Lecture 11 (15.5.2019)

(translated and slightly adapted from lecture notes by Martin Klazar)
Implicit functions. As we know from linear algebra, system of n linear equations with n variables $a_{i, 1} y_{1}+a_{i, 2} y_{2}+\ldots+a_{i, n} y_{n}+b_{i}=0, i=1,2, \ldots, n$, where $a_{i, j} \in \mathbb{R}$ are given constants and $\operatorname{det}\left(a_{i, j}\right)_{i, j=1}^{n} \neq 0$, has for each choice of n constants b_{i} unique solution $y_{1}, y_{2}, \ldots, y_{n}$. Moreover, this solution y_{j} is a homogenous linear functions of b_{i}, that is: $y_{j}\left(b_{1}, b_{2}, \ldots, b_{n}\right)=c_{j, 1} b_{1}+c_{j, 2} b_{2}+$ $\ldots+c_{j, n} b_{n}, j=1,2, \ldots, n$, for some constants $c_{j, i} \in \mathbb{R}$ (this follows from Crammer's rule).

We now generalize this result to the situation when the linear functions are replaced by general functions. We will consider a system of n equations with $m+n$ variables

$$
\begin{aligned}
F_{1}\left(x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{n}\right) & =0 \\
F_{2}\left(x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{n}\right) & =0 \\
& \vdots \\
F_{n}\left(x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{n}\right) & =0
\end{aligned}
$$

where F_{i} are real functions defined on some neighborhood of a point $\left(\bar{x}_{0}, \bar{y}_{0}\right)$ in \mathbb{R}^{m+n}, where $\bar{x}_{0} \in \mathbb{R}^{m}$ and $\bar{y}_{0} \in \mathbb{R}^{n}$, is a solution of the system, that is $F_{1}\left(\mathbf{x}_{0}, \mathbf{y}_{0}\right)=F_{2}\left(\mathbf{x}_{0}, \mathbf{y}_{0}\right)=\ldots=F_{n}\left(\mathbf{x}_{0}, \mathbf{y}_{0}\right)=0$. We shall see that under certain conditions it is possible to express variables $y_{1}, y_{2}, \ldots, y_{n}$ as functions $y_{i}=f_{i}\left(x_{1}, x_{2}, \ldots, x_{m}\right)$ of variables $x_{1}, x_{2}, \ldots, x_{m}$ on some neighborhood of x_{0}. Even in simplest cases we cannot expect to have necessarily a solution, not to speak of a unique one. Consider example the following single equation

$$
F(x, y)=x^{2}+y^{2}-1=0
$$

For $|x|>1$ there is no y with $f(x, y)=0$. For $\left|x_{0}\right|<1$, we have in a sufficiently small open interval containing x_{0} two solutions

$$
f(x)=\sqrt{1-x^{2}} \text { and } g(x)=-\sqrt{1-x^{2}}
$$

This is better, but we have two values in each point, contradicting the definition of a function. To achieve uniqueness, we have to restrict not only the values of x, but also the values of y to an interval $\left(y_{0}-\Delta, y_{0}+\Delta\right)$ (where $\left.F\left(x_{0}, y_{0}\right)=0\right)$. That is, if we have a particular solution $\left(x_{0}, y_{0}\right)$ we have a "window"

$$
\left(x_{0}-\delta, x_{0}+\delta\right) \times\left(y_{0}-\Delta, y_{0}+\Delta\right)
$$

through which we see a unique solution.
But in our example there is also the case $\left(x_{0}, y_{0}\right)=(1,0)$, where there is a unique solution, but no suitable window as above, since in every neighborhood of $(1,0)$, there are no solutions for any value x slightly bigger and two solutions for value x slightly smaller.

Theorem 48 (Implicit function Theorem.). Let $F(x, y)$ be a function of $n+1$ variables defined in a neighbourhood of a point $\left(\mathbf{x}_{0}, y_{0}\right)$. Let F have continuous partial derivatives up to the order $p \geq 1$ and let

$$
F\left(\mathbf{x}_{0}, y_{0}\right)=0 \text { and }\left|\frac{\partial F}{\partial y}\left(\mathbf{x}_{0}, y_{0}\right)\right| \neq 0 .
$$

Then there exist $\delta>0$ and $\Delta>0$ such that for every \mathbf{x} with $\left\|\mathbf{x}-\mathbf{x}_{0}\right\|<\delta$ there exists precisely one y with $\left|y-y_{0}\right|<\Delta$ such that

$$
F(\mathbf{x}, y)=0 .
$$

Furthermore, if we write $y=f(\mathbf{x})$ for this unique solution y, then the function

$$
f: B(\mathbf{x}, \delta) \rightarrow \mathbb{R}
$$

has continuous partial derivatives up to the order p. Moreover,

$$
\frac{\partial f}{\partial x_{i}}(\mathbf{x})=-\frac{\frac{\partial F}{\partial x_{i}}(\mathbf{x}, f(\mathbf{x}))}{\frac{\partial F}{\partial y}(\mathbf{x}, f(\mathbf{x}))}
$$

for every $i=1, \ldots n$.
We will not prove this theorem, however, we show how to derive the formula for partial derivatives of the implicit function f, assuming they exist.

