Lecture 4 (13.3.2018)

(translated and slightly adapted from lecture notes by Martin Klazar)
Theorem 14 (Integrability criterion). Let $f:[a, b] \rightarrow \mathbb{R}$. Then

$$
f \in \mathcal{R}(a, b) \Longleftrightarrow \forall \varepsilon>0 \exists D: 0 \leq S(f, D)-s(f, D)<\varepsilon
$$

In other words, f has Riemann integral if and only if for every $\varepsilon>0$ there exists a partition of D of interval $[a, b]$ such that its upper Riemann sum is greater than the corresponding lower Riemann sum by less than ε.

Proof." $\Rightarrow "$ We assume that f has R. integral on $[a, b]$, i.e., $\underline{\int_{a}^{b}} f=\overline{\int_{a}^{b}} f=$ $\int_{a}^{b} f \in \mathbb{R}$. Let $\varepsilon>0$ be given. By definition of the lower and upper integrals, there are partitions E_{1} and E_{2} so that

$$
s\left(f, E_{1}\right)>\underline{\int_{a}^{b}} f-\frac{\varepsilon}{2}=\int_{a}^{b} f-\frac{\varepsilon}{2} \text { a } S\left(f, E_{2}\right)<\overline{\int_{a}^{b}} f+\frac{\varepsilon}{2}=\int_{a}^{b} f+\frac{\varepsilon}{2} .
$$

According to the lemma, these inequalities also apply after replacing E_{1} and E_{2} with their joint refinement $D=E_{1} \cup E_{2}$. Summing up both inequalities we will get

$$
S(f, D)-s(f, D)<\int_{a}^{b} f+\frac{\varepsilon}{2}+\left(-\int_{a}^{b} f+\frac{\varepsilon}{2}\right)=\varepsilon .
$$

$" \Leftarrow "$ Given $\varepsilon>0$ we take a partition of D satisfying the condition. According to the definition of the lower and upper integral we get

$$
\overline{\int_{a}^{b}} f \leq S(f, D)<s(f, D)+\varepsilon \leq \underline{\int_{a}^{b}} f+\varepsilon, \text { thus } \overline{\int_{a}^{b}} f-\underline{\int_{a}^{b}} f<\varepsilon .
$$

This inequality is valid for every $\varepsilon>0$, so according to the previous statement we have $\overline{\int_{a}^{b}} f=\underline{\int_{a}^{b}} f \in \mathbb{R}$. Then f has R . integral on $[a, b]$.

We state another criterion of integrability without a proof.
Theorem 15 (Lebesgue characterisation of integrable functions). A function $f:[a, b] \rightarrow \mathbb{R}$ has Riemann integral, if and only if it is bounded and the set of its point of discontinuity on $[a, b]$ has measure zero.

We define sets of measure zero as follows. A set $M \subset \mathbb{R}$ has (Lebesgue) measure zero, if for every $\varepsilon>0$, there exists a sequence of intervals I_{1}, I_{2}, \ldots such that

$$
\sum_{i=1}^{\infty}\left|I_{i}\right|<\varepsilon \text { and } M \subset \bigcup_{i=1}^{\infty} I_{i}
$$

In other words, M can be covered by intervals of arbitrarily small length. Simple properties of sets with measure zero:

- Every countable or finite set has measure zero.
- Every subset of a set of measure zero has measure zero.
- If each of countably many sets A_{1}, A_{2}, \ldots has measure zero, their union

$$
\bigcup_{n=1}^{\infty} A_{n}
$$

has measure zero.

- Interval of positive length does not have measure zero.

For example, the set of rational numbers \mathbb{Q} has measure zero. There exist sets of measure which are uncountable, classical example is Cantor set.

Theorem 16 (Monotonicity \Rightarrow integrability). If $f:[a, b] \rightarrow \mathbb{R}$ is nondecreasing or non-increasing on $[a, b]$ then it is Riemann integrable.

Proof. Assume that f is non-decreasing (for non-increasing f the argument is similar). For each subinterval $[\alpha, \beta] \subset[a, b]$ we have $\inf _{[\alpha, \beta]} f=f(\alpha)$ and $\sup _{[\alpha, \beta]} f=f(\beta)$. Given $\delta>0$, we take any division $D=\left(a_{0}, a_{1}, \ldots, a_{k-1}\right)$ interval $[a, b]$ with $\lambda(D)<\delta$ and

$$
\begin{aligned}
S(f, D)-s(f, D) & =\sum_{i=1}^{k}\left(a_{i}-a_{i-1}\right)\left(\sup _{I_{i}} f-\inf _{I_{i}} f\right) \\
& =\sum_{i=1}^{k}\left(a_{i}-a_{i-1}\right)\left(f\left(a_{i}\right)-f\left(a_{i-1}\right)\right) \\
& \leq \delta \sum_{i=1}^{k}\left(f\left(a_{i}\right)-f\left(a_{i-1}\right)\right) \\
& =\delta\left(f\left(a_{k}\right)-f\left(a_{0}\right)\right)=\delta(f(b)-f(a)) .
\end{aligned}
$$

This can be made small by reducing δ, in particular, given ε, choosing $\delta<$ $\varepsilon /(f(b)-f(a))$ ensures that $S(f, D)-s(f, D)<\varepsilon$. According to the integrability criterion, then $f \in \mathcal{R}(a, b)$.

