Mathematical analysis II - Tutorial 10

http://kam.mff.cuni.cz/~tereza/teaching.html

Problem 1: Find points where the functions can have extremes. You don't have to verify these points are extremes, but think about how would you proceed.
a) $f(x, y)=x^{4}+y^{4}-4 x y+2$
b) $f(x, y)=\sin \left(x^{2}+y\right)+y$
c) $f(x, y)=\left(x^{2}+y^{2}\right) e^{-x^{2}-y^{2}}$
d) $f(x, y)=a \ln y-b y+c \ln x-d x \quad a, b, c, d \in \mathbb{R}$
e) $f(x, y)=|x|+|y|$

Problem 2: Find local extremes:
a) $f(x, y)=x^{3} / 3-x-\left(y^{3} / 3-y\right)$
b) $f(x, y, z)=x+\frac{y^{2}}{4 x}+\frac{z^{2}}{y}+\frac{2}{z}$

Problem 3: Find global extremes:
a) $f(x, y)=2 x^{2}-x^{3}-y^{2}, \quad x, y \geq-1$
b) $f(x, y)=x^{2}+4 y^{4}-2 x^{2} y+4, \quad x, y \in[-1,1]$

Mathematical analysis II - Tutorial 10

http://kam.mff.cuni.cz/~tereza/teaching.html

Problem 1: Find points where the functions can have extremes. You don't have to verify these points are extremes, but think about how would you proceed.
a) $f(x, y)=x^{4}+y^{4}-4 x y+2$
b) $f(x, y)=\sin \left(x^{2}+y\right)+y$
c) $f(x, y)=\left(x^{2}+y^{2}\right) e^{-x^{2}-y^{2}}$
d) $f(x, y)=a \ln y-b y+c \ln x-d x \quad a, b, c, d \in \mathbb{R}$
e) $f(x, y)=|x|+|y|$

Problem 2: Find local extremes:
a) $f(x, y)=x^{3} / 3-x-\left(y^{3} / 3-y\right)$
b) $f(x, y, z)=x+\frac{y^{2}}{4 x}+\frac{z^{2}}{y}+\frac{2}{z}$

Problem 3: Find global extremes:
a) $f(x, y)=2 x^{2}-x^{3}-y^{2}, \quad x, y \geq-1$
b) $f(x, y)=x^{2}+4 y^{4}-2 x^{2} y+4, \quad x, y \in[-1,1]$

