
Lecture 1 (20.2.2019)
(translated and slightly adapted from lecture notes by Martin Klazar)

(Warning: not a substitute for attending the lectures, probably contains
typos. Let me know if you spot any!)

Primitive functions

Definition 1 (Primitive function). If I ⊆ R is a non-empty open interval and

F, f : I → R

are functions satisfying F ′ = f on I, we call F a primitive function of f on I.

First, some motivation — the relation of primitive functions with planar
figures. For a nonnegative and continuous function f : [a, b]→ R we consider
a planar figure

U(a, b, f) = {(x, y) ∈ R2 | a ≤ x ≤ b & 0 ≤ y ≤ f(x)} .

Its area, whatever it is, is denoted by∫ b

a

f := area(U(a, b, f)) .

This is the area of part of the plane defined by the axis x, graph of the function
f and the vertical lines y = a and y = b. Two basic relationships between the
area and the derivative are as follows. Consider the function F of x defined
as the area U(a, x, f), i.e., F (x) =

∫ x
a
f . The first fundamental theorem of

calculus says that for every c ∈ [a, b] we have

F ′(c) = f(c)

— the derivative of a function whose argument x is the upper limit of the
U(a, x, f) and the value is its area is equal to the original function f . Thus,
the function F (x) =

∫ x
a
f is a primitive function of f . According to the second

fundamental theorem of calculus for every function F , which is a primitive
function of f on [a, b], it holds that∫ b

a

f = F (b)− F (a) .

If we know a primitive function of f (many can be deduced by simply reversing
the rules for derivative of elementary functions), we can immediately calculate
the area of U(a, b, f). We formulate and prove both theorems precisely later

in the lecture on Riemann’s integral, when we also introduce the area
∫ b
a
f .

But first we need to look at the properties of primitive functions — where the
function has a primitive function, whether it is unique, etc.

Due to the linearity of the derivative, primitive functions are also linear:
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Theorem 1 (Linearity of primitive functions). If F is a primitive function of
f , and G is a primitive function of g on an interval I and α, β ∈ R, then the
function

αF + βG

is a primitive function of αf + βg on I.

For limit and derivative, the result of the operation is unique if it exists,
but a primitive function is not unique. We will soon see that the function
either does not have any primitive function or has infinitely many.

Theorem 2 (Set of primitive functions). Let F be a primitive function of f
on I. Then the set of all primitive functions of f on I is

{F + c | c ∈ R} .

Therefore, all primitive functions of f are obtained by shifting any primitive
function of f by a constant.

Proof. The derivative of a constant function is zero, so (F + c)′ = F ′ + 0 = f
for every c ∈ R and every primitive function F of f on I. On the other hand,
if F and G are primitive functions of f on I , then their difference H = G−F
has a zero derivative on I: for each γ ∈ I, we have H ′(γ) = G′(γ) − F ′(γ) =
f(γ)−f(γ) = 0. Thus, for any two points α < β from I, according to Lagrange
mean value theorem, we have

H(β)−H(α) = (β − α)H ′(γ) = (β − α)0 = 0

for some γ ∈ (α, β), so H(α) = H(β), so H is constant on I. Thus, there is a
constant c, such that that G(x)−F (x) = c for every x ∈ I and G = F + c.

Notation. The fact that the function F is a primitive function of f is denoted
by ∫

f = F + c, c ∈ R ,

to emphasize that F shifted by a constant is also a primitive function of f .
The symbol

∫
f is to be understood as the set of all primitive functions of f

on the given interval.

Primitive function and continuity

Theorem 3 (Continuity of a primitive function). If F is a primitive function
of f on I, then F is continuous on I.

Proof. We know from the winter term that the existence of the proper deriva-
tive of a function at a point implies its continuity at the given point. Since
F ′(α) exists and is equal to f(α) for each α ∈ I, F is continuous on I.
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Theorem 4 (Continuous function has a primitive function). If f is continuous
on I, then f has a primitive function F on I.

Proof. Later.

Can a discontinuous function have a primitive function? Yes.

Example 1 (Discontinuous function with primitive function.). The function
f : R→ R defined as

f(x) = 2 sin

(
1

x2

)
−

2 cos
(

1
x2

)
x

for x 6= 0, f(0) = 0 ,

has a primitive function on R, even though it is not continuous at 0.

Proof. Consider F : R → R defined for x 6= 0 as F (x) = x2 sin(x−2) and for
x = 0 as F (0) = 0. For x 6= 0 we have F ′ = f by standard calculations. At
zero by the definition of the derivative we calculate that

F ′(0) = lim
x→0

F (x)− F (0)

x− 0
= lim

x→0
x sin(x−2) = 0 ,

because |x sin(x−2)| ≤ |x| for every x 6= 0. Thus F ′(0) exists and again F ′(0) =
f(0). Therefore, F ′ = f on R and F is a primitive function of f on R. Function
f is not continuous in 0, in every neighborhood of zero it is even unbounded
from both above and below — for x → 0 the graph oscilates with increasing
amplitude and frequency.

In winter term, it was shown that the continuous function on the interval
attains all values between its minium and maximum on the interval, so, its
image is an interval. This property of a function is called Darboux property,
according to the French mathematician Jean-Gaston Darboux (1842–1917).
Darboux proved that functions with a primitive function have this property.

Theorem 5 (Function with a primitive function has Darboux property). If f
has a primitive function F on I, then f has Darboux property on I.

Proof. Let x1, x2 be any two points of I such that x1 < x2, assume f(x1) <
f(x2) and consider c ∈ R satisfying f(x1) < c < f(x2). (If f(x1) > c >
f(x2), the following argument is easily adjusted by replacing the minimum to
maximum.) We find x∗ ∈ I, in particular x∗ ∈ (x1, x2) such that f(x∗) = c.
The function

H(x) = F (x)− cx
is continuous on I (since F is continuous by Theorem 3), moreover it has a
proper derivative on I.

H ′(x) = (F (x)− cx)′ = f(x)− c .
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According to the theorem from the winter term, H attains minimum at some
point x∗ on a compact interval [x1, x2]. Since H ′(x1) = f(x1) − c < 0, thus,
for some δ > 0 we have x ∈ (x1, x1 + δ) ⇒ H(x) < H(x1). Therefore,
x∗ 6= x1. Similarly from H ′(x2) > 0 it follows that x∗ 6= x2. Thus x∗ ∈ (x1, x2)
and according to the extreme criterion from the winter term, we must have
H ′(x∗) = f(x∗)− c = 0. So f(x∗) = c.

Consequence (an example of a function without a primitive func-
tion). Function sgn : R → R, defined as sgn(x) = −1 for x < 0, sgn(0) = 0
and sgn(x) = 1 for x > 0 has no primitive function on R (or any other interval
containing 0).

Proof. The function sgn does not have Darboux property: it attains values −1
and 1, but not 1

2
∈ (−1, 1).

Primitive functions of elementary functions

By reversing the direction of formulas for derivatives of elementary functions we
get the following table of primitive functions (additive constant c is omitted).

Task. Taking derivative we have (log x)′ = 1/x, but also (log(−x))′ = (1/x)(−1) =
1/x. But log x and log(−x) do not differ just by shifting the constant, so the
1/x function has two fundamentally different primitive functions, contrary to
the statement. How is it possible?
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function primitive function on interval

xα, α ∈ R\{−1} xα+1

α + 1
(0,+∞)

xα, α ∈ Z, α < −1
xα+1

α + 1
(0,+∞) and (−∞, 0)

xα, α ∈ Z, α > −1
xα+1

α + 1
R

x−1 =
1

x
log |x| (0,+∞) and (−∞, 0)

expx = ex expx = ex R

sinx − cosx R

cosx sinx R

1

cos2 x
tanx =

sinx

cosx
((k − 1

2
)π, (k + 1

2
)π), k ∈ Z

1

sin2 x
− cotx = −cosx

sinx
(kπ, (k + 1)π), k ∈ Z

1

1 + x2
arctanx R

1√
1− x2

arcsinx (−1, 1)

The table does not include hyperbolic functions (eg sinhx = expx−exp(−x)
2

)
goniometric functions (e.g., sekans secx = 1

cosx
, popular in the US).
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Lecture 2 (27.2.2019)
(translated and slightly adapted from lecture notes by Martin Klazar)

(Warning: not a substitute for attending the lectures, probably contains
typos. let me know if you spot any!)

Methods for computing primitive functions

To calculate the derivative of the product of two functions, we have the Leibniz
formula (fg)′ = f ′g+ fg′. By inverting it, we will get the following important
result for primitive functions.

Theorem 6 (Integration per partes (by parts)). If f, g : I → R are continuous
functions on an interval I and F,G their corresponding primitive functions on
I then the following equality holds on I:∫

fG+

∫
Fg = FG+ c .

In other words, the functions fG and Fg have primitive functions on I whose
sum is always equal to function FG on I, up to the additive constant c.

Proof. Since that f and g are continuous on I, and by Theorem 3, the primitive
functions F and G are also continuous. So products fG and Fg are also
continuous, and by Theorem 4, they have primitive functions

∫
fG and

∫
Fg

on I. By linearity of primitive functions, the sum
∫
fG +

∫
Fg is a primitive

function of fG + Fg. Moreover, the FG function is a primitive function of
fG+ Fg, because the Leibniz formula gives (FG)′ = fG+ Fg. Thus, we get
that

∫
fG+

∫
Fg = FG+ c.

The formula for integration per partes is usually given in an equivalent form∫
F ′G = FG−

∫
FG′

So if we can calculate the primitive function of FG′ for the two functions F
and G with continuous derivatives (F ′ = f and G′ = g) we get a primitive
function of F ′G according to this formula.