Continuity is also sufficient for integrability. But we need to introduce its stronger form. Let us say that the function $f: I \rightarrow \mathbb{R}$, where I is the interval, is uniformly continuous (on I) if

$$
\forall \varepsilon>0 \exists \delta>0: x, x^{\prime} \in I,\left|x-x^{\prime}\right|<\delta \Rightarrow\left|f(x)-f\left(x^{\prime}\right)\right|<\varepsilon
$$

That is, we require that single $\delta>0$ works for all pairs of points x, x^{\prime} in I. In the usual definition of continuity can δ depend on x. Uniform continuity
implies continuity, but the reverse does not generally apply. For example, function

$$
f(x)=1 / x: \quad I=(0,1)
$$

is continuous on i, but not uniformly continuous: $f(1 /(n+1))-f(1 / n)=1$, although $1 /(n+1)-1 / n \rightarrow 0$ for $n \rightarrow \infty$. On a compact interval I, which is the interval of type $[a, b]$ where $-\infty<a \leq b<+\infty$, types of continuity coincide.

Theorem $\mathbf{1 7}$ (On compact: continuity \Rightarrow uniform continuity). If the function $f:[a, b] \rightarrow \mathbb{R}$ on the interval $[a, b]$ is continuous, it is uniformly continuous.

Proof. For contradiction we assume that $f:[a, b] \rightarrow \mathbb{R}$ is continuous at every point of the interval $[a, b]$ (i.e. one sided in the end points of a a b), but that it is not uniformly continuous to $[a, b]$. Negation of a uniform continuity means, that

$$
\exists \varepsilon>0 \forall \delta>0 \exists x, x^{\prime} \in I:\left|x-x^{\prime}\right|<\delta \&\left|f(x)-f\left(x^{\prime}\right)\right| \geq \varepsilon
$$

Which means that there are points $x_{n}, x_{n}^{\prime} \in[a, b]$ for $\delta=1 / n$ and $n=1,2, \ldots$ that $\left|x_{n}-x_{n}^{\prime}\right|<1 / n$, but $\left|f\left(x_{n}\right)-f\left(x_{n}^{\prime}\right)\right| \geq \varepsilon$. Then, by Bolzano-Weierstrass theorem there exist subsequences of $\left(x_{n}\right)$ and $\left(x_{n}^{\prime}\right)$ which both converge and (inevitably) have the same point α from $[a, b]$. (This theorem asserts that there exists a sequence of indices $k_{1}<k_{2}<\ldots$ such that $\left(x_{k_{n}}\right)$ converges. Again by the theorem there exists sequence of indices of $l_{1}<l_{2}<\ldots$ that ($x_{k_{l_{n}}}^{\prime}$) converges. The sequence $\left(x_{k_{l_{n}}}\right)$ remains convergent, because it is a subsequence of sequence $\left(x_{k_{n}}\right)$. Because $\left|x_{k_{l_{n}}}-x_{k_{l_{n}}}^{\prime}\right|<1 / k_{l_{n}} \leq 1 / n \rightarrow 0$,

$$
\lim _{n \rightarrow \infty} x_{k_{l_{n}}}=\lim _{n \rightarrow \infty} x_{k_{l_{n}}}^{\prime}=\alpha
$$

To avoid multilevel indices, we rename $x_{k_{l_{n}}}$ to x_{n} and $x_{k_{l_{n}}}^{\prime}$ to x_{n}^{\prime}.) By Heine definition of limit, continuity of f in α and arithmetic of limits, we have

$$
0=f(\alpha)-f(\alpha)=\lim f\left(x_{n}\right)-\lim f\left(x_{n}^{\prime}\right)=\lim \left(f\left(x_{n}\right)-f\left(x_{n}^{\prime}\right)\right) .
$$

This contradicts that $\left|f\left(x_{n}\right)-f\left(x_{n}^{\prime}\right)\right| \geq \varepsilon$ for every n.
Theorem 18 (Continuity \Rightarrow integrability). If $f:[a, b] \rightarrow \mathbb{R}$ on the interval $[a, b]$ is continuous then it is Riemann integrable.
Proof. Let f be continuous on $[a, b]$. Let $\varepsilon>0$ be given. By the previous statement, we take $\delta>0$ that $\left|f(x)-f\left(x^{\prime}\right)\right|<\varepsilon$ when $x, x^{\prime} \in[a, b]$ are closer than δ. Then

$$
\sup _{[\alpha, \beta]} f-\inf _{[\alpha, \beta]} f \leq \varepsilon
$$

for each subinterval $[\alpha, \beta] \subset[a, b]$ less than δ (why?). We take any partition $D=\left(a_{0}, a_{1}, \ldots, a_{k-1}\right)$ of interval $[a, b]$ with $\lambda(D)$. We have that

$$
S(f, D)-s(f, D)=\sum_{i=1}^{k}\left(a_{i}-a_{i-1}\right)\left(\sup _{I_{i}} f-\inf _{I_{i}} f\right)
$$

$$
\begin{aligned}
& \leq \sum_{i=1}^{k}\left(a_{i}-a_{i-1}\right) \varepsilon \\
& =\varepsilon\left(a_{k}-a_{0}\right)=\varepsilon(b-a) .
\end{aligned}
$$

As in the previous theorem, the $\varepsilon(b-a)$ can be made small by reducing ε. Thus, according to the integrability criterion, $f \in \mathcal{R}(a, b)$.

