
Lecture 11 (15.5.2019)
(translated and slightly adapted from lecture notes by Martin Klazar)

Implicit functions. As we know from linear algebra, system of n linear
equations with n variables ai,1y1 + ai,2y2 + . . .+ ai,nyn + bi = 0, i = 1, 2, . . . , n,
where ai,j ∈ R are given constants and det(ai,j)

n
i,j=1 6= 0, has for each choice

of n constants bi unique solution y1, y2, . . . , yn. Moreover, this solution yj is a
homogenous linear functions of bi, that is: yj(b1, b2, . . . , bn) = cj,1b1 + cj,2b2 +
. . . + cj,nbn, j = 1, 2, . . . , n, for some constants cj,i ∈ R (this follows from
Crammer’s rule).

We now generalize this result to the situation when the linear functions are
replaced by general functions. We will consider a system of n equations with
m+ n variables

F1(x1, . . . , xm, y1, . . . , yn) = 0

F2(x1, . . . , xm, y1, . . . , yn) = 0
...

Fn(x1, . . . , xm, y1, . . . , yn) = 0 ,

where Fi are real functions defined on some neighborhood of a point (x̄0, ȳ0)
in Rm+n, where x̄0 ∈ Rm and ȳ0 ∈ Rn, is a solution of the system, that is
F1(x0,y0) = F2(x0,y0) = . . . = Fn(x0,y0) = 0. We shall see that under
certain conditions it is possible to express variables y1, y2, . . . , yn as functions
yi = fi(x1, x2, . . . , xm) of variables x1, x2, . . . , xm on some neighborhood of x0.
Even in simplest cases we cannot expect to have necessarily a solution, not to
speak of a unique one. Consider example the following single equation

F (x, y) = x2 + y2 − 1 = 0.

For |x| > 1 there is no y with f(x, y) = 0. For |x0| < 1, we have in a sufficiently
small open interval containing x0 two solutions

f(x) =
√

1− x2 and g(x) = −
√

1− x2.

This is better, but we have two values in each point, contradicting the definition
of a function. To achieve uniqueness, we have to restrict not only the values of
x, but also the values of y to an interval (y0−∆, y0+∆) (where F (x0, y0) = 0).
That is, if we have a particular solution (x0, y0) we have a “window”

(x0 − δ, x0 + δ)× (y0 −∆, y0 + ∆)

through which we see a unique solution.
But in our example there is also the case (x0, y0) = (1, 0), where there is a

unique solution, but no suitable window as above, since in every neighborhood
of (1, 0), there are no solutions for any value x slightly bigger and two solutions
for value x slightly smaller.
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Theorem 48 (Implicit function Theorem.). Let F (x, y) be a function of n+ 1
variables defined in a neighbourhood of a point (x0, y0). Let F have continuous
partial derivatives up to the order p ≥ 1 and let

F (x0, y0) = 0 and

∣∣∣∣∂F∂y (x0, y0)

∣∣∣∣ 6= 0.

Then there exist δ > 0 and ∆ > 0 such that for every x with ||x − x0|| < δ
there exists precisely one y with |y − y0| < ∆ such that

F (x, y) = 0.

Furthermore, if we write y = f(x) for this unique solution y, then the function

f : B(x, δ)→ R

has continuous partial derivatives up to the order p. Moreover,

∂f

∂xi
(x) = −

∂F
∂xi

(x, f(x))
∂F
∂y

(x, f(x))

for every i = 1, . . . n.

We will not prove this theorem, however, we show how to derive the formula
for partial derivatives of the implicit function f , assuming they exist.

Since we have
0 ≡ F (x, f(x));

taking a derivative of both sides (using the Chain Rule) we obtain.

0 =
∂F

∂xi
(x, f(x)) +

∂F

∂y
(x, f(x)) · ∂f

∂xi
(x).

.
From this, we can express ∂f

∂xi
(x). Differentiating further, we obtain in-

ductively linear equations from which we can compute the values of all the
derivatives guaranteed by the theorem.

For more than a system of several functions, we can apply the previous
theorem inductively, eliminating variables one by one.

Theorem 49 (Implicit functions). Let

F = (F1, F2, . . . , Fn) : W → Rn

be a mapping defined on a neighborhood W ⊂ Rm+n of a point (x0,y0), where
x0 ∈ Rm and y0 ∈ Rn, satisfying the following conditions:

1. Fi = Fi(x,y) ∈ C1(W ) pro 1 ≤ i ≤ n.

2. Fi(x0,y0) = 0 pro 1 ≤ i ≤ n.
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3. det(


∂F1

∂y1

∂F1

∂y2
. . . ∂F1

∂yn

...
... · · · ...

∂Fn

∂y1
∂Fn

∂y2
. . . ∂Fn

∂yn

 (x0,y0)) 6= 0.

Then there exist neighborhoods U ⊂ Rm and V ⊂ Rn of x0 a y0 such that
U × V ⊂ W and for every x ∈ U there exists exactly one y ∈ V satisfying
Fi(x,y) = 0 for 1 ≤ i ≤ n. In other words, there exist a mapping f =
(f1, f2, . . . , fn) : U → V such that

∀(x,y) ∈ U × V : F (x,y) = 0 ⇐⇒ y = f(x) .

Moreover fi is C1(U) for every i = 1, . . . n.

Constrained extrema. From Implicit functions theorem one can derive a
necessary condition for local extrema on sets defined by a system of equations.

Let U ⊂ Rm be an open set and let

f, F1, . . . , Fn : U → R

be functions from C1(U), where n < m. We wish to find extrema of f on a set

H = {x ∈ U | F1(x) = F2(x) = · · · = Fn(x) = 0} .

Such a set usually does not have any internal points. Example of such a set is
a unit sphere in Rm:

{x ∈ Rm | x21 + x22 + . . .+ x2m − 1 = 0} .

Theorem 50 (Lagrange multipliers). Let U ⊂ Rm be an open set,

f, F1, . . . , Fn : U → R

be functions from C1(U), where n < m and let

H = {x ∈ U | F1(x) = F2(x) = · · · = Fn(x) = 0} .

Let a ∈ H. If ∇F1(a), . . . ,∇Fn(a) are linearly independent and ∇f(a) is not
their linear combination, then f does not have a local extremum with respect
to H in a.

Equivalently: if ∇F1(a), . . . ,∇Fn(a) are linearly independent and f has
local extremum in a with respect to H , then there exist reals λ1, . . . , λn ∈ R,
called Lagrange multipliers, such that

∇f(a)−
n∑

i=1

λi∇Fi(a) = 0 .

that is,
∂f

∂xj
(a)− λ1

∂F1

∂xj
(a)− · · · − λn

∂Fn

∂xj
(a) = 0

for every 1 ≤ j ≤ m.
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