
Lecture 4 (13.3.2018)
(translated and slightly adapted from lecture notes by Martin Klazar)

Theorem 14 (Integrability criterion). Let f : [a, b]→ R. Then

f ∈ R(a, b) ⇐⇒ ∀ε > 0 ∃D : 0 ≤ S(f,D)− s(f,D) < ε.

In other words, f has Riemann integral if and only if for every ε > 0 there
exists a partition of D of interval [a, b] such that its upper Riemann sum is
greater than the corresponding lower Riemann sum by less than ε.

Proof. ” ⇒ ” We assume that f has R. integral on [a, b] , i.e.,
∫ b
a
f =

∫ b
a
f =∫ b

a
f ∈ R. Let ε > 0 be given. By definition of the lower and upper integrals,

there are partitions E1 and E2 so that

s(f, E1) >

∫ b

a

f − ε

2
=

∫ b

a

f − ε

2
a S(f, E2) <

∫ b

a

f +
ε

2
=

∫ b

a

f +
ε

2
.

According to the lemma, these inequalities also apply after replacing E1 and
E2 with their joint refinement D = E1∪E2. Summing up both inequalities we
will get

S(f,D)− s(f,D) <

∫ b

a

f +
ε

2
+
(
−
∫ b

a

f +
ε

2

)
= ε .

” ⇐ ” Given ε > 0 we take a partition of D satisfying the condition.
According to the definition of the lower and upper integral we get∫ b

a

f ≤ S(f,D) < s(f,D) + ε ≤
∫ b

a

f + ε, thus

∫ b

a

f −
∫ b

a

f < ε .

This inequality is valid for every ε > 0, so according to the previous statement

we have
∫ b
a
f =

∫ b
a
f ∈ R. Then f has R. integral on [a, b].

We state another criterion of integrability without a proof.

Theorem 15 (Lebesgue characterisation of integrable functions). A function
f : [a, b]→ R has Riemann integral, if and only if it is bounded and the set of
its point of discontinuity on [a, b] has measure zero.

We define sets of measure zero as follows. A set M ⊂ R has (Lebesgue)
measure zero, if for every ε > 0, there exists a sequence of intervals I1, I2, . . .
such that

∞∑
i=1

|Ii| < ε and M ⊂
∞⋃
i=1

Ii .

In other words, M can be covered by intervals of arbitrarily small length.
Simple properties of sets with measure zero:
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• Every countable or finite set has measure zero.

• Every subset of a set of measure zero has measure zero.

• If each of countably many sets A1, A2, . . . has measure zero, their union

∞⋃
n=1

An

has measure zero.

• Interval of positive length does not have measure zero.

For example, the set of rational numbers Q has measure zero. There exist sets
of measure which are uncountable, classical example is Cantor set.

Theorem 16 (Monotonicity ⇒ integrability). If f : [a, b] → R is non-
decreasing or non-increasing on [a, b] then it is Riemann integrable.

Proof. Assume that f is non-decreasing (for non-increasing f the argument
is similar). For each subinterval [α, β] ⊂ [a, b] we have inf [α,β] f = f(α) and
sup[α,β] f = f(β). Given δ > 0, we take any division D = (a0, a1, . . . , ak−1)
interval [a, b] with λ(D) < δ and

S(f,D)− s(f,D) =
k∑
i=1

(ai − ai−1)(sup
Ii

f − inf
Ii
f)

=
k∑
i=1

(ai − ai−1)(f(ai)− f(ai−1))

≤ δ
k∑
i=1

(f(ai)− f(ai−1))

= δ(f(ak)− f(a0)) = δ(f(b)− f(a)) .

This can be made small by reducing δ, in particular, given ε, choosing δ <
ε/(f(b)− f(a)) ensures that S(f,D)− s(f,D) < ε. According to the integra-
bility criterion, then f ∈ R(a, b).

Continuity is also sufficient for integrability. But we need to introduce its
stronger form. Let us say that the function f : I → R, where I is the interval,
is uniformly continuous (on I) if

∀ε > 0 ∃δ > 0 : x, x′ ∈ I, |x− x′| < δ ⇒ |f(x)− f(x′)| < ε .

That is, we require that single δ > 0 works for all pairs of points x, x′ in I.
In the usual definition of continuity can δ depend on x. Uniform continuity
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implies continuity, but the reverse does not generally apply. For example,
function

f(x) = 1/x : I = (0, 1)

is continuous on i, but not uniformly continuous: f(1/(n + 1))− f(1/n) = 1,
although 1/(n + 1) − 1/n → 0 for n → ∞. On a compact interval I, which
is the interval of type [a, b] where −∞ < a ≤ b < +∞, types of continuity
coincide.

Theorem 17 (On compact: continuity⇒ uniform continuity). If the function
f : [a, b]→ R on the interval [a, b] is continuous, it is uniformly continuous.

Proof. For contradiction we assume that f : [a, b]→ R is continuous at every
point of the interval [a, b] (i.e. one sided in the end points of a a b), but that it
is not uniformly continuous to [a, b]. Negation of a uniform continuity means,
that

∃ε > 0 ∀δ > 0 ∃x, x′ ∈ I : |x− x′| < δ & |f(x)− f(x′)| ≥ ε .

