\right)+\varepsilon$ once $\left|x-x_{0}\right|<\delta$. For $0<x-x_{0}<\delta$ then

$$
f\left(x_{0}\right)-\varepsilon \leq \frac{\int_{x_{0}}^{x} f}{x-x_{0}}=\frac{F(x)-F\left(x_{0}\right)}{x-x_{0}} \leq f\left(x_{0}\right)+\varepsilon
$$

according to the trivial estimate of $\int_{x_{0}}^{x} f$ by lower and upper sums for trivial partition $\left(x_{0}, x\right)$. For $-\delta<x-x_{0}<0$ the same inequalities apply (both the numerator and the denominator of the fraction will change sign). For $x \rightarrow x_{0}$, $x \neq x_{0}$, we have $\frac{F(x)-F\left(x_{0}\right)}{x-x_{0}} \rightarrow f\left(x_{0}\right)$, or $F^{\prime}\left(x_{0}\right)=f\left(x_{0}\right)$.

Corollary 22 (Continuous function has a primitive function). If $f:[a, b] \rightarrow$ \mathbb{R} is continuous on $[a, b]$, then f has a primitive function F on $[a, b]$.

Proof. Just use the previous theorem and let $F(x)=\int_{a}^{x} f$.
Theorem 23 (2nd Fundamental Theorem of Calculus). If $f \in \mathcal{R}(a, b)$ and $F:[a, b] \rightarrow \mathbb{R}$ is primitive to f on $[a, b]$, then

$$
\int_{a}^{b} f=F(b)-F(a)
$$

Proof. Let $D=\left(a_{0}, a_{1}, \ldots, a_{k}\right)$ be any partition of $[a, b]$. Using Lagrange's mean value theorem for each interval $I_{i}=\left[a_{i-1}, a_{i}\right]$ and the function F, we get

$$
F(b)-F(a)=\sum_{i=1}^{k}\left(F\left(a_{i}\right)-F\left(a_{i-1}\right)\right)=\sum_{i=1}^{k} f\left(c_{i}\right)\left(a_{i}-a_{i-1}\right),
$$

for some points $a_{i}<c_{i}<a_{i+1}$ (since $F^{\prime}\left(c_{i}\right)=f\left(c_{i}\right)$). Thus, (since $\inf _{I_{i}} f \leq$ $\left.f\left(c_{i}\right) \leq \sup _{I_{i}} f\right)$

$$
s(f, D) \leq F(b)-F(a) \leq S(f, D)
$$

Then, from integrability of f, it follows that $F(b)-F(a)=\int_{a}^{b} f$.
For a function $F:[a, b] \rightarrow \mathbb{R}$ we denote the difference of functional values in endpoints of the interval by

$$
\left.F\right|_{a} ^{b}:=F(b)-F(a) .
$$

Previous results put together yield the following.
Corollary 24 (\int and primitive function). If $f:[a, b] \rightarrow \mathbb{R}$ is continuous on $[a, b]$, then $f \in \mathcal{R}(a, b)$, f has a primitive function F on $[a, b]$ and

$$
\int_{a}^{b} f=\left.F\right|_{a} ^{b}=F(b)-F(a) .
$$

Newton integral.

Let $f:(a, b) \rightarrow \mathbb{R}$ be such that a primitive function F of f on (a, b) has one sided limits $F\left(a^{+}\right)=\lim _{x \rightarrow a^{+}} F(x)$ a $F\left(b^{-}\right)=\lim _{x \rightarrow b^{-}} F(x)$. We define Newton integral of f on (a, b) as

$$
(N) \int_{a}^{b} f=F\left(b^{-}\right)-F\left(a^{+}\right) .
$$

Since different primitive functions of f differ by an additive constant, this difference does not depend on the choice of F and the definition is correct. The set of functions which are Newton integrable on (a, b) is denoted by $\mathcal{N}(a, b)$. We denote by $C(a, b)$ the set of functions continuous on $[a, b]$.

Theorem 25 (comparison of Newton and Riemann \int).
(i) $C(a, b) \subset \mathcal{N}(a, b) \cap \mathcal{R}(a, b)$.
(ii) If $f \in \mathcal{N}(a, b) \cap \mathcal{R}(a, b)$, then

$$
(N) \int_{a}^{b} f=(R) \int_{a}^{b} f
$$

(iii) The sets $\mathcal{N}(a, b) \backslash \mathcal{R}(a, b)$ and $\mathcal{R}(a, b) \backslash \mathcal{N}(a, b)$ are nonempty.