Example 2. With x′ = 1 and (log x)′ = 1/x on the interval (0,+∞) we have∫
log x =

∫
x′ log x = x log x−

∫
x(log x)′ = x log x−

∫
1 = x log x− x+ c

on (0,+∞). By taking derivative, we can easily check the correctness of the
derived formula.

6



Inverting the rule for derivative of the product gives the formula for in-
tegration per partes and by inverting the rule for derivative of the composed
function we get a formula for integration by substitution. It has two forms,
according to the direction of reading the equality of f(ϕ)′ = f ′(ϕ)ϕ′.

Theorem 7 (Integration by substitution). Let ϕ : (α, β) → (a, b) and f :
(a, b)→ R be two functions such that ϕ has a proper derivative ϕ′ on (α, β).

1. If F =
∫
f on (a, b), then

∫
f(ϕ)ϕ′ = F (ϕ) + c on (α, β).

2. Suppose ϕ additionally that ϕ((α, β)) = (a, b) and either ϕ′ > 0 or ϕ′ < 0
on (α, β). If G =

∫
f(ϕ)ϕ′ on (α, β), then

∫
f = G(ϕ〈−1〉 on (a, b).

Proof. The first part follows immediately by the derivative:

F (ϕ)′ = F ′(ϕ)ϕ′ = f(ϕ)ϕ′

on (α, β), from the assumption about F and derivative of the composed func-
tion.

In the second part assumptions about ϕ guarantee that it is a strictly
increasing or a strictly decreasing bijection from (α, β) to (a, b). So it is an
injective function, it has an inverse function

ϕ〈−1〉 : (a, b)→ (α, β).

We can compute derivative of this function using the inverse function derivative
rule. This gives, together with the assumption about G, derivative of the
composed function and the derivative of the inverse function, that G(ϕ〈−1〉) is
primitive function of f on (a, b) :

G(ϕ〈−1〉)′ = G′(ϕ〈−1〉) · (ϕ〈−1〉)′ = f(ϕ(ϕ〈−1〉))ϕ′(ϕ〈−1〉) · 1

ϕ′(ϕ〈−1〉)
= f .

Here are two examples of both forms of the substitution rule.
1. When F (x) =

∫
f(x) dx at some I a a, b ∈ R, a 6= 0, then according to

the first part we calculate that∫
f(ax+ b) dx = a−1

∫
f(ax+ b) · (ax+ b)′ dx = a−1F (ax+ b) + c ,

on the interval J = a−1(I − b) = {a−1(x − b) | x ∈ I}. It is easy to check
backwards by taking derivative. We took ϕ(x) = ax+ b.

2. We want to calculate the primitive function of
√

1− t2 on (−1, 1).
Because it resembles the derivative of arcsin, we try the substitution t =
ϕ(x) = sin x : (−π

2
, π
2
)→ (−1, 1). The assumptions of the second form of the

substitution rule are fulfilled.
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G(x) =

∫ √
1− sin2 x · (sinx)′ dx =

∫ √
cos2 x · cosx dx =

∫
cos2 x dx .

Did it help? It helped because the last primitive function can easily be calcu-
lated by integrating per partes:∫

cos2 x =

∫
cosx(sinx)′ = cosx sinx+

∫
sin2 x

= cos x sinx+

∫
(1− cos2 x)

= sin x cosx+ x−
∫

cos2 x ,

so,

G(x) =

∫
cos2 x =

sinx cosx+ x

2
+ c =

sinx
√

1− sin2 x+ x

2
+ c .

After letting x = ϕ〈−1〉(t) = arcsin t we get the desired result∫ √
1− t2 = G(arcsin t) + c =

t
√

1− t2 + arcsin t

2
+ c, on (−1, 1) .

By derivative, we can easily verify it is correct.

By saying that fcan be expressed using elementary functions we mean that
f can be expressed from the basic functions exp(x) (exponential), log x, sin x,
arcsinx, cosx, arccos x, tan x and arctanx repeatedly using the arithmetic
operations +,−,×, :, and the folding operations. Many primitive functions can
be expressed in this way, but many primitive functions cannot. The following
theorem, which we will not prove, gives some important examples of such
functions.

Theorem 8 (Non-elementary primitive functions). Primitive functions

F1(x) =

∫
exp(x2), F2(x) =

∫
sinx

x
and F3(x) =

∫
1

log x

(on the intervals where they are defined) cannot be expressed using elementary
functions.

Primitive functions of rational functions

A relatively wide class of functions to which primitive functions can be com-
puted are rational functions, which are fractions of polynomials. Let’s give a
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simple example. Let I ⊂ R be any open interval that does not contain −1 and
1. Then ∫

x2

x2 − 1
=

∫ (
1 +

1

x2 − 1

)
=

∫ (
1 +

1/2

x− 1
− 1/2

x+ 1

)
=

∫
1 +

1

2

∫
1

x− 1
− 1

2

∫
1

x+ 1

= x+
log |x− 1| − log |x+ 1|

2
+ c

= x+ log(
√
|(x− 1)/(x+ 1)|) + c

on I . It turns out that similarly, a primitive function can be calculated for
any rational function. The key is a decomposition to the sum simpler rational
functions (the first line of calculation), which is called decomposition into
partial fractions. In the following we use some results from algebra that we
will not prove here.

Theorem 9 (Primitive function for rational function can always be calcu-
lated). Let P (x) and Q(x) 6= 0 be polynomials with real coefficients and I ⊂ R
is an open interval not containing no roots of Q(x). Primitive function

F (x) =

∫
P (x)

Q(x)
(on I)

can be expressed using elementary functions, namely using rational functions,
logarithms and arcustangent.

Proof. Without loss of generality, assume that Q(x) is monic (i.e. its leading
coefficient is 1). After dividing P (x) by Q(x) with remainder we have

P (x)

Q(x)
= p(x) +

R(x)

Q(x)
,

where p(x), R(x) are real polynomials and R(x) has smaller degree than Q(x).
There is unique way to express Q(x) as a product of irreducible real polyno-
mials (i.e. polynomials that cannot be expressed as product of polynomials of
smaller degree), moreover, these polynomials will have degree at most 2:

Q(x) =
k∏
i=1

(x− αi)mi

l∏
i=1

(x2 + βix+ γi)
ni ,

where k, l ≥ 0 are integers, αi, βi, γi ∈ R, mi, ni ≥ 1 are integers, numbers αi
are pairwise distinct, pairs (βi, γi) are pairwise distinct and always β2

i −4γi < 0
(thus, the polynomial x2 +βix+γi is irreducible as it has no real roots). It can
be shown that R(x)/Q(x) has unique expression as the sum of partial fractions

R(x)

Q(x)
=

k∑
i=1

mi∑
j=1

δi,j
(x− αi)j

+
l∑

i=1

ni∑
j=1

εi,jx+ θi,j
(x2 + βix+ γi)j

,
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where δi,j, εi,j, θi,j ∈ R. In the previous example we have P (x) = x2, Q(x) =
x2−1, p(x) = 1, R(x) = 1, k = 2, m1 = m2 = 1, l = 0 (decomposition of Q(x)
contains no quadratic polynomial with three non-zero coefficients), α1 = 1,

α2 = −1, δ1,1 = 1
2

a δ2,1 = −1
2
. Thus, a primitive function

∫ P (x)
Q(x)

equals to the
sum of finitely many primitive functions of three types:∫

p(x),

∫
δ

(x− α)j
a

∫
εx+ θ

(x2 + βx+ γ)j
,

where p(x) is a real polynomial, j ∈ N and except x all other symbols are
real constants, and β2 − 4γ < 0. If we can express these primitive functions
using elementary functions, we can express

∫ P (x)
Q(x)

using elementary functions
as well.

It is easy to calculate primitive functions of the first two types:∫
p(x) =

∫
(anx

n + . . .+ a1x+ a0) =
anx

n+1

n+ 1
+ . . .+

a1x
2

2
+ a0x

on R and∫
δ

(x− α)j
=

δ

(1− j)(x− α)j−1
(j ≥ 2),

∫
δ

x− α
= δ log |x− α|

on (−∞, α) and (α,+∞) (we omitted additive constants). The third type is
more complex. We have∫

εx+ θ

(x2 + βx+ γ)j
=
ε

2

∫
2x+ β

(x2 + βx+ γ)j
+ (θ − εβ/2)

∫
1

(x2 + βx+ γ)j
.

For the last but one
∫

is after substituting y = x2 + βx + γ of the second
typewe have∫

2x+ β

(x2 + βx+ γ)j
=

1

(1− j)(x2 + βx+ γ)j−1
(j ≥ 2)

and ∫
2x+ β

x2 + βx+ γ
= log |x2 + βx+ γ| = log(x2 + βx+ γ) .

on R (recall that x2 + βx + γ has no real root) . It remains to calculate a
primitive function

∫
1/(x2 + βx+ γ)j. We denote η =

√
γ − β2/4 (recall that

γ − β2/4 > 0) and use substitution y = y(x) = x/η + β/2η. By completing
the square we get∫

1

(x2 + βx+ γ)j
=

1

η2j−1

∫
1/η

((x/η + β/2η)2 + 1)j

=
1

η2j−1

∫
y′

((x/η + β/2η)2 + 1)j

=
1

η2j−1

∫
1

(y2 + 1)j
.
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Thus, it remains to compute the following primitive function on R:

Ij =

∫
1

(1 + x2)j
.

For j = 1 we already know that I1 = arctan x. For j = 2, 3, . . . we express Ij
using recurrence obtained by integration by parts:

Ij =

∫
x′

(1 + x2)j
=

x

(1 + x2)j
+

∫
2jx2

(1 + x2)j+1

=
x

(1 + x2)j
+ 2j

∫
x2 + 1

(1 + x2)j+1
− 2j

∫
1

(1 + x2)j+1

=
x

(1 + x2)j
+ 2jIj − 2jIj+1 ,

thus
Ij+1 = Ij(1− 1/2j) +

x

2j(1 + x2)j
.