Which means that there are points xn, x
′
n ∈ [a, b] for δ = 1/n and n = 1, 2, . . .

that |xn − x′n| < 1/n, but |f(xn)− f(x′n)| ≥ ε. Then, by Bolzano–Weierstrass
theorem there exist subsequences of (xn) and (x′n) which both converge and
(inevitably) have the same point α from [a, b]. (This theorem asserts that there
exists a sequence of indices k1 < k2 < . . . such that (xkn) converges. Again
by the theorem there exists sequence of indices of l1 < l2 < . . . that (x′kln )

converges. The sequence (xkln ) remains convergent, because it is a subsequence
of sequence (xkn). Because |xkln − x

′
kln
| < 1/kln ≤ 1/n→ 0,

lim
n→∞

xkln = lim
n→∞

x′kln = α .

To avoid multilevel indices, we rename xkln to xn and x′kln to x′n.) By Heine
definition of limit, continuity of f in α and arithmetic of limits, we have

0 = f(α)− f(α) = lim f(xn)− lim f(x′n) = lim(f(xn)− f(x′n)) .

This contradicts that |f(xn)− f(x′n)| ≥ ε for every n.

Theorem 18 (Continuity ⇒ integrability). If f : [a, b] → R on the interval
[a, b] is continuous then it is Riemann integrable.

Proof. Let f be continuous on [a, b]. Let ε > 0 be given. By the previous
statement, we take δ > 0 that |f(x)− f(x′)| < ε when x, x′ ∈ [a, b] are closer
than δ. Then

sup
[α,β]

f − inf
[α,β]

f ≤ ε

for each subinterval [α, β] ⊂ [a, b] less than δ (why?). We take any partition
D = (a0, a1, . . . , ak−1) of interval [a, b] with λ(D). We have that

S(f,D)− s(f,D) =
k∑
i=1

(ai − ai−1)(sup
Ii

f − inf
Ii
f)
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≤
k∑
i=1

(ai − ai−1)ε

= ε(ak − a0) = ε(b− a) .

As in the previous theorem, the ε(b − a) can be made small by reducing ε.
Thus, according to the integrability criterion, f ∈ R(a, b).

Theorem 19 (Linearity of Riemann integral).

(i) (linearity w.r.to integrand) Let f, g ∈ R(a, b) be two functions having R.
integrals and α, β ∈ R. Then

αf + βg ∈ R(a, b) and

∫ b

a

(αf + βg) = α

∫ b

a

f + β

∫ b

a

g .

(ii) (linearity w.r. to boundaries) Let f : [a, b] → R be a function and
c ∈ (a, b). Then

f ∈ R(a, b) ⇐⇒ f ∈ R(a, c) & f ∈ R(c, b)

and, if these integrals are defined,

∫ b

a

f =

∫ c

a

f +

∫ b

c

f .

Proof. (i) Just examine three special cases of linear combinations, namely
−f , αf s α ≥ 0 and f+g, the others are from these are already deduced.
Either given ε > 0. According to the integrity criterion, there is a division
of the D interval [a, b] that

S(f,D)− s(f,D), S(g,D)− s(g,D).

(Surely we have two such divisions, D1 for f and D2 for g. Moving to a
common refinement, we will achieve D1 = D2.) By definition of infima
and suprema of a set of real numbers, for any subinterval I ⊂ [a, b], that
(pro α ≥ 0)

inf
I

(−f) = − sup
I
f, infIαf = α inf

I
f, infI(f + g) ≥ inf

I
f + inf

I
g

and for supremacy (we will swap inf a sup and rotate the last inequality).
By definition, upper, sums as a linear combination (with > 0 coefficients)
infim, or supreme,

S(−f,D)− s(−f,D) = −s(f,D)− (−S(f,D)) = S(f,D)− s(f,D) < ε ,
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and

S(f + g,D)− s(f + g,D) ≤ (S(f,D) + S(g,D))− (s(f,D) + s(g,D))

= S(f,D)− s(f,D) + S(g,D)− s(g,D)

< 2ε .

So, according to the integrity criterion, i −f, αf, f + g ∈ R(a, b). More-
over, according to the inequalities between the lower and upper sums and
the integral,

∫ b
a
f ∈ [s(f,D), S(f,D)] and the same for g. So

∫ b
a
(−f) lies

in the interval

[s(−f,D), S(−f,D)] = [−S(f,D),−s(f,D)] 3 −
∫ b

a

f

and the numbers
∫ b
a
(−f) a −

∫ b
a
f differ by less than ε. So

∫ b
a
(−f) =

−
∫ b
a
f . Similarly

∫ b
a
αf lie in the interval

[s(αf,D), S(αf,D)] = [αs(f,D), αS(f,D)] 3 α
∫ b

a

f

with a maximum length of αε, so
∫ b
a
αf = α

∫ b
a
f . Finally,

∫ b
a
(f + g) is in

the interval

[s(f+g,D), S(f+g,D)] ⊂ [s(f,D)+s(g,D), S(f,D)+S(g,D)] 3
∫ b

a

f+

∫ b

a

g

with a length of less than 2ε, and so
∫ b
a
(f + g) =

∫ b
a
f +

∫ b
a
g.

(ii) Let’s go to line
∫

as a function of integration limits. First, we slightly

extend the definition of
∫ b
a
f :∫ a

a

f := 0aintbaf := −
∫ a

b

fmboxproa > b

For f : [a, b] → R and subinterval I ⊂ [a, b] we denote the f function
narrowing to I in the following statement for simplicity again as f .

If a > b, we define
∫ b
a
f = −

∫ a
b
f .

Corollary 20 (
∫

over a cycle is 0). Let a, b, c ∈ R, d = min(a, b, c), e =
max(a, b, c) and f ∈ R(d, e). Then the following three integrals exist and
satisfy ∫ b

a

f +

∫ c

b

f +

∫ a

c

f = 0 .
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