
Lecture 12 (22.5.2019)
(translated and slightly adapted from lecture notes by Martin Klazar)

Metric and topological spaces
Metric space is a structure formalizing distance. It is a pair (M,d) consist-

ing of M 6= ∅ and a function of two variables

d : M ×M → R,

called a metric, which satisfies the following three axioms:

• d(x, y) ≥ 0 (non-negativity) a d(x, y) = d(y, x) (symmetry),

• d(x, y) = 0 ⇐⇒ x = y and

• d(x, y) ≤ d(x, z) + d(z, y) (triangle inequality).

The non-negativity of the metric in a) does not have to be required, it
follows from axioms b) and c). Here are some examples of metric spaces.
Axioms a) and b) can usually be checked easily. Proving triangle inequality is
often more difficult.

Example 5. M = Rn a p ≥ 1 is a real number. At M we define dp(x, y)
metrics

dp(x, y) =

(
n∑

i=1

|xi − yi|p
)1/p

(x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn)). For n = 1 we get classical metrics
|x− y| to R and for p = 2, n ≥ 2 Euclidean metrics

d2(x, y) = ‖x− y‖ =
√

(x1 − y1)2 + (x2 − y2)2 + · · ·+ (xn − yn)2.

For p = 1, n ≥ 2 we get Manhattan metric

d1(x, y) =
n∑

i=1

|xi − yi|

and for p→∞ maximum metric

d∞(x, y) = max
1≤i≤n

|xi − yi| .

Example 6. For M we take a set of all bounded functions f : X → R defined
on the X set. At M then we have supremum metric

d(f, g) = sup
x∈X
|f(x)− g(x)| .
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Example 7. For a connected graph G = (M,E) with a set of vertices M , we
have a metric

d(u, v) = the number of edges on the shortest path in G joining vertices u and v

Example 8. Let A be a set (alphabet) and let M = Am be the set of strings
of length m over the alphabet A (u = a1a2 . . . am, v = b1b2 . . . bm). So called
Hamming Metric

d(u, v) = number of coordinates i, for which ai 6= bi .

It measures the degree of difference between the two words, i.e., the smallest
number of changes in the letters needed for converting u into v.

We will introduce a few basic concepts; with many we have already met in
Euclidean spaces. Let (M,d) be a metric space. Then

• (open) ball in M with centre a ∈ M and radius R 3 r > 0 is the set
B(a, r) = {x ∈M | d(a, x) < r};

• A ⊂M is open set if ∀a ∈ A ∃r > 0 : B(a, r) ⊂ A;

• A ⊂M is a closed set if M\A is an open set;

• A ⊂ M is a bounded set if there is a point a ∈ M and a radius r > 0
that A ⊂ B(a, r);

• A ⊂ M is a compact set if each sequence of points (an) ⊂ A has a
convergent subsequence, whose limit lies in A.

Convergence and limit are generalized from the real axis to the general metric
space in an obvious way: sequence (an) ⊂ M is convergent and has a limit
a ∈M , (we write limn→∞ an = a) when

∀ε > 0 ∃n0 : n > n0 ⇒ d(an, a) < ε

In other words, limn→∞ d(an, a) = 0 (we have converted it to the real sequence
limit).

We have already mentioned the properties of open sets: ∅ and M are open,
union of any system sets of open sets is an open set, and the intersection of
any finite system of open sets is an open set. By switching to the complement,
we have the dual properties of closed sets: ∅ and M are closed, the union of
any finite system of closed sets is a closed set, and the intersection of any set
system of closed sets is a closed set.

Theorem 51 (Characterisation of closed sets). A set A ⊂M is closed in M ,
if and only if the limit of every convergent sequence (an) ⊂ A belongs to A.
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Proof. Let A ⊂ M be a closed set and (an) ⊂ A a convergent sequence. If
limn→∞ an = a 6∈ A, there exists a radius r > 0 such that B(a, r) ⊂M\A. But
then d(an, a) ≥ r for every n, this contradicts that limn→∞ an = a. So a ∈ A.