For instance,

I2 =
arctanx

2
+

x

2(1 + x2)
a I3 =

3 arctanx

8
+

3x

8(1 + x2)
+

x

4(1 + x2)2
.

In general, the recurrence shows that for every j = 1, 2, . . ., Ij has form
Ij = κ arctanx + r(x), where κ is a fraction and r(x) is a rational function.
Thus, we have completed the calculation of the primitive function of the third
type from the expression R(x)/Q(x) of the sum of the partial fractions and ob-

tained a complete expression of the primitive function
∫ P (x)

Q(x)
using elementary

functions.

11



Lecture 3 (6.3.2019)
(translated and slightly adapted from lecture notes by Martin Klazar)

Riemann integral

Now we define precisely the concept of the area, in particular, the area of figure
U(a, b, f) under the graph of a function f . Let −∞ < a < b < +∞ be two
real numbers and f : [a, b] → R any function that may not be continuous or
bounded. The finite k+1-tuple of points D = (a0, a1, . . . , ak) from the interval
[a, b] is called a partition of [a, b] if

a = a0 < a1 < a2 < . . . < ak = b .

These points divide the interval [a, b] into intervals Ii = [ai−1, ai]. We denote
by |Ii| the length of interval Ii: |Ii| = ai − ai−1 and |[a, b]| = b− a. Clearly

k∑
i=1

|Ii| = (a1 − a0) + (a2 − a1) + . . .+ (ak − ak−1) = b− a = |[a, b]| .

Norm of a partition D is the maximum length of an interval of the partition
and is denoted by λ:

λ = λ(D) = max
1≤i≤k

|Ii| .

Partition of an interval [a, b] with points is a pair (D,C) whereD = (a0, a1, . . . , ak)
is a partition of [a, b] and a k-tuple C = (c1, c2, . . . , ck) consists of ci ∈ Ii (i.e.
ai−1 ≤ ci ≤ ai). Riemann sum corresponding to the function f and a partition
with points (D,C) is defined as

R(f,D,C) =
k∑
i=1

|Ii|f(ci) =
k∑
i=1

(ai − ai−1)f(ci) .

If f ≥ 0 on [a, b], it is the sum of k rectangles Ii × [0, f(ci)] whose union
approximates figure U(a, b, f). However, Riemann sum is defined for every
function f , regardless of its sign on [a, b]. The following definition was intro-
duced by Bernhard Riemann (1826–1866).

Definition 2 (First definition of Riemann integral, Riemann). We say that
f : [a, b] → R has Riemann integral I ∈ R on [a, b] if for every ε > 0 there
exists δ > 0 such that for each partition of [a, b] with points (D,C) such that
λ(D) < δ the following holds:

|I −R(f,D,C)| < ε

We require I ∈ R, values ±∞ are not allowed (although, it is possible to
define them). If there is such a number I, we write

I =

∫ b

a

f(x) dx =

∫ b

a

f = (R)

∫ b

a

f
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and say that f is Riemann integrable on the interval [a, b]. We will work with
the class of all Riemann integrable functions

R(a, b) := {f | f is defined and Riemann integrable on [a, b]}.

Thus, the first definition of the Riemann integral can be summarized by the
formula ∫ b

a

f = lim
λ(D)→0

R(f,D,C) ∈ R .

We understand the limit here as defined in the definition above; as a symbol,
we defined only limit of a sequence and of a function in a point.

For the second, equivalent, definition of the integral we will need a few more
concepts. For f : [a, b] → R and a partition D = (a0, a1, . . . , ak) of interval
[a, b] we define lower and upper Riemann sum, respectively, (even though they
were introduced by Darboux) as

s(f,D) =
k∑
i=1

|Ii|mi, and S(f,D) =
k∑
i=1

|Ii|Mi ,

where
mi = inf

x∈Ii
f(x) and Mi = sup

x∈Ii
f(x)

Ii = [ai−1, ai]

These sums are always defined s(f,D) ∈ R∪{−∞} and S(f,D) ∈ R∪{+∞}
Lower and upper Riemann integral, respectively, of a function f on the interval
[a, b] is defined as∫ b

a

f =

∫ b

a

f(x) dx = sup({s(f,D) : D is a partition of [a, b]}) ,

and ∫ b

a

f =

∫ b

a

f(x) dx = inf({S(f,D) : D is a partition of [a, b]}) .

These terms are always defined and we have
∫ b
a
f,
∫ b
a
f ∈ R∗ = R∪{−∞,+∞}.

Definition 3 (Second definition of Riemann integral, Darboux). We say that
f : [a, b]→ R has on [a, b] Riemann integral, if∫ b

a

f(x) dx =

∫ b

a

f(x) dx ∈ R .

This common value, if it exists, is denoted by∫ b

a

f(x) dx =

∫ b

a

f

and we call it the Riemann integral of f on the interval [a, b].
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The two definitions are equivalent: they give the same classes of Riemann
integrable functions and the same value of the Riemann integral, if defined.

Example 3 (Bounded function without integral). A function f : [0, 1] →
{0, 1} defined as f(α) = 1 when α is a rational number, and f(α) = 0, when α
is irrational, is called Dirichlet function, and does not have Riemann integral
on [0, 1], although bounded.

Each positive-length interval contains points where f has a value of 0, as
well as points that have a value of 1. Then s(f,D) = 0 and S(f,D) = 1 for
every partition of D and therefore∫ 1

0

f = 0 <

∫ 1

0

f = 1 .

Theorem 10 (Unbounded functions have no integral). If the f : [a, b] → R
function is not bounded then it does not have a Riemann integral on [a, b],
according to both definitions.

When D = (a0, a1, . . . , ak) a D′ = (b0, b1, . . . , bl) are partitions of [a, b] and
D ⊂ D′, that is for every i = 0, 1, . . . , k there exists j, such that ai = bj
(therefore k ≤ l), we say that D′ is a refinement of D or that D′ refines D.

Lemma 11 (Riemann sums of a refinement). If f : [a, b]→ R and D,D′ are
two partitions of [a, b], and D′ refines D,

s(f,D′) ≥ s(f,D) and S(f,D′) ≤ S(f,D).

Proof. Considering the definition of s(f,D) a S(f,D) and the fact that D′ can
be created from D by adding points, it is enough to prove both inequalities in
a situation where D = (a0 = a < a1 = b) a D′ = (a′0 = a < a′1 < a′2 = b).
According to the definition of infima f , we have

m0 = inf
a0≤x≤a1

f(x) ≤ inf
a′0≤x≤a′1

f(x) = m0 inf
a′1≤x≤a′2

f(x) = m′1

Then

s(f,D′) = (a′1 − a′0)m′0 + (a′2 − a′1)m′1
≥ (a′1 − a′0)m0 + (a′2 − a′1)m0

= (a′2 − a′0)m0 = (b− a)m0

= s(f,D) .

Proof of the inequality S(f,D′) ≤ S(f,D) is similar.

Corollary 12. When f : [a, b]→ R and D,D′ are two partitions [a, b], then

s(f,D) ≤ S(f,D′) .
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Proof. Let E = D∪D′ be a common refinement of both partitions. According
to the previous lemma we have

s(f,D) ≤ s(f, E) ≤ S(f, E) ≤ S(f,D′)

More precisely, the first and last inequality follow from the previous lemma,
and the middle one from the definition of upper and lower sum.

Theorem 13 (Lower integral does not exceed upper). Let f : [a, b] → R,
m = infa≤x≤b f(x), M = supa≤x≤b f(x) and D,D′ be two partitions of interval
[a, b]. Then the following inequalities hold:

m(b− a) ≤ s(f,D) ≤
∫ b

a

f ≤
∫ b

a

f ≤ S(f,D′) ≤M(b− a) .

Proof. The first and last inequality are the special cases of the previous lemma.
The second and penultimate inequality comes straight from the definition of
the lower and upper integral as supremum or infimum respectively. According
to the corollary, each element is a set of lower sums whose supremum is

∫ b
a
f

smaller or equal to each element of the upper sum set whose infim is
∫ b
a
f .

Using the definition of infimum (the largest lower bound) and supremum (the
smallest upper bound) we get the middle inequality: For each partition D,

s(f,D) the lower bound of the set of upper sums, that is, s(f,D) ≤
∫ b
a
f , and

so
∫ b
a
f is the upper bound of the set of lower sums, thus

∫ b
a
f ≤

∫ b
a
f .

Example 4. We calculate by definition that∫ 1

0

x dx = 1/2 .

For n = 1, 2, . . . take a partition of Dn = (0, 1
n
, 2
n
, . . . , 1). Then

s(f,Dn) =
n∑
i=1

1

n

(i− 1

n

)
= n−2(0 + 1 + 2 + . . .+ (n− 1))

similarly

S(f,Dn) =
n∑
i=1

1

n

( i
n

)
= n−2(1 + 2 + . . .+ n) .

Since S(f,Dn)−s(f,Dn) = 1
n
→ 0 for n→∞, f(x) = x has Riemann integral

on [0, 1] by Integrability criterion. Moreover, we have∫ 1

0

x dx = lim
n→∞

s(f,Dn) = lim
n→∞

(n− 1)n

2
· 1

n2
= 1/2

∫ 1

0

x dx = lim
n→∞

S(f,Dn) = lim
n→∞

n(n+ 1)

2
· 1

n2
= 1/2

So,
∫ 1

0
x dx = 1/2.
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Lecture 4 (13.3.2018)
(translated and slightly adapted from lecture notes by Martin Klazar)

Theorem 14 (Integrability criterion). Let f : [a, b]→ R. Then

f ∈ R(a, b) ⇐⇒ ∀ε > 0 ∃D : 0 ≤ S(f,D)− s(f,D) < ε.