Since we have

$$
0 \equiv F(\mathbf{x}, f(\mathbf{x})) ;
$$

taking a derivative of both sides (using the Chain Rule) we obtain.

$$
0=\frac{\partial F}{\partial x_{i}}(\mathbf{x}, f(\mathbf{x}))+\frac{\partial F}{\partial y}(\mathbf{x}, f(\mathbf{x})) \cdot \frac{\partial f}{\partial x_{i}}(\mathbf{x})
$$

From this, we can express $\frac{\partial f}{\partial x_{i}}(\mathbf{x})$. Differentiating further, we obtain inductively linear equations from which we can compute the values of all the derivatives guaranteed by the theorem.

For more than a system of several functions, we can apply the previous theorem inductively, eliminating variables one by one.

Theorem 49 (Implicit functions). Let

$$
F=\left(F_{1}, F_{2}, \ldots, F_{n}\right): W \rightarrow \mathbb{R}^{n}
$$

be a mapping defined on a neighborhood $W \subset \mathbb{R}^{m+n}$ of a point $\left(\mathbf{x}_{0}, \mathbf{y}_{0}\right)$, where $\mathbf{x}_{0} \in \mathbb{R}^{m}$ and $\mathbf{y}_{0} \in \mathbb{R}^{n}$, satisfying the following conditions:

1. $F_{i}=F_{i}(\mathbf{x}, \mathbf{y}) \in \mathcal{C}^{1}(W)$ pro $1 \leq i \leq n$.
2. $F_{i}\left(\mathbf{x}_{0}, \mathbf{y}_{0}\right)=0$ pro $1 \leq i \leq n$.
3. $\operatorname{det}\left(\left(\begin{array}{cccc}\frac{\partial F_{1}}{\partial y_{1}} & \frac{\partial F_{1}}{\partial y_{2}} & \cdots & \frac{\partial F_{1}}{\partial y_{n}} \\ \vdots & \vdots & \cdots & \vdots \\ \frac{\partial F_{n}}{\partial y_{1}} & \frac{\partial F_{n}}{\partial y_{2}} & \cdots & \frac{\partial F_{n}}{\partial y_{n}}\end{array}\right)\left(\mathbf{x}_{0}, \mathbf{y}_{0}\right)\right) \neq 0$.

Then there exist neighborhoods $U \subset \mathbb{R}^{m}$ and $V \subset \mathbb{R}^{n}$ of \mathbf{x}_{0} a \mathbf{y}_{0} such that $U \times V \subset W$ and for every $\mathbf{x} \in U$ there exists exactly one $\mathbf{y} \in V$ satisfying $F_{i}(\mathbf{x}, \mathbf{y})=0$ for $1 \leq i \leq n$. In other words, there exist a mapping $f=$ $\left(f_{1}, f_{2}, \ldots, f_{n}\right): U \rightarrow V$ such that

$$
\forall(\mathbf{x}, \mathbf{y}) \in U \times V: F(\mathbf{x}, \mathbf{y})=\overline{0} \Longleftrightarrow \mathbf{y}=f(\mathbf{x})
$$

Moreover f_{i} is $\mathcal{C}^{1}(U)$ for every $i=1, \ldots n$.
Constrained extrema. From Implicit functions theorem one can derive a necessary condition for local extrema on sets defined by a system of equations.

Let $U \subset \mathbb{R}^{m}$ be an open set and let

$$
f, F_{1}, \ldots, F_{n}: U \rightarrow \mathbb{R}
$$

be functions from $\mathcal{C}^{1}(U)$, where $n<m$. We wish to find extrema of f on a set

$$
H=\left\{\mathbf{x} \in U \mid F_{1}(\mathbf{x})=F_{2}(\mathbf{x})=\cdots=F_{n}(\mathbf{x})=0\right\}
$$

Such a set usually does not have any internal points. Example of such a set is a unit sphere in \mathbb{R}^{m} :

$$
\left\{\mathbf{x} \in \mathbb{R}^{m} \mid x_{1}^{2}+x_{2}^{2}+\ldots+x_{m}^{2}-1=0\right\}
$$

Theorem 50 (Lagrange multipliers). Let $U \subset \mathbb{R}^{m}$ be an open set,

$$
f, F_{1}, \ldots, F_{n}: U \rightarrow \mathbb{R}
$$

be functions from $\mathcal{C}^{1}(U)$, where $n<m$ and let

$$
H=\left\{\mathbf{x} \in U \mid F_{1}(\mathbf{x})=F_{2}(\mathbf{x})=\cdots=F_{n}(\mathbf{x})=0\right\}
$$

Let $\mathbf{a} \in H$. If $\nabla F_{1}(\mathbf{a}), \ldots, \nabla F_{n}(\mathbf{a})$ are linearly independent and $\nabla f(\mathbf{a})$ is not their linear combination, then f does not have a local extremum with respect to H in \mathbf{a}.

Equivalently: if $\nabla F_{1}(\mathbf{a}), \ldots, \nabla F_{n}(\mathbf{a})$ are linearly independent and f has local extremum in a with respect to H, then there exist reals $\lambda_{1}, \ldots, \lambda_{n} \in \mathbb{R}$, called Lagrange multipliers, such that

$$
\nabla f(\mathbf{a})-\sum_{i=1}^{n} \lambda_{i} \nabla F_{i}(\mathbf{a})=\overline{0} .
$$

that is,

$$
\frac{\partial f}{\partial x_{j}}(\mathbf{a})-\lambda_{1} \frac{\partial F_{1}}{\partial x_{j}}(\mathbf{a})-\cdots-\lambda_{n} \frac{\partial F_{n}}{\partial x_{j}}(\mathbf{a})=0
$$

for every $1 \leq j \leq m$.

