Lecture 11 (15.5.2019)
(translated and slightly adapted from lecture notes by Martin Klazar)

Implicit functions. As we know from linear algebra, system of n linear
equations with n variables a; 191 +a;2y2 + ... + @i nyn +b; =0,0=1,2,... n,
where a;; € R are given constants and det(a,;)7,—, # 0, has for each choice
of n constants b; unique solution ¥, ¥, ..., y,. Moreover, this solution y; is a
homogenous linear functions of b;, that is: y;(b1,ba, ..., b,) = ¢j1b1 + ¢jobs +
oo+ Cinby, § = 1,2,...,n, for some constants ¢;; € R (this follows from
Crammer’s rule).

We now generalize this result to the situation when the linear functions are
replaced by general functions. We will consider a system of n equations with
m + n variables

Fl(xly--'vxm7y17"'7yn)
F2(5517~~-;xm73/17---7yn) =0

Fn(xlw"vxmayla"'?yn) = 07

where F; are real functions defined on some neighborhood of a point (Zg, 9o)
in R™™" where 7, € R™ and §jy € R", is a solution of the system, that is
Fi(x0,¥0) = F»(X0,¥0) = ... = F,(X0,y0) = 0. We shall see that under
certain conditions it is possible to express variables vy, ys, ..., ¥y, as functions
y; = fi(x1, 22, ..., x,) of variables x1, xs, ..., x,, on some neighborhood of x.
Even in simplest cases we cannot expect to have necessarily a solution, not to
speak of a unique one. Consider example the following single equation

F(z,y)=2*+y*—1=0.

For |z| > 1 there isno y with f(x,y) = 0. For |zy| < 1, we have in a sufficiently
small open interval containing xy two solutions

f(x) =+v1—2?and g(x) = —V1 — 22

This is better, but we have two values in each point, contradicting the definition
of a function. To achieve uniqueness, we have to restrict not only the values of
x, but also the values of y to an interval (yo — A, yo+A) (where F(zo,10) = 0).
That is, if we have a particular solution (zo,yo) we have a “window”

(o — 0,0 +0) X (Yo — A, 50 + A)

through which we see a unique solution.

But in our example there is also the case (xo,y9) = (1,0), where there is a
unique solution, but no suitable window as above, since in every neighborhood
of (1,0), there are no solutions for any value x slightly bigger and two solutions
for value x slightly smaller.
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Theorem 48 (Implicit function Theorem.). Let F(x,y) be a function of n+1
variables defined in a neighbourhood of a point (xo,vo). Let F' have continuous
partial derivatives up to the order p > 1 and let

or
F(x0,90) = 0 and ‘a—y<xO,yo> 40

Then there exist 6 > 0 and A > 0 such that for every x with ||x — Xg|| < ¢
there exists precisely one y with |y — yo| < A such that

F(x,y) =0.
Furthermore, if we write y = f(x) for this unique solution y, then the function
f:B(x,0) > R

has continuous partial deriwatives up to the order p. Moreover,

o o o (x, f(x))
O; & (x, f(x))

for everyi=1,...n.

We will not prove this theorem, however, we show how to derive the formula
for partial derivatives of the implicit function f, assuming they exist.
Since we have

0= F(x, f(x));
taking a derivative of both sides (using the Chain Rule) we obtain.
_OF oF of

0= 506 £+ 50 £60) - ().

From this, we can express %(X). Differentiating further, we obtain in-

ductively linear equations from which we can compute the values of all the
derivatives guaranteed by the theorem.

For more than a system of several functions, we can apply the previous
theorem inductively, eliminating variables one by one.

Theorem 49 (Implicit functions). Let
F= (Fl,FQ,...7Fn) W —R"

be a mapping defined on a neighborhood W C R™™ of a point (Xg,yo), where
Xo € R™ and yo € R", satisfying the following conditions:

1. F;=F(x,y) € C*(W) pro1<i<n.

2. Fi(x0,y0) =0 pro1l<i<n.
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8F1 6F1 8F1

yr dy2 T Oym
3. det( : oL (X0, ¥0)) # 0.
5 B o o

Then there exist neighborhoods U C R™ and V C R™ of Xg a yo such that
UxV CW and for every x € U there exists exactly one' y € V' satisfying
Fi(x,y) = 0 for 1 < i < n. In other words, there exist a mapping [ =

(fis fas-- oy o) U =V such that
Vix,y) eUxV: F(x,y) =0 < y = f(x).
Moreover f; is CY(U) for everyi=1,...n.
Constrained extrema. From Implicit functions theorem one can derive a

necessary condition for local extrema on sets defined by a system of equations.
Let U C R™ be an open set and let

fF,.. . F:U=R
be functions from C!(U), where n < m. We wish to find extrema of f on a set
H={xeU|F(x) =Fx) =--=F,(x)=0}.

Such a set usually does not have any internal points. Example of such a set is
a unit sphere in R™:

{xeR™ |2l +a3+...+22, —1=0}.
Theorem 50 (Lagrange multipliers). Let U C R™ be an open set,
fF,. .. F,:U—=R
be functions from C'(U), where n < m and let
H={xeU|Fi(x)=Fx)=-=F,(x)=0}.

Leta € H. If VFi(a),...,VE,(a) are linearly independent and V f(a) is not
their linear combination, then f does not have a local extremum with respect
to H in a.

FEquivalently: if VFi(a),...,VF,(a) are linearly independent and f has
local extremum in a with respect to H , then there exist reals Ay,..., \, € R,
called Lagrange multipliers, such that

Vf(a)— Z \iVFi(a)=0.

that s,
of OF, OF, .
8_xj(a) - )\18—%(3) — = A dz,; (a) =0

for every 1 < 5 < m.
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