In other words, f has Riemann integral if and only if for every ε > 0 there
exists a partition D of interval [a, b] such that its upper Riemann sum is greater
than the corresponding lower Riemann sum by less than ε.

Proof. ” ⇒ ” We assume that f has R. integral on [a, b] , i.e.,
∫ b
a
f =

∫ b
a
f =∫ b

a
f ∈ R. Let ε > 0 be given. By definition of the lower and upper integrals,

there are partitions E1 and E2 so that

s(f, E1) >

∫ b

a

f − ε

2
=

∫ b

a

f − ε

2
a S(f, E2) <

∫ b

a

f +
ε

2
=

∫ b

a

f +
ε

2
.

According to the lemma, these inequalities also apply after replacing E1 and
E2 with their joint refinement D = E1∪E2. Summing up both inequalities we
will get

S(f,D)− s(f,D) <

∫ b

a

f +
ε

2
+
(
−
∫ b

a

f +
ε

2

)
= ε .

” ⇐ ” Given ε > 0 we take a partition of D satisfying the condition.
According to the definition of the lower and upper integral we get∫ b

a

f ≤ S(f,D) < s(f,D) + ε ≤
∫ b

a

f + ε, thus

∫ b

a

f −
∫ b

a

f < ε .

This inequality is valid for every ε > 0, so according to the previous statement

we have
∫ b
a
f =

∫ b
a
f ∈ R. Then f has R. integral on [a, b].

We state another criterion of integrability without a proof.

Theorem 15 (Lebesgue characterisation of integrable functions). A function
f : [a, b]→ R has Riemann integral, if and only if it is bounded and the set of
its point of discontinuity on [a, b] has measure zero.

We define sets of measure zero as follows. A set M ⊂ R has (Lebesgue)
measure zero, if for every ε > 0, there exists a sequence of intervals I1, I2, . . .
such that

∞∑
i=1

|Ii| < ε and M ⊂
∞⋃
i=1

Ii .

In other words, M can be covered by intervals of arbitrarily small length.
Simple properties of sets with measure zero:
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• Every countable or finite set has measure zero.

• Every subset of a set of measure zero has measure zero.

• If each of countably many sets A1, A2, . . . has measure zero, their union

∞⋃
n=1

An

has measure zero.

• Interval of positive length does not have measure zero.

For example, the set of rational numbers Q has measure zero. There exist sets
of measure which are uncountable, classical example is Cantor set.

Theorem 16 (Monotonicity ⇒ integrability). If f : [a, b] → R is non-
decreasing or non-increasing on [a, b] then it is Riemann integrable.

Proof. Assume that f is non-decreasing (for non-increasing f the argument
is similar). For each subinterval [α, β] ⊂ [a, b] we have inf [α,β] f = f(α) and
sup[α,β] f = f(β). Given δ > 0, we take any partition D = (a0, a1, . . . , ak−1)
interval [a, b] with λ(D) < δ and

S(f,D)− s(f,D) =
k∑
i=1

(ai − ai−1)(sup
Ii

f − inf
Ii
f)

=
k∑
i=1

(ai − ai−1)(f(ai)− f(ai−1))

≤ δ
k∑
i=1

(f(ai)− f(ai−1))

= δ(f(ak)− f(a0)) = δ(f(b)− f(a)) .

This can be made arbitrarily small by reducing δ, in particular, given ε, choos-
ing δ < ε/(f(b) − f(a)) ensures that S(f,D) − s(f,D) < ε. Then, by the
integrability criterion, f ∈ R(a, b).

Continuity is also sufficient for integrability. But we need to introduce its
stronger form. Let us say that the function f : I → R, where I is the interval,
is uniformly continuous (on I) if

∀ε > 0 ∃δ > 0 : ∀ x, x′ ∈ I, |x− x′| < δ ⇒ |f(x)− f(x′)| < ε .

That is, we require that single δ > 0 works for all pairs of points x, x′ in I.
In the usual definition of continuity can δ depend on x. Uniform continuity
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implies continuity, but the reverse does not generally apply. For example,
function

f(x) = 1/x : I = (0, 1)

is continuous on i, but not uniformly continuous: f(1/(n + 1))− f(1/n) = 1,
although 1/(n + 1) − 1/n → 0 for n → ∞. On a compact interval I, which
is the interval of type [a, b] where −∞ < a ≤ b < +∞, types of continuity
coincide.

Theorem 17 (On compact: continuity⇒ uniform continuity). If the function
f : [a, b]→ R on the interval [a, b] is continuous, it is uniformly continuous.

Proof. For contradiction, assume that f : [a, b] → R is continuous at every
point of the interval [a, b] (i.e. one sided in the end points of a a b), but that it
is not uniformly continuous on [a, b]. Negation of a uniform continuity means,
that

∃ε > 0 ∀δ > 0 ∃x, x′ ∈ I : |x− x′| < δ & |f(x)− f(x′)| ≥ ε .

Which means that there are points xn, x
′
n ∈ [a, b] for δ = 1/n and n = 1, 2, . . .

that |xn − x′n| < 1/n, but |f(xn)− f(x′n)| ≥ ε. Then, by Bolzano–Weierstrass
theorem there exist subsequences of (xn) and (x′n) which both converge and
(inevitably) have the same point α from [a, b]. This theorem asserts that there
exists a sequence of indices k1 < k2 < . . . such that (xkn) converges. Again
by the theorem there exists sequence of indices of l1 < l2 < . . . that (x′kln )

converges. The sequence (xkln ) remains convergent, because it is a subsequence
of sequence (xkn). Because |xkln − x

′
kln
| < 1/kln ≤ 1/n→ 0,

lim
n→∞

xkln = lim
n→∞

x′kln = α .

To avoid multilevel indices, we rename xkln to xn and x′kln to x′n.) By Heine
definition of limit, continuity of f in α and arithmetic of limits, we have

0 = f(α)− f(α) = lim f(xn)− lim f(x′n) = lim(f(xn)− f(x′n)) .

This contradicts that |f(xn)− f(x′n)| ≥ ε for every n.

Theorem 18 (Continuity ⇒ integrability). If f : [a, b] → R on the interval
[a, b] is continuous then it is Riemann integrable.

Proof. Let f be continuous on [a, b]. Let ε > 0 be given. By the previous
statement, we take δ > 0 such that |f(x)− f(x′)| < ε when distance between
x, x′ ∈ [a, b] is less than δ. Then

sup
[α,β]

f − inf
[α,β]

f ≤ ε
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for each subinterval [α, β] ⊂ [a, b] of length less than δ (why?). We take any
partition D = (a0, a1, . . . , ak−1) of interval [a, b] with λ(D). We have that

S(f,D)− s(f,D) =
k∑
i=1

(ai − ai−1)(sup
Ii

f − inf
Ii
f)

≤
k∑
i=1

(ai − ai−1)ε

= ε(ak − a0) = ε(b− a) .

As in the previous theorem, the ε(b − a) can be made arbitrarily small by
reducing ε. Thus, according to the integrability criterion, f ∈ R(a, b).

Theorem 19 (Linearity of Riemann integral).

(i) (linearity w.r.t. integrand) Let f, g ∈ R(a, b) be two functions having R.
integrals and α, β ∈ R. Then

αf + βg ∈ R(a, b) and

∫ b

a

(αf + βg) = α

∫ b

a

f + β

∫ b

a

g .

(ii) (linearity w.r.t.o boundaries) Let f : [a, b] → R be a function and c ∈
(a, b). Then

f ∈ R(a, b) ⇐⇒ f ∈ R(a, c) & f ∈ R(c, b)

and, if these integrals are defined,

∫ b

a

f =

∫ c

a

f +

∫ b

c

f .

If a > b, we define
∫ b
a
f = −

∫ a
b
f .

Corollary 20 (
∫

over a cycle is 0). Let a, b, c ∈ R, d = min(a, b, c), e =
max(a, b, c) and f ∈ R(d, e). Then the following three integrals exist and
satisfy ∫ b

a

f +

∫ c

b

f +

∫ a

c

f = 0 .

19



Lecture 5 (20.3.2019)
(translated and slightly adapted from lecture notes by Martin Klazar)

Theorem 21 (1st Fundamental Theorem of Calculus). Let f ∈ R(a, b) and
function F : [a, b]→ R be defined as

F (x) =

∫ x

a

f .

Then

(i) F is continuous on [a, b] and

(ii) at every point of continuity x0 ∈ [a, b] of f there exists finite derivative
F ′(x0) and F ′(x0) = f(x0) (this applies one-sided if x0 = a or x0 = b).

Proof. Let c > 0 be the upper bound for |f(x)|, a ≤ x ≤ b (f is integrable and
therefore bounded). For every two points x, x0 ∈ [a, b] we have

|F (x)− F (x0)| =
∣∣∣ ∫ x

a

f −
∫ x0

a

f
∣∣∣ =

∣∣∣ ∫ x

x0

f
∣∣∣ ≤ |x− x0|c ,

according to the definition of F , linearity
∫

in integration limits and estimate∫
by upper sum for a trivial partition of the interval with end points x and x0.

Thus, for x→ x0, we have F (x)→ F (x0). Therefore, F is continuous in x0.
Let x0 ∈ [a, b] be a point of continuity of f . We have δ > 0 that f(x0)−ε <

f(x) < f(x0) + ε once |x− x0| < δ. For 0 < x− x0 < δ then

f(x0)− ε ≤
∫ x
x0
f

x− x0
=
F (x)− F (x0)

x− x0
≤ f(x0) + ε ,

according to the trivial estimate of
∫ x
x0
f by lower and upper sums for trivial

partition (x0, x). For −δ < x − x0 < 0 the same inequalities apply (both the
numerator and the denominator of the fraction will change sign). For x→ x0,

x 6= x0, we have F (x)−F (x0)
x−x0 → f(x0), or F ′(x0) = f(x0).

