Lecture 4 (13.3.2018)
(translated and slightly adapted from lecture notes by Martin Klazar)

Theorem 14 (Integrability criterion). Let f : [a,b] — R. Then
feR(ab) < Ve>03D: 0< S(f,D)—s(f,D) <e.

In other words, f has Riemann integral if and only if for every e > 0 there
exists a partition of D of interval [a,b] such that its upper Riemann sum is
greater than the corresponding lower Riemann sum by less than .

Proof. 7 = 7 We assume that f has R. integral on [a,b] , i.e., fabf = f_;f =

ff f € R. Let € > 0 be given. By definition of the lower and upper integrals,
there are partitions F; and E5 so that

s(f,El)>£f—§:/abf—g a S(f,E2)<ff+§:/abf+%.

According to the lemma, these inequalities also apply after replacing F; and
E5 with their joint refinement D = F; U Ey. Summing up both inequalities we
will get

supy-stroy < [ geie (- [ reg) =

< 7 Given ¢ > 0 we take a partition of D satisfying the condition.
According to the definition of the lower and upper integral we get

7

b b b b
[resupy<stpyres [greus [ [r<e.
This inequality is valid for every € > 0, so according to the previous statement
we havefff = fabf € R. Then f has R. integral on [a, b]. O
We state another criterion of integrability without a proof.

Theorem 15 (Lebesgue characterisation of integrable functions). A function
f: la,b] = R has Riemann integral, if and only if it is bounded and the set of
its point of discontinuity on [a,b] has measure zero.

We define sets of measure zero as follows. A set M C R has (Lebesgue)
measure zero, if for every € > 0, there exists a sequence of intervals Iy, I, . ..

such that - .
Z|[Z\ <e and M C U[i'
i=1 i=1

In other words, M can be covered by intervals of arbitrarily small length.
Simple properties of sets with measure zero:
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e Every countable or finite set has measure zero.
e Every subset of a set of measure zero has measure zero.

e [f each of countably many sets A, As, ... has measure zero, their union
[o.¢]
U A
n=1
has measure zero.

e Interval of positive length does not have measure zero.

For example, the set of rational numbers Q has measure zero. There exist sets
of measure which are uncountable, classical example is Cantor set.

Theorem 16 (Monotonicity = integrability). If f : [a,b] — R is non-
decreasing or non-increasing on |a,b| then it is Riemann integrable.

Proof. Assume that f is non-decreasing (for non-increasing f the argument
is similar). For each subinterval [a, 5] C [a,b] we have infl, g f = f(a) and
sup, g f = f(B). Given 0 > 0, we take any division D = (ag,as,...,ax 1)
interval [a,b] with A(D) < ¢ and

S(f, D) _ s(f, D) = Z(ai - ai_l)(S?pf - i%ff)
k
= Z(ai —ai—1)(f(a;) — fla;—1))
< 0> (fla) = flai-))

This can be made small by reducing J, in particular, given ¢, choosing § <
e/(f(b) — f(a)) ensures that S(f, D) — s(f, D) < e. According to the integra-
bility criterion, then f € R(a,b). O

Continuity is also sufficient for integrability. But we need to introduce its
stronger form. Let us say that the function f : I — R, where [ is the interval,
is uniformly continuous (on I) if

Ve>030>0: z,a' €l, |[zr—2'|<d=|f(z)— f(a')] <e.

That is, we require that single § > 0 works for all pairs of points z, 2" in 1.
In the usual definition of continuity can § depend on z. Uniform continuity
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implies continuity, but the reverse does not generally apply. For example,
function

flx) =1/z: I =(0,1)
is continuous on 7, but not uniformly continuous: f(1/(n+ 1)) — f(1/n) =1,
although 1/(n +1) — 1/n — 0 for n — oco. On a compact interval I, which

is the interval of type [a,b] where —oo < a < b < +00, types of continuity
coincide.

Theorem 17 (On compact: continuity = uniform continuity). If the function
f: [a,b] = R on the interval [a,b] is continuous, it is uniformly continuous.

Proof. For contradiction we assume that f : [a,b] — R is continuous at every
point of the interval [a, b] (i.e. one sided in the end points of a a b), but that it
is not uniformly continuous to [a,b]. Negation of a uniform continuity means,
that

Je>0Vo >0z, 2’ el :|a—2|<d&|f(x)— f(a')]>e.

