## Mathematical analysis II - Tutorial 8

http://kam.mff.cuni.cz/~tereza/teaching.html

Problem 1: A function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is defined as

$$
f(x, y)=\sqrt{|x||y|} .
$$

Check that $f$ is continuous at $(0,0)$, and has partial derivatives and argue that $f$ is not differentiable at $(0,0)$

Problem 2: Verify equality $\frac{\partial^{2} f(x, y)}{\partial x \partial y}=\frac{\partial^{2} f(x, y)}{\partial y \partial x}$ for $f(x, y)=x^{3}+4 x y-y^{2}$
Problem 3: Write down the Jacobian matrices of the following composite functions:
a) $f(u, v)=\left(u^{2} v^{2}, 1 /(u v)\right), g(x, y)=\ln x+\ln y, h=g \circ f$
b) $g(t)=(\sin t, \cos t), f(x, y)=x+y, h=f \circ g$
c) $f(u, v)=(\sin u v, \cos u v), g(x, y)=x^{2}+y^{2}, h=g \circ f$.

Problem 4: Assume that $f$ is differentiable at $(1,1)$ and $g(t, u)=f(f(u, t), f(t, u))$. Find $\partial_{1} g(1,1)$ if $f(1,1)=\partial_{1} f(1,1)=1, \partial_{2} f(1,1)=2$.

## Mathematical analysis II - Homework 9

## Due: 9:00, 24.4.2019

Write your solution of each problem on a separate sheet of paper of format A4, without torn edges. One part will be marked for credit.

Problem 1: Find all second partial derivatives of a function $f$ defined as $f(0,0)=0$ and $f(x, y)=x y \frac{x^{2}-y^{2}}{x^{2}+y^{2}}$ for $(x, y) \neq(0,0)$.

Problem 2: Let $f$ be a function of two variables in polar coordinates $r$ and $\theta$. Express partial derivatives with respect to cartesian coordinates $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ using $\frac{\partial f}{\partial r}, \frac{\partial f}{\partial \theta}, r$ and $\theta$. Relation between polar and cartesian coordinates is:

$$
\begin{array}{cc}
x=r \cos \theta & y=r \sin \theta \\
r=\sqrt{x^{2}+y^{2}} & \theta=\arctan \left(\frac{y}{x}\right) .
\end{array}
$$

Problem 3: Let $f(x, y)=\sqrt{1-x^{2}-y^{2}}$. Find the equation of the contour going through the point $(1 / 2,1 / 2)$, and write down the tangent line of thecontour at the point $(1 / 2,1 / 2)$. Calculate the gradient of the function at $(1 / 2,1 / 2)$. What is the angle between the tangent line and the contour?