Corollary 22 (Continuous function has a primitive function). If f : [a, b]→
R is continuous on [a, b], then f has a primitive function F on [a, b].

Proof. Just use the previous theorem and let F (x) =
∫ x
a
f .

Theorem 23 (2nd Fundamental Theorem of Calculus). If f ∈ R(a, b) and
F : [a, b]→ R is primitive to f on [a, b], then∫ b

a

f = F (b)− F (a) .
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Proof. Let D = (a0, a1, . . . , ak) be any partition of [a, b]. Using Lagrange’s
mean value theorem for each interval Ii = [ai−1, ai] and the function F , we
get

F (b)− F (a) =
k∑
i=1

(F (ai)− F (ai−1)) =
k∑
i=1

f(ci)(ai − ai−1) ,

for some points ai < ci < ai+1 (since F ′(ci) = f(ci)). Thus, (since infIi f ≤
f(ci) ≤ supIi f)

s(f,D) ≤ F (b)− F (a) ≤ S(f,D) .

Then, from integrability of f , it follows that F (b)− F (a) =
∫ b
a
f .

For a function F : [a, b]→ R we denote the difference of functional values
in endpoints of the interval by

F |ba := F (b)− F (a) .

Previous results put together yield the following.

Corollary 24 (
∫

and primitive function). If f : [a, b] → R is continuous on
[a, b], then f ∈ R(a, b), f has a primitive function F on [a, b] and∫ b

a

f = F |ba = F (b)− F (a) .

Newton integral.
Let f : (a, b) → R be such that a primitive function F of f on (a, b) has

one sided limits F (a+) = limx→a+ F (x) a F (b−) = limx→b− F (x). We define
Newton integral of f on (a, b) as

(N)

∫ b

a

f = F (b−)− F (a+) .

Since different primitive functions of f differ by an additive constant, this
difference does not depend on the choice of F and the definition is correct. The
set of functions which are Newton integrable on (a, b) is denoted by N (a, b).
We denote by C(a, b) the set of functions continuous on [a, b].

Theorem 25 (comparison of Newton and Riemann
∫

).

(i) C(a, b) ⊂ N (a, b) ∩R(a, b) .

(ii) If f ∈ N (a, b) ∩R(a, b), then

(N)

∫ b

a

f = (R)

∫ b

a

f .

(iii) The sets N (a, b)\R(a, b) and R(a, b)\N (a, b) are nonempty.
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Proof. If f is continuous on [a, b], by theorem from previous lecture, f ∈
R(a, b) and by First fundamental theorem of calculus, F (x) =

∫ x
a
f is a primi-

tive function to f on [a, b]. We have F (a+) = F (a) = 0 a F (b−) = F (b) =
∫ b
a
f ,

thus f ∈ N (a, b).
Let f ∈ N (a, b) ∩ R(a, b). Since f ∈ N (a, b), f has a primitive function

F on (a, b) with one sided limits F (a+) and F (b−). Since f ∈ R(a, b), f ∈
R(a+ δ, b− δ) for every δ > 0 and by Second fundamental theorem of calculus
we have

(R)

∫ b−δ

a+δ

f = F (b− δ)− F (a+ δ) .

For δ → 0+ the left hand side tends to (R)
∫ b
a
f (f is bounded on [a, b], thus

integrals of f on [a, a+ δ] and [b− δ, b] tend to 0) and left hand side tends to

F (b−)− F (a+) = (N)
∫ b
a
f .

Function f(x) = x−1/2 : (0, 1] → R, f(0) = 42, has Newton integral
on (0, 1): F (x) = 2x1/2 is primitive function of f on (0, 1), F (0+) = 0 and

F (1−) = 2, thus (N)
∫ 1

0
f = 2. However, f is not bounded on [0, 1] and

therefore f 6∈ R(0, 1). Function sgn(x) is non-decreasing on [−1, 1] and thus
Riemann integrable on [−1, 1]. On the other hand, sgn(x) does not have
Newton integral on (−1, 1) — as we showed on the first lecture, sgn(x) does
not have a primitive function on (−1, 1).

Next we state variants of methods of computing primitive functions for
definite integrals.

Theorem 26 (Integration by parts for definite integral). Let f, g : [a, b]→ R
be functions with continuous derivatives f ′ and g′ on [a, b] . Then,∫ b

a

fg′ = fg|ba −
∫ b

a

f ′g .

Theorem 27 (Substitution for definite integral). Let ϕ : [α, β] → [a, b] and
f : [a, b] → R are two functions such that ϕ has continuous derivative on
[α, β] and ϕ(α) = a, ϕ(β) = b or ϕ(α) = b, ϕ(β) = a. If

(i) f is continous on [a, b], or

(ii) if ϕ is strictly monotonous on [α, β] and f ∈ R(a, b)

then ∫ β

α

f(ϕ)ϕ′ =

∫ ϕ(β)

ϕ(α)

f =


∫ b
a
f or∫ a

b
f = −

∫ b
a
f .

Proof of (i). The function f is continuous, so it has a primitive function F .
Derivative of a composed function F (ϕ) on [α, β] is F (ϕ)′ = f(ϕ)ϕ′. So, F (ϕ)
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is on [α, β] a primitive function of f(ϕ)ϕ′. The function f(ϕ)ϕ′ is continu-
ous (since product of two continuous functions is continuous) on [α, β], thus,
f(ϕ)ϕ′ ∈ R(α, β). Thus, applying 2nd fundamental theorem of calculus twice
(the first and the third equality), we have∫ β

α

f(ϕ)ϕ′ = F (ϕ)|βα = F |ϕ(β)ϕ(α) =

∫ ϕ(β)

ϕ(α)

f .
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Lecture 6 (27.3.2019)
(translated and slightly adapted from lecture notes by Martin Klazar)

Applications of integrals
We estimate factorial n! = 1 · 2 · . . . · n as follows: for f(x) = log x :

[1,+∞) → [0,+∞) and a partition D = (1, 2, . . . , n + 1) of interval [1, n + 1]
we have

s(f,D) =
n∑
i=1

1 · log i = log(n!) a S(f,D) =
n∑
i=1

1 · log(i+ 1) = log((n+ 1)!) .

Since s(f,D) <
∫ n+1

1
log x = (n + 1) log(n + 1) − (n + 1) + 1 < S(f,D), for

n ≥ 2 we get estimate

n log n− n+ 1 < log(n!) < (n+ 1) log(n+ 1)− n

and so

e
(n
e

)n
< n! < e

(
n+ 1

e

)n+1

.

Similarly we estimate harmonic numbers Hn,

Hn = 1 +
1

2
+

1

3
+ . . .+

1

n
.

For a function f(x) = 1/x : (0,+∞) → (0,+∞) and a partition D =
(1, 2, . . . , n+ 1) of interval [1, n+ 1] we have that

s(f,D) =
n∑
i=1

1 · 1

i+ 1
= Hn+1 − 1 a S(f,D) =

n∑
i=1

1 · 1

i
= Hn .

Since s(f,D) <
∫ n+1

1
1/x = log(n+ 1) < S(f,D), for n ≥ 2 we get

log(n+ 1) < Hn < 1 + log n .

Similarly one can estimate also sums of infinite series, but we need integral
over infinite domain to do that.

For a ∈ R and f : [a,+∞)→ R such that f ∈ R(a, b) for every b > a, we
define ∫ +∞

a

f := lim
b→+∞

∫ b

a

f ,

if the limit exists (we allow±∞). We say that the integral converges if and only
if the limit is a real number and we say that the integral diverges otherwise.

24



Theorem 28 (Integral criterion of convergence). Let a be and integer and
f : [a,+∞) → R be a function which is non-negative and non-increasing on
[a,+∞). Then,

∞∑
n=a

f(n) = f(a) + f(a+ 1) + f(a+ 2) + . . . < +∞ ⇐⇒
∫ +∞

a

f < +∞ .

So, the series converges if and only if the corresponding integral converges.

Proof. The sequence of partial sums of the series is non-decreasing and there-
fore it has a limit which is either real or +∞. Since f is monotone, f ∈ R(a, b)

for every real b > a. Moreover, since f is non-negative,
∫ b′
a
f ≥

∫ b
a
f , if b′ ≥ b.

Then limb→+∞
∫ b
a
f exists and is either real or +∞. For some integer b > a,

consider the partition D = (a, a+1, a+2, . . . , b) of [a, b]. We have the following
inequalities:

b∑
i=a+1

f(i) = s(f,D) ≤
∫ b

a

f ≤ S(f,D) =
b−1∑
i=a

f(i) .

It follows that bounded partial sums imply bounded integrals
∫ b
a
f for any

integer b > a and the other way round. Thus, both limits are either real or
+∞.

Now we can easily decide convergence of

∞∑
n=1

1

ns
, s > 0 .

For s 6= 1, we have∫ +∞

1

dx

xs
=

x1−s

1− s

∣∣∣∣+∞
1

= (1− s)−1( lim
x→+∞

x1−s − 1) ,

this equals +∞ for 0 < s < 1 and (s− 1)−1 for s > 1. For s = 1 we have∫ +∞

1

dx

x
= log x|+∞1 = lim

x→+∞
log x = +∞ .

Thus, by integral criterion the series converges if and only if s > 1.
Next, consider the series

∞∑
n=2

1

n log n
.

Here, ∫ +∞

2

dx

x log x
= log log x|+∞2 = lim

x→+∞
log log x− log log 2 = +∞ .
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By integral criterion the series diverges. Exercise: analyze convergence of∑
n≥2 1/n(log n)s, s > 1.
We have already shown estimates of factorial using integrals. Now we show

how to extend factorial to a smooth function on [1,+∞).

Theorem 29 (Gamma function). Function Γ defined as

Γ(x) :=

∫ +∞

0

tx−1e−t dt : [1,+∞)→ (0,+∞)

satisfies the following functional equation

Γ(x+ 1) = xΓ(x) .

on interval [1,+∞). Moreover, Γ(1) = 1 and Γ(n) = (n − 1)! for integers
n ≥ 2.