Proof. If f is continuous on $[a, b]$, by theorem from previous lecture, $f \in$ $\mathcal{R}(a, b)$ and by First fundamental theorem of calculus, $F(x)=\int_{a}^{x} f$ is a primitive function to f on $[a, b]$. We have $F\left(a^{+}\right)=F(a)=0$ a $F\left(b^{-}\right)=F(b)=\int_{a}^{b} f$, thus $f \in \mathcal{N}(a, b)$.

Let $f \in \mathcal{N}(a, b) \cap \mathcal{R}(a, b)$. Since $f \in \mathcal{N}(a, b), f$ has a primitive function F on (a, b) with one sided limits $F\left(a^{+}\right)$and $F\left(b^{-}\right)$. Since $f \in \mathcal{R}(a, b), f \in$ $\mathcal{R}(a+\delta, b-\delta)$ for every $\delta>0$ and by Second fundamental theorem of calculus we have

$$
(R) \int_{a+\delta}^{b-\delta} f=F(b-\delta)-F(a+\delta)
$$

For $\delta \rightarrow 0^{+}$the left hand side tends to $(R) \int_{a}^{b} f$ (f is bounded on $[a, b]$, thus integrals of f on $[a, a+\delta]$ and $[b-\delta, b]$ tend to 0) and left hand side tends to $F\left(b^{-}\right)-F\left(a^{+}\right)=(N) \int_{a}^{b} f$.

Function $f(x)=x^{-1 / 2}:(0,1] \rightarrow \mathbb{R}, f(0)=42$, has Newton integral on $(0,1)$: $F(x)=2 x^{1 / 2}$ is primitive function of f on $(0,1), F\left(0^{+}\right)=0$ and $F\left(1^{-}\right)=2$, thus $(N) \int_{0}^{1} f=2$. However, f is not bounded on $[0,1]$ and therefore $f \notin \mathcal{R}(0,1)$. Function $\operatorname{sgn}(x)$ is non-decreasing on $[-1,1]$ and thus Riemann integrable on $[-1,1]$. On the other hand, $\operatorname{sgn}(x)$ does not have Newton integral on $(-1,1)$ - as we showed on the first lecture, $\operatorname{sgn}(x)$ does not have a primitive function on $(-1,1)$.

Next we state variants of methods of computing primitive functions for definite integrals.

Theorem 26 (Integration by parts for definite integral). Let $f, g:[a, b] \rightarrow \mathbb{R}$ be functions with continuous derivatives f^{\prime} and g^{\prime} on $[a, b]$. Then,

$$
\int_{a}^{b} f g^{\prime}=\left.f g\right|_{a} ^{b}-\int_{a}^{b} f^{\prime} g
$$

Theorem 27 (Substitution for definite integral). Let $\varphi:[\alpha, \beta] \rightarrow[a, b]$ and $f:[a, b] \rightarrow \mathbb{R}$ are two functions such that φ has continuous derivative on $[\alpha, \beta]$ and $\varphi(\alpha)=a, \varphi(\beta)=b$ or $\varphi(\alpha)=b, \varphi(\beta)=a$. If
(i) f is continous on $[a, b]$, or
(ii) if φ is strictly monotonous on $[\alpha, \beta]$ and $f \in \mathcal{R}(a, b)$
then

$$
\int_{\alpha}^{\beta} f(\varphi) \varphi^{\prime}=\int_{\varphi(\alpha)}^{\varphi(\beta)} f=\left\{\begin{array}{l}
\int_{a}^{b} f \text { or } \\
\int_{b}^{a} f=-\int_{a}^{b} f
\end{array}\right.
$$

Proof of (i). The function f is continuous, so it has a primitive function F. Derivative of a composed function $F(\varphi)$ on $[\alpha, \beta]$ is $F(\varphi)^{\prime}=f(\varphi) \varphi^{\prime}$. So, $F(\varphi)$
is on $[\alpha, \beta]$ a primitive function of $f(\varphi) \varphi^{\prime}$. The function $f(\varphi) \varphi^{\prime}$ is continuous (since product of two continuous functions is continuous) on $[\alpha, \beta]$, thus, $f(\varphi) \varphi^{\prime} \in \mathcal{R}(\alpha, \beta)$. Thus, applying 2nd fundamental theorem of calculus twice (the first and the third equality), we have

$$
\int_{\alpha}^{\beta} f(\varphi) \varphi^{\prime}=\left.F(\varphi)\right|_{\alpha} ^{\beta}=\left.F\right|_{\varphi(\alpha)} ^{\varphi(\beta)}=\int_{\varphi(\alpha)}^{\varphi(\beta)} f
$$

