Mathematical analysis II — Tutorial 3
http://kam.mff.cuni.cz/~tereza/teaching.html

Problem 1: Complete the following table (including intervals where the primitive function is defined). For
the last function, find a recurrence using integration by parts.
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Problem 2: Find all primitive functions of the function:
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Problem 3: Decompose the following functions into partial fractions.
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Problem 4: Find primitive functions (on maximal intervals):
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Mathematical analysis [T — Homework 3
Due: 9:00, 13.3.2019

Write your solution of each problem on a separate sheet of paper of format A4, without torn edges. One
part will be marked for credit.

Problem 1: Find a primitive functions and determine on which intervals are they defined:
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Problem 2: Find a primitive function of —2r+d

s e s P and determine on which intervals is it defined.

Problem 3: Let P(z) be a polynomial and Q(z) a polynomial in the form [T, (z — a;)ki, where a; € R
and k; € N for every i = 1,...,n. We define Q1(z) =[]\, (z — a;)* ! and Q2(z) = [, (z — ;). Show
that there are polynomials P;(z) and Py(x), such that
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