Which means that there are points z,, 2!, € [a,b] for 6 =1/nand n=1,2,...
that |z, — /| < 1/n, but |f(z,) — f(2,)| > . Then, by Bolzano—Weierstrass
theorem there exist subsequences of (z,) and (z/)) which both converge and
(inevitably) have the same point « from [a, b]. (This theorem asserts that there
exists a sequence of indices k1 < kg < ... such that (zj,) converges. Again
by the theorem there exists sequence of indices of I; <l < ... that (zj, )
converges. The sequence (zy, ) remains convergent, because it is a subsequence
of sequence (zy, ). Because |z, — 1z}, | <1/k, <1/n—0,

mz, =o.
n—oo

o= 1 l

n n—00 n

To avoid multilevel indices, we rename xy, to r, and 7} to z,.) By Heine
definition of limit, continuity of f in a and arithmetic of limits, we have

0= f(a) = fla) = lim f(z,) = lim f(2;,) = lim(f (zn) = f(2;,)) -
This contradicts that |f(z,) — f(x])] > € for every n. O

Theorem 18 (Continuity = integrability). If f : [a,b] — R on the interval
[a,b] is continuous then it is Riemann integrable.

Proof. Let f be continuous on [a,b]. Let € > 0 be given. By the previous
statement, we take 6 > 0 that |f(z) — f(2’)] < € when z,2’ € [a, ] are closer
than §. Then

sup f —inf f < ¢

[, 5] [5]
for each subinterval [a, f] C [a,b] less than § (why?). We take any partition
D = (ag,ay,...,ap_1) of interval [a, b] with A(D). We have that

k

S(f, D) =s(f,D) = > (ai—ai1)(sup f —inf f)

=1
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k

Z(ai —a;_1)e

= e;ak —ap) =¢(b—a) .

IN

As in the previous theorem, the (b — a) can be made small by reducing e.
Thus, according to the integrability criterion, f € R(a,b). ]

Theorem 19 (Linearity of Riemann integral).

(i) (linearity w.r.to integrand) Let f,g € R(a,b) be two functions having R.
integrals and o, 8 € R. Then

b b b
af + 69 € Rl and [ (af+59)=a [ f+5 [ 4.
(ii) (linearity w.r. to boundaries) Let f : [a,b] — R be a function and
c € (a,b). Then

fe€R(a,b) < feR(a,c)& feR(c,b)

and, if these integrals are defined,

[r=f[r

Proof. (i) Just examine three special cases of linear combinations, namely
—f,af sa>0and f+ g, the others are from these are already deduced.
Either given € > 0. According to the integrity criterion, there is a division
of the D interval [a, b] that

S(faD)_S<f7D>7S(gaD)_5(gvD)‘

(Surely we have two such divisions, D; for f and Dy for g. Moving to a
common refinement, we will achieve D; = D,.) By definition of infima
and suprema of a set of real numbers, for any subinterval I C [a, b], that
(pro a > 0)

inf(—f) = —sup f,infraf = ainf f,inf/(f +g) > inf f +infg
I
and for supremacy (we will swap inf a sup and rotate the last inequality).

By definition, upper, sums as a linear combination (with > 0 coefficients)
infim, or supreme,

S(_f7D)_S<_f7D) :_S(f7D>_<_S<f7D)) :S(va)_S(faD) <,
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and

S(f+9,D)=s(f+9.D) < (5(f,D)+5(g,D)) — (s(f, D) + s(g, D))
= S(f7D>_S(f7D>+S(g7D)_S(gaD)
< 2.

So, according to the integrity criterion, i —f, af, f + g € R(a,b). More-
over, accordlngb to the inequalities between the lower and upper sums and
the integral, [ f € [s(f, D), S(f, D)] and the same for g. So f;(—f) lies

in the interval
(s(—f. D), S(~f,D)] = [~S(f. D), —s(f. D)] > — / f

and the numbers fab(—f) a — f:f differ by less than €. So ff(—f) =
— f: f. Similarly fab af lie in the interval

b
s(af. D), S(af. D)) = [as(f. D), aS(f. D)] 3 a / s

with a maximum length of ae, so fab af =« fab f. Finally, fab(f +g¢)isin
the interval

s(f+9. D), S(f+9, D)) C [s(f. D)+s(g. D), S(f. D)+5(g, D / et /

with a length of less than 2, and so fab(f +g) = fabf + f:g

(ii) Let’s go to line [ as a function of integration limits. First, we slightly
extend the definition of fab f:

/ f = Oaint) f / fmboxproa > b

For f : [a,b] — R and subinterval I C [a,b] we denote the f function

narrowing to I in the following statement for simplicity again as f.
O

If a > b, we define f:f:—fbaf

Corollary 20 ([ over a cycle is 0). Let a,b,c € R, d = min(a,b,c), e =
max(a,b,c) and f € R(d,e). Then the following three integrals exist and

satisfy .
[+ [+ [ =0
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