Proof. First, we show that Γ(x) is correctly defined. For every fixed x ≥ 1,
the integrand is a non-negative continuous function (for x = 1 and t = 0 we
let 00 = 1). Since limt→+∞ t

x−1e−t/2 = 0 (exponential grows faster than a
polynomial), for every t ∈ [0,+∞) we have the following inequality:

tx−1e−t = tx−1e−t/2 · e−t/2 ≤ ce−t/2 ,

where c > 0 is a constant depending only on x. Thus, integrals over finite
intervals [0, b] are defined, for b→ +∞ don’t decrease and have a finite limit:∫ b

0

tx−1e−t dt ≤
∫ b

0

ce−t/2 dt = c(1− e−b/2/2) < c .

The value Γ(x) is therefore defined for every x ≥ 1. For x = 1, we have

Γ(1) =

∫ +∞

0

e−t dt = (−e−t)|+∞0 = 0− (−1) = 1 .

Functional equation can be derived by integration per partes:

Γ(x+ 1) =

∫ +∞

0

txe−t dt = tx(−e−t)|+∞0 −
∫ +∞

0

xtx−1(−e−t) dt

= 0− 0 + x

∫ +∞

0

tx−1e−t dt

= xΓ(x) .

Values Γ(n) follow by induction.

Note that extending factorial to a function f on [1,+∞) satisfying f(x +
1) = xf(x) can be done in many ways, starting from any function defined on
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[1, 2) with f(1) = 1 and extending it. The advantage of Γ(x) is that it has
derivatives of all orders.

Finally, we give formulas for area, length of a curve and volume of solids
of revolution. We have essentially defined area U(a, b, f) (that is, points (x, y)
in a plane satisfying a ≤ x ≤ b a 0 ≤ y ≤ f(x)) under the graph of function f

as
∫ b
a
f .

For a function f : [a, b]→ R we define length of its graph G = {(x, f(x)) ∈
R2 | a ≤ x ≤ b} as a limit of length of a sequence of broken lines L with
endpoints of segments on G which ”approximate G”, where the length of a
longest segment of L tends to 0. For ”nice” functions f (for instance those with
continuous derivative), this limit exists and we can calculate it using Riemann
integral. A segment of L connecting points (x, f(x)) and (x + ∆, f(x + ∆))
has by Pythagoras theorem length

√
∆2 + (f(x+ ∆)− f(x))2 = ∆

√
1 +

(
f(x+ ∆)− f(x)

∆

)2

.

From this, one can derive the following formula:

Theorem (length of a curve). Let f : [a, b] → R be a function with
continuous derivative on [a, b] (so

√
1 + (f ′)2 ∈ R(a, b)). Then

length({(x, f(x)) ∈ R2 | a ≤ x ≤ b}) =

∫ b

a

√
1 + (f ′(t))2 dt .

For a subset M ⊂ R3 we can define its volume as a limit, for n → ∞, of
the sume of volumes of 1/n3 cubes K in the set

{K = [ a
n
, a+1

n
]× [ b

n
, b+1

n
]× [ c

n
, c+1

n
] | a, b, c ∈ Z & K ⊂M} .

If M is ”nice”, this limit exists and can be computed using integral. In par-
ticular, if M is obtained by rotating some planar figure around the horizontal
axis, we get the following.

Theorem (volume of solid of revolution). Let f ∈ R(a, b) and f ≥ 0 on
[a, b]. For a volume of a body defined as

V = {(x, y, z) ∈ R3 | a ≤ x ≤ b &
√
y2 + z2 ≤ f(x)}

obtained by rotating a planar figure U(a, b, f) under the graph of a function f
around x-axis we have

volume(V ) = π

∫ b

a

f(t)2 dt .

The formula can be obtained by cutting V by planes perpendicular to x-axis
into slices of length ∆ > 0 and summing their volumes. Each slice is roughly
a cylinder with radius |f(x)| and height ∆.

27



Lecture 7 (3.4.2019)
(partially translated and adapted from lecture notes by Martin Klazar)

Multivariable calculus

We will work in m-dimensional Euclidean space Rm, m ∈ N, which is a set
of all ordered m-tuples of reals x = (x1, x2, . . . , xm) with xi ∈ R. It is an m-
dimensional vector space over R — we can sum and subtract its elements and
we can multiply them by real constants. We introduce a notion of distance in
Rm, using (Euclidean) norm wich is a mapping ‖ · ‖ : Rm → [0,+∞) defined
as

‖x‖ =
√
x21 + x22 + . . .+ x2m .

Euclidean norm has the following properties (a ∈ R, x,y ∈ Rm):

(i) (positivity) ‖x‖ ≥ 0 a ‖x‖ = 0 ⇐⇒ x = o = (0, 0, . . . , 0),

(ii) (homogenity) ‖ax‖ = |a| · ‖x‖ and

(iii) (triangle inequality) ‖x + y‖ ≤ ‖x‖+ ‖y‖.

Using the norm, we define (Euclidean) distance d(x,y) : Rm×Rm → [0,+∞)
between two points x and y in Rm as

d(x,y) = ‖x− y‖ =
√

(x1 − y1)2 + (x2 − y2)2 + . . .+ (xm − ym)2 .

Properties of Euclidean distance (x,y, z ∈ Rm):

(i) (positivity) d(x,y) ≥ 0 and d(x,y) = 0 ⇐⇒ x = y,

(ii) (symmetry) d(x,y) = d(y,x) and

(iii) (triangle inequality) d(x,y) ≤ d(x, z) + d(z,y).

With exception of triangle inequality (deriving of which requires more ef-
fort), these properties of norm and distance follow easily form the definition.

(Open) ball B(a, r) with radius r > 0 and center a ∈ Rm is the set of points
in Rm with distance from a less than r:

B(a, r) = {x ∈ Rm | ‖x− a‖ < r} .

Open set in Rm is a subset M ⊂ Rm such that for every point x ∈M there is
a ball with center x contained in M :

M is open ⇐⇒ ∀x ∈M ∃r > 0 : B(x, r) ⊂M .

Following properties of open sets in Rm can be derived as a simple exercise:

(i) sets ∅ a Rm are open,
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(ii) union
⋃
i∈I Ai of any system {Ai | i ∈ I} of open sets Ai is an open set

(iii) intersection of two (finitely many) open sets is an open set.

Intersection of infinitely many open sets might not be open. Neighborhood
of a point a ∈ Rm is any open set in Rm containing a.

We will consider functions f : M → R, f = f(x1, x2, . . . , xm), defined on
M ⊂ Rm and mappings

f : M → Rn, M ⊂ Rm, f = (f1, f2, . . . , fn) ,

where fi = fi(x1, x2, . . . , xm) are coordinate functions. Our goal will be to
generalize derivative as a linear approximation and a notion of integral to
functions of several variables.

First, we generalize concept of continuity. Let U ⊂ Rm be a neighborhood
of a point a ∈ Rm. We say that a function f : U → R is continuous at a, if

∀ε > 0 ∃δ > 0 : ‖x− a‖ < δ ⇒ |f(x)− f(a)| < ε .

More generally, a mapping f : U → Rn, is continuous at a if

∀ε > 0 ∃δ > 0 : ‖x− a‖ < δ ⇒ ‖f(x)− f(a)‖ < ε ,

i.e., we replace absolute value (which is the norm in R1) by norm in Rn.
Similarly, we can generalize the notion of limit of a function:

lim
x→a

f(x) = c⇔ ∀ε > 0 ∃δ > 0 : x ∈ B(a, δ) \ {a} ⇒ |f(x)− c| < ε.

Multivarible Riemann Integral

First, we generalize a notion of Riemann integral to multivariable functions,
defining multivariable analogues of partition of an interval and upper and lower
Riemann sum.

An n-dimensional box is a Cartesian product of closed intervals

I = [a1, b1]× [a2, b2]× · · · × [an, bn]

where −∞ < ai < bi <∞, i = 1, . . . , n. For instance, for 2-dimensional box is
a closed rectangle with sides parallel to the axes.

Volume of a box is defined as |I| =
∏n

i=1(bi − ai). A partition of a box is a
set of boxes

D = {[cj11 , c
j1+1
1 ]× · · · × [cjnn , c

jn+1
n ]|0 ≤ ji < ki, 1 ≤ i ≤ n},

where ai = c0i < c1i < · · · < ckii = bi are some partitions of the intervals [ai, bi],
i = 1, . . . , n. Norm of a partition is defined as

λ(D) = max
0≤ji<ki,1≤i≤n

(cj+1
i − cji ),
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i.e., as a maximal ”length of an edge of a sub-box”.
One can now define a partition with points and generalize a Riemann defi-

nition of integral. However, we will proceed by generalizing Darboux definition
of the integral.

Let I be a box with a partition D and let f : I → R be a function. For
every box J ∈ D we define m(J) = infx∈J f(x) and M(J) = supx∈J f(x). We
define lower and upper Riemann sum as

s(f,D) =
∑
J∈D

|J | ·m(J), S(f,D) =
∑
J∈D

|J | ·M(J)

and lower and upper integral as∫
I

f = sup({s(f,D)|D is a partition of I}),

∫
I

f = inf({S(f,D)|D is a partition of I}).

Similarly as in one dimension, the following inequalities hold

s(f,D) ≤
∫
I

f ≤
∫
I

f ≤ S(f,D).

Integral of f on I is then defined as a real number∫
I

f =

∫
I

f =

∫
I

f

if upper integral equals lower integral.
We denote the set of functions which have integral on I by R(I).
We say that a set E ⊆ Rm has measure zero if for every ε > 0 exists a

sequence of boxes I1, I2, . . . in Rm, such that
∑∞

n=1 |In| < ε and E ⊂ ∪∞n=1In.