Conversely, if the A ⊂M is not a closed set, there is a point a ∈M\A such
that for each radius r > 0 is B(a, r)∩A 6= ∅. We put r = 1/n, n = 1, 2, . . ., and
for each n choose a point an ∈ B(a, 1/n) ∩ A. Then (an) ⊂ A is a convergent
sequence with limn→∞ an = a, but a 6∈ A.

Topological spaces. Topological spaces are generalization of metric
spaces. The pair T = (X, T ), where X is the set and T is a system of its
subsets is a topological space if T has the following properties:

(i) ∅, X ∈ T ,

(ii)
⋃
U ∈ T for every subsystem U ⊂ T , and

(iii)
⋂
U ∈ T for every finite subsystem U ⊂ T .

Sets in the T system is called the open sets of the topological space T (their
complements to X are then closed sets of the T space). Example of topological
space are the open sets of each metric space. However, there are plenty of
topological spaces, which are not metrizable (i.e. do not come from metric
space).

Continuous mappings. Let (M,d) and (N, e) be two metric spaces. We
say that a mapping

f : M → N

is continuous, if

∀a ∈M, ε > 0 ∃δ > 0 : b ∈M,d(a, b) < δ ⇒ e(f(a), f(b)) < ε .

.

Theorem 52 (Topological definition of continuity). A mapping f : M → N
between metric spaces is continuous, if and only if for every open set B ⊂ N
is its preimage f−1(B) = {x ∈M | f(x) ∈ B} open set in M .

Theorem 53 (Compact ⇒ closed and bounded). Each compact set in the
metric space is closed and bounded.

Proof. Let A ⊂ M be a subset in metric space (M,d). When A is not closed,
there is convergence the sequence (an) ⊂ A, whose limit a does not belong
to A. Each subsequence of (an) is also convergent and has the same limit a.
This means that no subsequence (an) is has its limit within A (the limit is
determined unambiguously) and thus A is not compact.

When A is not bounded, it is not contained in any B(a, r) balls and we
can easily build a sequence (an) ⊂ A with the property that d(am, an) ≥ 1 for
every two indices 1 ≤ m < n. This property contradicts sequence convergence
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(why?) every subsequence of (an)has this property , so (an) has no convergent
subsequence. A is not compact again.

We define a sequence (an) ⊂ A with the specified property inductively.
We take the first point a1 ∈ A arbitrarily. Assume that we have already
constructed points a1, a2, . . . , ak of A, such that the distance of each pair is at
least 1. Then we take any sphere B(a, r), which contains all of these points
(each finite set is bounded) and consider the B(a, r + 1) sphere. Since A is
not bounded, there exists point ak+1 ∈ A that is not in B(a, r+ 1). According
to the triangle inequality, d(ak+1, x) ≥ 1 for every point x ∈ B(a, r) (why?).
Thus ak+1 has distance at least 1 from each point a1, a2, . . . , ak a a1, a2, . . . , ak
we can extend to a1, a2, . . . , ak, ak+1. Thus defined sequence ak, k = 1, 2, . . .
has the required property.

Probably the simplest example showing that the converse does not hold in
general is the following. Let (M,d) be a trivial metric space, where d(x, y) = 1
for x 6= y a d(x, x) = 0 (verify that this is a metric space), and the M set is
infinite. Then each the sequence (an) ⊂ M , where an are mutually different
points (for the existence of such a sequence we need infinity M) satisfies that
d(am, an) ≥ 1 for every two indices 1 ≤ m < n. As we know, such a sequence
has no convergent subsequence and therefore M is not a compact set. But M
is a closed set and it is also bounded because it is a subset of B(a, 2) for any
point a ∈M .

As we have already mentioned, the converse holds for the Euclidean spaces.

Theorem 54 (Closed and bounded ⇒ compact in Rk). Each closed and
bounded set in the Euclidean space Rk is compact.

Theorem 55 (Continuous function attains extremes on compact). Let f :
M → R be a continuous function from the metric space (M,d) into the Eu-
clidean space R1 and M is compact. Then f has minimum and maximum on
M .
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