Mathematical analysis II — Tutorial 8

http://kam.mff.cuni.cz/~tereza/teaching.html

Problem 1: A function $f: \mathbb{R}^2 \to \mathbb{R}$ is defined as

$$f(x,y) = \sqrt{|x||y|}.$$

Check that f is continuous at (0,0), and has partial derivatives and argue that f is not differentiable at (0,0)

Problem 2: Verify equality $\frac{\partial^2 f(x,y)}{\partial x \partial y} = \frac{\partial^2 f(x,y)}{\partial y \partial x}$ for $f(x,y) = x^3 + 4xy - y^2$

Problem 3: Write down the Jacobian matrices of the following composite functions:

- a) $f(u, v) = (u^2 v^2, 1/(uv)), g(x, y) = \ln x + \ln y, h = g \circ f$
- b) $g(t) = (\sin t, \cos t), f(x, y) = x + y, h = f \circ g$
- c) $f(u, v) = (\sin uv, \cos uv), g(x, y) = x^2 + y^2, h = g \circ f.$

Problem 4: Assume that f is differentiable at (1,1) and g(t,u) = f(f(u,t), f(t,u)). Find $\partial_1 g(1,1)$ if $f(1,1) = \partial_1 f(1,1) = 1$, $\partial_2 f(1,1) = 2$.

Mathematical analysis II — Homework 9

Due: 9:00, 24.4.2019

Write your solution of each problem on a separate sheet of paper of format A4, without torn edges. One part will be marked for credit.

Problem 1: Find all second partial derivatives of a function f defined as f(0,0) = 0 and $f(x,y) = xy \frac{x^2 - y^2}{x^2 + y^2}$ for $(x,y) \neq (0,0)$.

Problem 2: Let f be a function of two variables in polar coordinates r and θ . Express partial derivatives with respect to cartesian coordinates $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ using $\frac{\partial f}{\partial r}$, $\frac{\partial f}{\partial \theta}$, r and θ . Relation between polar and cartesian coordinates is:

$$x = r \cos \theta$$
 $y = r \sin \theta$
 $r = \sqrt{x^2 + y^2}$ $\theta = \arctan\left(\frac{y}{x}\right)$.

Problem 3: Let $f(x, y) = \sqrt{1 - x^2 - y^2}$. Find the equation of the contour going through the point (1/2, 1/2), and write down the tangent line of the contour at the point (1/2, 1/2). Calculate the gradient of the function at (1/2, 1/2). What is the angle between the tangent line and the contour?