Theorem 30. Let I ⊆ Rm be a box and f : I → R is a well defined function.
Then f ∈ R(I) if and only if f is bounded and a set its points of discontinuity
has measure zero.

Integral over a bounded set E ⊂ Rm which is not a box: A characteristic
function of a set E is a function χE : Rm → {0, 1} defined as χe(x) = 1 if x ∈ E
and χe(x) = 0 otherwise. Let I be a box containing E. Volume of E is defined
as vol(E) =

∫
I
χE, if the integral exists. Finally, we define

∫
E
f =

∫
I
f(x) ·χE.
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Lecture 8 (10.4.2019)
(partially translated and adapted from lecture notes by Martin Klazar)

Multivariable calculus

The following theorem gives a method how to compute multivariable Rie-
mann integral by computing ”ordinary” integrals.

Theorem 31 (Fubini). Let X ⊂ Rm, Y ⊂ Rn and Z = X×Y ⊂ Rm+n be m−,
n−, and m + n-dimensional boxes, respectively. Let f : Z → R, f ∈ R(Z).
Then integrals

∫
Z
f ,
∫
X

(
∫
Y
f) and

∫
Y

(
∫
X
f) exist and are all equal.

Integrals
∫
X

(
∫
Y
f) and

∫
Y

(
∫
X
f) have the following meaning. Define a

function F : X → R as F (x) =
∫
Y
f(x,y) dy, whenever

∫
Y
f(x,y) dy exists

and by arbitrary value from the interval [
∫
Y
f(x,y) dy,

∫
Y
f(x,y) dy] otherwise.

We then interpret
∫
X

(
∫
Y
f) as

∫
X
F . We define a function G : Y → R and

interpret
∫
Y

(
∫
X
f) analogously as

∫
Y
G.

By repeated application of Fubini Theorem, one can derive the following.

Corollary 32. Let I = [a1, b1] × · · · × [an, bn] be a box and let f : I → R,
f ∈ R(I). Then∫

I

f =

∫ bn

an

(∫ bn−1

an−1

· · ·
(
· · ·
∫ b1

a1

f(x1, . . . xn) dx1

)
· · · dxn−1

)
dxn.

Note that the order of variables can be chosen arbitrarily.

Directional derivative, partial derivative, total
differential

Let U ⊂ Rm be a neighborhood of a point a and f : U → R be a function.
Directional derivative of f at a point a in direction v ∈ Rm\{o} is defined as
a limit

Dvf(a) := lim
t→0

f(a + tv)− f(a)

t
,

if it exists. Imagine that U is an area in three dimensional Euclidean space,
where f is a function of temperature in a given point and a particle moving
through the area. Directional derivatives Dvf(a) corresponds to immediate
change of temperature of surroundings of a particle in a moment when it is at
a point a and has velocity v.

Partial derivative of a function f at a point a with respect to the i-th vari-
able xi is a directional derivative Deif(a), where ei the i-th vector of canonical
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basis, i.e., ei = (0, 0, . . . , 0, 1, 0, 0, . . . , 0) has i-th coordinate 1 and all other co-
ordinates 0. We denote partial derivative by ∂f

∂xi
(a) (or, as a shortcut ∂if(a).

Thus, partial derivative equals to the following limit.

∂f

∂xi
(a) = lim

h→0

f(a1, . . . , ai−1, ai + h, ai+1, . . . , am)− f(a1, a2, . . . , am)

h
.

The vector of values of all partial derivatives of a function f at a point a
is called the gradient of f at a and is denoted ∇f(a).

∇f(a) := ( ∂f
∂x1

(a), ∂f
∂x2

(a), . . . , ∂f
∂xm

(a)) .

A function f : U → R, U ⊆ Rm, is differentable at a ∈ U if there exists a
linear mapping L : Rm → R, such that

lim
h→o

f(a + h)− f(a)− L(h)

‖h‖
= 0 .

This mapping L is called (total) differential (or total derivative) of f at a
and is denoted by Df(a).

More generally, a mapping f : U → Rnis differentiable at a ∈ U , if there
exists a linear mapping L : Rm → Rn satisfying

lim
h→o

‖f(a + h)− f(a)− L(h)‖
‖h‖

= 0

(note that norm in the norm in the denominator is in Rm and the norm in
the numerator in Rn). Again, we call L differential and denote it by Df(a).
An important difference between directional and partial derivatives, which are
simply real numbers, and the differential is, that the differential is a more
complex object — a linear mapping.

Directional derivatives, partial derivatives and the total differential give the
following linear approximations of f close to a:

f(a + tv) = f(a) + Dvf(a) · t+ o(t), t→ 0 ,

f(a + tei) = f(a) +
∂f

∂xi
(a) · t+ o(t), t→ 0 ,

f(a + h) = f(a) + Df(a)(h) + o(‖h‖), ‖h‖ → 0 .

In the first two expressions t is a real number and the approximation is relevant
only for arguments on the line in the direction v, in the third expression,
h ∈ Rm and approximation works for any argument close to a.

Differentiability is a stronger property than existence of directional and
partial derivatives. (Moreover, existence of all partial/directional derivatives
at a point does not even imply continuity!)

One can calculate partial derivative with respect to xi using the same meth-
ods as computing derivatives of functions of single variable — by treating all
the variables except xi as constants.
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Theorem 33 (Properties of differential). Let f = (f1, f2, . . . , fn) : U → Rn

be a mapping and U ⊂ Rm a neighborhood of a.

1. Differential of f at a is unique (if it exists).

2. A mapping f is differentiable at a, if and only if each coordinate function
fi is differentiable at a.

3. If f is differentiable at a, then f is continuous at a.

Theorem 34 (Differential ⇒ ∂). Let U ⊂ Rm be a neighborhood of a point
a and f : U → R a function differentiable at a. Then f has all partial
derivatives at a and their values determine the differential:

Df(a)(h) =
∂f

∂x1
(a) · h1 +

∂f

∂x2
(a) · h2 + · · ·+ ∂f

∂xm
(a) · hm

= 〈∇f(a),h〉

(i.e., value of the differential at h is a scalar product of h and a gradient
of f at a). Moreover, f then also has all directional derivatives at a and
Dvf(a) = Df(a)(v).

Proof. Since the differential is defined as a linear mapping L = Df(a), we have

L(h) = L(h1e1 + h2e2 + · · ·+ hmem) = L(e1)h1 + · · ·+ L(em)hm ,

where ei is the i-th vector of the canonical base. Thus, by definition of total
differential at a, f(a + tei) = f(a) + L(tei) + o(‖tei‖) as t→ 0.

∂f

∂xi
(a) = lim

t→0

f(a + tei)− f(a)

t
= lim

t→0

L(tei) + o(‖tei‖)
t

= lim
t→0

tL(ei) + o(|t|)
t

= L(ei) + lim
t→0

o(|t|)
t

= L(ei) .

Thus, L(ei) = ∂f
∂xi

(a).
Let v ∈ Rm be a nonzero vector. Since v = v1e1 + . . . + vmem and f has

all partial derivatives at a, by similar reasoning we get that Dvf(a) equals to
Df(a)(v).

The differential of a mapping f : U → Rn, a mapping L = Df(a) : Rm → Rn,
can be described by an n×m matrix, where L(h) is the result of multiplication
of h by the matrix:

L(h) =


L(h)1
L(h)2

...
L(h)n

 =


l1,1 l1,2 . . . l1,m
l2,1 l2,2 . . . l2,m
...

... · · · ...
ln,1 ln,2 . . . ln,m




h1
h2
...
hm

 .
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where i-th row of this matrix is a gradient of the coordinate function fi at a
point a:

li,j =
∂fi
∂xj

(a) .

Corollary 35 (Jacobi matrix). Differential of a mapping f : U → Rn at a
point a, where U ⊂ Rm is a neighborhood of a and f has coordinate functions
f = (f1, f2, . . . , fn), is determined by Jacobi matrix if the mapping f at a point
a:

(
∂fi
∂xj

(a)

)n,m
i,j=1

=


∂f1
∂x1

(a) ∂f1
∂x2

(a) . . . ∂f1
∂xm

(a)
∂f2
∂x1

(a) ∂f2
∂x2

(a) . . . ∂f2
∂xm

(a)
...

... · · · ...
∂fn
∂x1

(a) ∂fn
∂x2

(a) . . . ∂fn
∂xm

(a)

 .

If the Jacobi matrix is a square matrix, its determinant is called jacobian.

Theorem 36 (∂ ⇒ differential). Let U ⊂ Rm is a neighborhood of a point
a ∈ Rm. If a function f : U → R has all partial derivatives on U and they
are continuous at a, then f is differentiable at a.

Geometry of partial derivatives and differentials.
We now generalize the notion of tangent line to a graph of a function of

one variable to a tangent (hyper-)plane to a graph of a function of several
variables. For simplicity, we consider only tangent planes for functions of two
variables, general tangent hyperplanes are defined in an analogous way (but
are hard to imagine).

Let (x0, y0) ∈ U ⊂ R2, where U is an open set in a plane, and f : U → R
is a function. Its graph

Gf = {(x, y, z) ∈ R3 | (x, y) ∈ U, z = f(x, y)}

is a surface in three dimensional Euclidean space. On Gf , there exists a
point (x0, y0, z0), such that z0 = f(x0, y0). Assume that f is differentiable at
(x0, y0). Then, there exists a unique linear functions of two variables L(x, y)
(i.e. L(x, y) = α+ βx+ γy), such that a graph of L(x, y) contains (x0, y0, z0),
and it satisfies

lim
(x,y)→(x0,y0)

f(x, y)− L(x, y)

d((x, y), (x0, y0))
= 0.

