Mathematical analysis II - Tutorial 11

http://kam.mff.cuni.cz/~tereza/teaching.html

Problem 1: Find points such that on their open neighborhood can the curve $x^{2}-x y+y^{2}=3$ be described as a graph of some function $y=f(x)$. Find minimal and maximal values of x and y of points on the curve.

Problem 2: Find global extrema:
a) $f(x, y)=5 x-3 y$, on the set $M_{1}=\left\{(x, y) \mid x^{2}+y^{2}=136\right\}$.
b) $f(x, y, z)=x$ on the set $M_{2}=\left\{(x, y, z) \mid x^{2}+y^{2}+z^{2} \leq 1, x^{3}+y^{3}+z^{3}=0\right\}$.

Problem 3: What is the largest volume a box without a lid made out of $12 \mathrm{~m}^{2}$ of plywood can have? What would be the dimensions of the box?

Mathematical analysis II - Homework 11

Due: 9:00, 22.5.2019

Write your solution of each problem on a separate sheet of paper of format A4, without torn edges. One part will be marked for credit.

Problem 1: Find local and global extrema of $f(x, y)=2 x^{2}-y^{2}+6 y$ on the set $M=\left\{(x, y) \mid x^{2}+y^{2} \leq 16\right\}$.

Problem 2: Asteroid is the curve satisfying $x^{2 / 3}+y^{2 / 3}=1$. Find points $\left(x_{0}, y_{0}\right)$, in which this curve is a graph of a function $y=f(x)$ and $f^{\prime}\left(x_{0}\right)=-1$.

Problem 3: Using the method of Lagrange multipliers, find the point on the line of intersection of the planes $3 x-2 y+4 z=9$ and $x+2 y=3$ which is closest to the point $(3,-1,2)$. Hint: minimize square of the distance, not the distance itself.

