
Lecture 10 (24.4.2019)
(translated and adapted from lecture notes by Martin Klazar)

Partial derivatives of higher orders
If the f : U → R function defined on a neighborhood U ⊂ Rm of a point a

has a partial derivative F = ∂fxi in each point U and this function F : U → R
has at a the partial derivative ∂Fxj(a), we say that f has a partial derivative
at the point a of the second order with respect to the variables xi and xj and
we denote it

∂2f

∂xj∂xi
(a)

or shortly by ∂i∂jf(a).
Similarly, we define higher order partial derivatives: if f = f(x1, x2, ldots, xm)

has partial derivative (i1, i2, . . . , ik−1, j ∈ {1, 2, . . . ,m})

F =
∂k−1f

∂xik−1
∂xik−2

. . . ∂xi1
(x)

at every point x inU and we say that f has partial derivative of order k with
respect to the variables xi1 , . . . , xik−1

, xj in point a and we denote its value by

∂kf

∂xj∂xik−1
. . . ∂xi1

(a) .

In general, order of variables in higher order derivatives matters. You can
verify yourself that f : R2 → R,

f(x, y) =

{
xy(x2−y2)
x2+y2

pro x2 + y2 6= 0

0 pro x2 + y2 = 0 ,

has different mixed (i.e., with respect to two different variables) second order
partial derivatives in the origin.

∂2f

∂x∂y
(0, 0) = 1 a

∂2f

∂y∂x
(0, 0) = −1 .

However, the order does not matter if the partial derivatives are continuous.

Theorem 43 (Usually ∂x∂yf = ∂y∂xf). Let f : U → R be a function with
second order partial derivatives ∂j∂if a ∂i∂jf , i 6= j on a neighborhood U ⊂ Rm

of a point a which are continuous in a. Then

∂j∂if(a) = ∂i∂jf(a) .
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Proof. We prove the statement for m = 2, for m > 2, the proof would be
analogous but more tedious. Without loss of generality, we may assume that
a = o = (0, 0). By continuity of the partial derivatives in the origin, it
is enough to find for arbitrarily small h > 0 two points σ, τ in the square
[0, h]2 satisfying ∂x∂yf(σ) = ∂y∂xf(τ). Then, for h → 0+ , σ, τ → o and
from a limit argument and continuity of the partial derivatives we get that
∂x∂yf(o) = ∂y∂xf(o).

Given h, we find σ and τ as follows. We denote the corners of the square
a = (0, 0), b = (0, h), c = (h, 0), d = (h, h) and we consider a value f(d) −
f(b)− f(c) + f(a). It can be expressed in two different ways:

f(d)− f(b)− f(c) + f(a) = (f(d)− f(b))− (f(c)− f(a)) = ψ(h)− ψ(0)

= (f(d)− f(c))− (f(b)− f(a)) = φ(h)− φ(0) ,

where
ψ(t) = f(h, t)− f(0, t) and φ(t) = f(t, h)− f(t, 0) .

We have that ψ′(t) = ∂yf(h, t) − ∂yf(0, t) and φ′(t) = ∂xf(t, h) − ∂xf(t, 0).
Lagrange mean value theorem gives two expresions

f(d)− f(b)− f(c) + f(a) = ψ′(t0)h = (∂yf(h, t0)− ∂yf(0, t0))h

= φ′(s0)h = (∂xf(s0, h)− ∂xf(s0, 0))h ,

where 0 < s0, t0 < h are intermediate points. Applying the theorem once more
on differences of partial derivatives of f , we obtain the following

f(d)− f(b)− f(c) + f(a) = ∂x∂yf(s1, t0)h
2 = ∂y∂xf(s0, t1)h

2, s1, t1 ∈ (0, h) .

Points σ = (s1, t0) and τ = (s0, t1) belong to [0, h]2 and we have ∂x∂yf(σ) =
∂y∂xf(τ) (since both sides equal to (f(d)− f(b)− f(c) + f(a))/h2).

For an open set U ⊂ Rm we denote by Ck(U) the set of functions f : U →
R, such that all their partial derivatives of order up to k (inclusive) (exist and)
are continuous on U .

Corollary 44 (Reordering partial derivatives). For every function f = f(x1, x2, . . . , xm)
from Ck(U) values of its partial derivatives up to order k do not depend on the
order of variables—for l ≤ k and a ∈ U it holds that

∂lf

∂xil∂xil−1
. . . ∂xi1

(a) =
∂lf

∂xjl∂xjl−1
. . . ∂xj1

(a) ,

whenever (i1, . . . , il) and (j1, . . . , jl) differ only by permutation of the elements.

Proof. (idea) If a sequence v = (j1, . . . , jl) is a permutation of the sequence
u = (i1, . . . , il), one can turn u into v only by swapping consecutive pairs of
elements (in a bubble sort like manner). Then the equality of partial derivatives
follows from the previous theorem.
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Since only the multiset of variables matters in case of continuous partial
derivatives, we can more briefly write ∂x2 instead of ∂x∂x. For instance, for f
from C5(U) on U we have

∂5f

∂y ∂x ∂y ∂y ∂z
=

∂5f

∂y2 ∂x ∂z ∂y
=

∂5f

∂x ∂z ∂y3
=

∂5f

∂z ∂y3 ∂x
.

