Mathematical analysis II - Tutorial 6

http://kam.mff.cuni.cz/~tereza/teaching.html

Problem 1: Determine the area of the regions enclosed by curves:
a) $y=2 x^{2}+10 ; y=4 x+16$,
b) $y=\sin x ; y=\cos x ; x=0 ; x=\pi / 2$,
c) $y=x-1 ; x=y^{2} / 2-3$.

Problem 2: Determine the area of the elipse with semi-axes a a b.
Problem 3: Determine the length of the curve $y=\ln (1 / \cos x)$ for $x \in[0, \pi / 4]$.

Problem 4: Find the volume of the solid of revolution generated by rotating
a) part of parabola $y=x^{2}-4 x+5$ for $x \in[1,4]$ around x-axis (i.e., around axis $y=0$),
b) area between the curves $y=x-1$ and $y=\sqrt{x-1}$ around axis $x=-1$,
c) area below the graph of $1 / x$ for $x \in[1, \infty)$ around x-axis.

Problem 5: Using integral criterion, decide wheter the series $\sum_{n=5}^{\infty} \frac{1}{n \ln n \ln \ln n}$ converges or diverges.

Mathematical analysis II — Homework 6

Due: 9:00, 3.4.2019

Write your solution of each problem on a separate sheet of paper of format A4, without torn edges. One part will be marked for credit.

Problem 1: Prove the following inequality $0 \leq \int_{1}^{2} \frac{1}{x^{2}+e^{x}} d x \leq 1$
Problem 2: Find the volume of the solid of revolution generated by rotating the area between curves $y=x^{2}-2 x$ and $y=x$ around the axis $y=4$.

Problem 3: Calculate the Riemann lower and upper sums for the function $f(x)=e^{x}$ on the interval $[a, b]$ where $a<b$, for a partition into n equal pieces of equal width h. Calculating each of these as the sum of a geometric series, and using the fact that $\lim _{h \rightarrow 0} \frac{e^{h}-1}{h}=1$, deduce that $\int_{a}^{b} e^{x} d x=e^{b}-e^{a}$.

