Mathematical analysis II - Tutorial 1

http://kam.mff.cuni.cz/~tereza/teaching.html

Problem 1: Find Taylor series of the following functions at 0 , where does the series converge?
a) e^{x}
b) $\frac{1}{1-x}$
c) $\sin x$
d) $\ln (1+x)$
e) $x^{4}-2 x^{3}-5 x+4$

Problem 2: Find Taylor polynomial $T_{3}^{\sin , \pi}$.
Problem 3: Estimate $\sqrt{0,98}$ and $\ln 1,2$. (You don't need to estimate the error.)

Problem 4: Estimate sin 0, 1 using Taylor polynomial of degree 3 at 0 . Has this estimate precision to three decimal places?

Problem 5: Using Taylor polynomial, find limits
a) $\lim _{x \rightarrow 0} \frac{\ln (1+x)}{x}$
b) $\lim _{x \rightarrow 0} \frac{\cos x-e^{-\frac{x^{2}}{2}}}{x^{4}}$

Mathematical analysis II - Homework 1

Due: 9:00, 27.2.2019
Write your solution of each problem on a separate sheet of paper of format A4, without torn edges. One part will be marked for credit.

Problem 1: You have an sheet of paper of size A4 (210 by 297 millimetres) and you want to fold a box without a lid (a rectangular cuboid without one face) out of it. What is the maximal possible volume of the box?

Problem 2: Using Taylor polynomial, find approximate value of $\sqrt[5]{1,1}$ with precision to three decimal places, justify the precision of your result.

Problem 3: Using Taylor polynomial, find $\operatorname{limit} \lim _{x \rightarrow 0} \frac{\sin x-\tan x}{x^{3}}$.
Problem 4: Find Taylor series of given functions at 0 and determine when they converge.
a) $\frac{1}{1+x}$
b) $\cos 3 x$