Local extrema of multivariate functions
Extrema of the multivariate functions are defined as follows. A function

f : U → R, where U ⊂ Rm is an open neighborhood of a point a, has in a

• strict local minimum, if there exists δ > 0, such that 0 < ‖x− a‖ < δ ⇒
f(x) > f(a),

• (non-strict) local minimum, if there exists δ > 0, such that 0 < ‖x−a‖ <
δ ⇒ f(x) ≥ f(a).

Strict and non-strict local minimum are defined analogously. A function f :
M → R, where M ⊂ Rm, has maximum on a set M if f(a) ≥ f(x) for every
x ∈M . Again, minimum is defined analogously.

Recall facts about extrema of function of a single variable from winter:

1. if f ′(a) 6= 0, f does not have a local extremum in a;

2. if f ′(a) = 0 and f ′′(a) > 0, f has a strict local minimum in a and

3. if f ′(a) = 0 and f ′′(a) < 0, f has a strict local maximum in a.

If f ′(a) = f ′′(a) = 0, we canot decide whether f has extremum in a or not
without further analysis. If f ′(a) = 0 (a is a ”suspicious” point), we cannot,
based on the value of the second derivative f ′′(a) rule out the existence of a
local extremum. As we shall see, this is not the case for multivariate functions.

In winter term, it was shown that continuous function has extrema on closed
bounded interval. This generalizes to multivariate functions. We say that a
set M ⊂ Rm is bounded, if there exists a real R > 0, such that M ⊂ B(0, R).
Recall thatM is closed, if its complement Rm\M is open. We say thatM ⊂ Rm

is compact, when it is closed and bounded.

Theorem 45 (Extrema on compact). Let M ⊂ Rm be a nonempty compact
set and f : M → R a continuous function on M . Then f attains minimum
and maximum on M .

For instance the unit sphere S = {x ∈ Rn| ||x|| = 1} in Rn, is a compact
set and thus every continuous function f : S → R attains minimum and
maximum on S.

We fist introduce some notation and recall some facts from linear algebra.
Let A = (ai,j) ∈ Rn×n be a real symmetric matrix (ai,j = aj,i) of size n× n. A
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quadratic form corresponding to this matrix is a function of n variables defined
as

PA(x1, x2, . . . , xn) = xAxT =
n∑

i,j=1

ai,jxixj : Rn → R ,

where x is a row vector (x1, x2, . . . , xn) and xT is the corresponding column
vector.

A matrix A is

• pozitive (negative) definite, if PA(x) > 0 (PA(x) < 0) for every x ∈
Rn\{0};

• pozitive (negative) semidefinite, if PA(x) ≥ 0 (PA(x) ≤ 0) for every
x ∈ Rn and

• indefinite, if it is none of the previous, that is, there exist x,y ∈ Rn such
that PA(x) > 0 and PA(y) < 0.

Hessian matrix Hf (a) of a function f in a point a, where U ⊂ Rm is an
open neighborhood of a and f : U → R is a function with all partial derivatives
of second order on U , is a metrix recording values of these derivatives in a:

Hf (a) =

(
∂2f

∂xi∂xj
(a)

)m

i,j=1

.

By theorem that ∂x∂y = ∂y∂x, if f ∈ C2(U) its Hessian matrix is symmetric.

Theorem 46 (Necessary condition for local extremum.). Let f : U → R,
where U ⊂ Rm is an open neighborhood of a. If ∇f(a) 6= 0, then f does not
have local extremum in a.

Proof. For i = 1, . . .m, define auxiliary functions of a single variable gi(h) =
f(a+ hēi). Note that g′i(0) = ∂fxi(a). By results from winter term, it follows
that if ∂fxi(a) 6= 0, gi does not have an extremum in 0. Moreover, if gi does
not have an extremum in 0, f does not have an extremum in a.

Theorem 47 (Sufficient conditions for local extrema). Let f ∈ C2(U), where
U ⊂ Rm is an open neighborhood of a.

1. If ∇f(a) = 0 and Hf (a) is positive (negative) definite, then f has local
minimum (maximum) in a.

2. If ∇f(a) = 0 and Hf (a) is indefinite, f does not have local extremum in
a.

Sylvester kriterion from linear algebra gives the following way to recognize
definiteness of a symmetric matrix: if all subdeterminants dm = det(ai,j)

m
i,j=1,

1 ≤ m ≤ n, are non-zero, then, if all of them are positive, the matrix A is
pozitive definite, if (−1)mdm > 0, 1 ≤ m ≤ n, then A is negative definite, and
the matrix is indefinite otherwise. (If some of the determinants are zero, we
don’t know.)
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