Theorem 19 (Linearity of Riemann integral).
(i) (linearity w.r.to integrand) Let $f, g \in \mathcal{R}(a, b)$ be two functions having R. integrals and $\alpha, \beta \in \mathbb{R}$. Then

$$
\alpha f+\beta g \in \mathcal{R}(a, b) \text { and } \int_{a}^{b}(\alpha f+\beta g)=\alpha \int_{a}^{b} f+\beta \int_{a}^{b} g .
$$

(ii) (linearity w.r. to boundaries) Let $f:[a, b] \rightarrow \mathbb{R}$ be a function and $c \in(a, b)$. Then

$$
f \in \mathcal{R}(a, b) \Longleftrightarrow f \in \mathcal{R}(a, c) \& f \in \mathcal{R}(c, b)
$$

and, if these integrals are defined,

$$
\int_{a}^{b} f=\int_{a}^{c} f+\int_{c}^{b} f
$$

Proof. (i) Just examine three special cases of linear combinations, namely $-f, \alpha f \mathrm{~s} \alpha \geq 0$ and $f+g$, the others are from these are already deduced. Either given $\varepsilon>0$. According to the integrity criterion, there is a division of the D interval $[a, b]$ that

$$
S(f, D)-s(f, D), S(g, D)-s(g, D) .
$$

(Surely we have two such divisions, D_{1} for f and D_{2} for g. Moving to a common refinement, we will achieve $D_{1}=D_{2}$.) By definition of infima and suprema of a set of real numbers, for any subinterval $I \subset[a, b]$, that (pro $\alpha \geq 0$)
and for supremacy (we will swap inf a sup and rotate the last inequality). By definition, upper, sums as a linear combination (with >0 coefficients) infim, or supreme,
$S(-f, D)-s(-f, D)=-s(f, D)-(-S(f, D))=S(f, D)-s(f, D)<\varepsilon$,
and

$$
\begin{aligned}
S(f+g, D)-s(f+g, D) & \leq(S(f, D)+S(g, D))-(s(f, D)+s(g, D)) \\
& =S(f, D)-s(f, D)+S(g, D)-s(g, D) \\
& <2 \varepsilon
\end{aligned}
$$

So, according to the integrity criterion, $\mathrm{i}-f, \alpha f, f+g \in \mathcal{R}(a, b)$. Moreover, according to the inequalities between the lower and upper sums and the integral, $\int_{a}^{b} f \in[s(f, D), S(f, D)]$ and the same for g. So $\int_{a}^{b}(-f)$ lies in the interval

$$
[s(-f, D), S(-f, D)]=[-S(f, D),-s(f, D)] \ni-\int_{a}^{b} f
$$

and the numbers $\int_{a}^{b}(-f) \mathrm{a}-\int_{a}^{b} f$ differ by less than ε. So $\int_{a}^{b}(-f)=$ $-\int_{a}^{b} f$. Similarly $\int_{a}^{b} \alpha f$ lie in the interval

$$
[s(\alpha f, D), S(\alpha f, D)]=[\alpha s(f, D), \alpha S(f, D)] \ni \alpha \int_{a}^{b} f
$$

with a maximum length of $\alpha \varepsilon$, so $\int_{a}^{b} \alpha f=\alpha \int_{a}^{b} f$. Finally, $\int_{a}^{b}(f+g)$ is in the interval

$$
[s(f+g, D), S(f+g, D)] \subset[s(f, D)+s(g, D), S(f, D)+S(g, D)] \ni \int_{a}^{b} f+\int_{a}^{b} g
$$

with a length of less than 2ε, and so $\int_{a}^{b}(f+g)=\int_{a}^{b} f+\int_{a}^{b} g$.
(ii) Let's go to line \int as a function of integration limits. First, we slightly extend the definition of $\int_{a}^{b} f$:

$$
\int_{a}^{a} f:=0 \mathrm{aint} t_{a}^{b} f:=-\int_{b}^{a} \text { fmboxproa }>b
$$

For $f:[a, b] \rightarrow \mathbb{R}$ and subinterval $I \subset[a, b]$ we denote the f function narrowing to I in the following statement for simplicity again as f.

If $a>b$, we define $\int_{a}^{b} f=-\int_{b}^{a} f$.
Corollary 20 (\int over a cycle is 0). Let $a, b, c \in \mathbb{R}, d=\min (a, b, c)$, $e=$ $\max (a, b, c)$ and $f \in \mathcal{R}(d, e)$. Then the following three integrals exist and satisfy

$$
\int_{a}^{b} f+\int_{b}^{c} f+\int_{c}^{a} f=0
$$