Specifically, it is a function

T (x, y) = z0 +
∂f

∂x
(x0, y0) · (x− x0) +

∂f

∂y
(x0, y0) · (y − y0) .

It follows from the uniqueness of a diffenential, because T (x, y) = z0+Df(x0, y0)(x−
x0, y − y0). Graph of T (x, y)

GT = {(x, y, z) ∈ R3 | (x, y) ∈ R2, z = T (x, y)}
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is called the tangent plane to the graph of f at (x0, y0, z0).
Equation of the tangent plane z = T (x, y) can be rewritten in the form

∂f

∂x
(x0, y0) · (x− x0) +

∂f

∂y
(x0, y0) · (y − y0)− (z − z0) = 0 ,

alternatively 〈n, (x− x0, y − y0, z − z0)〉 = 0 ,

where n ∈ R3 je vektor

n =

(
∂f

∂x
(x0, y0),

∂f

∂y
(x0, y0),−1

)
.

Denoting x = (x, y, z) and x0 = (x0, y0, z0), we can express GT as

GT = {x ∈ R3 | 〈n,x− x0〉 = 0} .

That is, the tangent plane consists of all points whose direction from x0 is
perpendicular to n. Vector n is called a normal vector of the graph of f at x0.
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Lecture 9 (17.4.2019)
(translated and adapted from lecture notes by Martin Klazar)

Theorem 37 (∂ ⇒ differential). Let U ⊂ Rm is a neighborhood of a point
a ∈ Rm. If a function f : U → R has all partial derivatives on U and they
are continuous at a, then f is differentiable at a.

Proof. We consider only the case of two variables x and y (m = 2). For more
variables, the proof is similar (but more technical). We might assume that the
point a = o and U is a ball B(o, γ) for some γ > 0. Let h = (h1, h2) ∈ U (so,
‖h‖ < γ) and h′ = (h1, 0). Difference f(h)− f(o) can be expressed as a sum
of differences along both coordinate axes:

f(h)− f(o) = (f(h)− f(h′)) + (f(h′)− f(o)) .

Segments h′h and oh′ lie inside U , so f is defined on them, morever, f
depends only on variable y on the former and only on variable x on the latter
segment. Thus, Lagrange mean value Theorem (for single variable) yields:

f(h)− f(o) =
∂f

∂y
(ζ2) · h2 +

∂f

∂x
(ζ1) · h1 ,

where ζ1 and ζ2 are internal points of segments oh′ and h′h, respectively.
In particular, the points ζ1 and ζ2 lie inside B(o, ‖h‖), so by continuity of both
partial derivatives at o, we have

∂f

∂y
(ζ2) =

∂f

∂y
(o) + α(ζ2) and

∂f

∂x
(ζ1) =

∂f

∂x
(o) + β(ζ1) ,

where α(h) and β(h) are o(1) as h → o (i.e., for every ε > 0 there is δ > 0,
such that ‖h‖ < δ ⇒ |α(h)| < ε · 1 = ε and the same holds for β(h)). Thus

f(h)− f(o) =
∂f

∂y
(o) · h2 +

∂f

∂x
(o) · h1 + α(ζ2)h2 + β(ζ1)h1 .

By triangle inequality, and inequalities 0 < ‖ζ1‖, ‖ζ2‖ < ‖h‖ and |h1|, |h2| ≤
‖h‖ it follows that if ‖h‖ < δ, then

|α(ζ2)h2 + β(ζ1)h1| ≤ |α(ζ2)| · ‖h‖+ |β(ζ1)| · ‖h‖ ≤ 2ε‖h‖ .

Thus, α(ζ2)h2 + β(ζ1)h1 = o(‖h‖) for h → o. So by definition of the total
differential, f is differentiable at o.

Lagrange Mean Value Theorem can be generalized for functions of several
variables as follows.

36



Theorem 38 (Lagrange Mean Value Theorem for several variables). Let U ⊂
Rm be an open set containing a segment u = ab with endpoints a and b and
let f : U → R be a function which is continuous at every point of u and
differentiable at every internal point of u. Then there exists an internal point
ζ of u satisfying

f(b)− f(a) = Df(ζ)(b− a) .

In other words, difference of functional values at endpoints of the segment
equals value of differential at some internal point of the segment for the vector
of the segment.

Proof. Idea: Apply Lagrange Mean Value Theorem of single variable for an
auxiliary function F (t) = f(a + t(b− a)) and t ∈ [0, 1].

We say that an open set D ⊂ Rm is connected, if every two of its points can
be connected by a broken line contained in D. Examples of connected open
sets: an open ball in Rm, whole Rm and R3\L, where L is the union of finitely
many lines. On the other hand, B\R, where B is an open ball R3 and R a
plane intersecting B, is an open set which is not connected.

Corollary 39 (∂ = 0 ⇒ f ≡ const.). If a function f of m variables has zero
differential at every point of an open connected set U , then f is constant on
U . The same conclusion holds if f has all partial derivatives on U zero.

Proof. Idea: Consider two points of U and a broken line connecting them.
Apply Lagrange Mean Value Theorem for several variables for each segment
of the broken line.

Calculating partial derivatives and differentials. For two functions f, g :
U → R, defined on a neighborhood U ⊂ Rm of a point a ∈ U that have a
partial derivative with repect to xi at a point a, formulae for partial derivative
their sum, product and quotient are analogous to those for single variable:

∂i(αf + βg)(a) = α∂if(a) + β∂ig(a)

∂i(fg)(a) = g(a)∂if(a) + f(a)∂ig(a)

∂i(f/g)(a) =
g(a)∂if(a)− f(a)∂ig(a)

g(a)2
(if g(a) 6= 0) .

Similarly, for differentials, we have:

Theorem 40 (Arithmetic of differentials). Let U ⊂ Rm is a neighborhood of
a and f, g : U → R are functions differentiable at a.

(i) αf + βg is differentiable at a and

D(αf + βg)(a) = αDf(a) + βDg(a) .

for any α, β ∈ R,
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(ii) fg is differentiable at a and

D(fg)(a) = g(a)Df(a) + f(a)Dg(a) .

(iii) If g(a) 6= 0, f/g is differentiable at a and

D(f/g)(a) =
1

g(a)2

(
g(a)Df(a)− f(a)Dg(a)

)
.

Proof. Follows from Theorem 34 and formulae for partial derivatives.

The formula for linear combination can be easily generalized for vector
valued functions f, g : U → Rn.

Next, we generalize a formula for derivative of a composed function to a
composition of multivariable mappings. We use ◦ for denoting composition,
where (g ◦ f)(x) = g(f(x)).

Theorem 41 (Differential of a composed mapping). Let

f : U → V, g : V → Rk

are two mappings where U ⊂ Rm is a neighborhood of a and V ⊂ Rn is a
neighborhood of b = f(a). If the mapping f is differentiable at a and g is
differentialble at b, the composed mapping

g ◦ f = g(f) : U → Rk

is differentiable at a and the total differential is a composition of differentials
of f and g:

D(g ◦ f)(a) = Dg(b) ◦Df(a) .

Since composition of linear mappings corresponds to multiplication of ma-
trices, total differential of a composed mapping corresponds to a product of
the Jacobi matrices.
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Lecture 10 (24.4.2019)
(translated and adapted from lecture notes by Martin Klazar)

Partial derivatives of higher orders
If the f : U → R function defined on a neighborhood U ⊂ Rm of a point a

has a partial derivative F = ∂fxi in each point U and this function F : U → R
has at a the partial derivative ∂Fxj(a), we say that f has a partial derivative
at the point a of the second order with respect to the variables xi and xj and
we denote it

∂2f

∂xj∂xi
(a)

or shortly by ∂i∂jf(a).
Similarly, we define higher order partial derivatives: if f = f(x1, x2, ldots, xm)

has partial derivative (i1, i2, . . . , ik−1, j ∈ {1, 2, . . . ,m})

F =
∂k−1f

∂xik−1
∂xik−2

. . . ∂xi1
(x)

at every point x inU and we say that f has partial derivative of order k with
respect to the variables xi1 , . . . , xik−1

, xj in point a and we denote its value by

∂kf

∂xj∂xik−1
. . . ∂xi1

(a) .

In general, order of variables in higher order derivatives matters. You can
verify yourself that f : R2 → R,

f(x, y) =

{
xy(x2−y2)
x2+y2

pro x2 + y2 6= 0

0 pro x2 + y2 = 0 ,

has different mixed (i.e., with respect to two different variables) second order
partial derivatives in the origin.

∂2f

∂x∂y
(0, 0) = 1 a

∂2f

∂y∂x
(0, 0) = −1 .

However, the order does not matter if the partial derivatives are continuous.

Theorem 42 (Usually ∂x∂yf = ∂y∂xf). Let f : U → R be a function with
second order partial derivatives ∂j∂if a ∂i∂jf , i 6= j on a neighborhood U ⊂ Rm

of a point a which are continuous in a. Then

∂j∂if(a) = ∂i∂jf(a) .
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Proof. We prove the statement for m = 2, for m > 2, the proof would be
analogous but more tedious. Without loss of generality, we may assume that
a = o = (0, 0). By continuity of the partial derivatives in the origin, it
is enough to find for arbitrarily small h > 0 two points σ, τ in the square
[0, h]2 satisfying ∂x∂yf(σ) = ∂y∂xf(τ). Then, for h → 0+ , σ, τ → o and
from a limit argument and continuity of the partial derivatives we get that
∂x∂yf(o) = ∂y∂xf(o).

Given h, we find σ and τ as follows. We denote the corners of the square
a = (0, 0), b = (0, h), c = (h, 0), d = (h, h) and we consider a value f(d) −
f(b)− f(c) + f(a). It can be expressed in two different ways:

f(d)− f(b)− f(c) + f(a) = (f(d)− f(b))− (f(c)− f(a)) = ψ(h)− ψ(0)

= (f(d)− f(c))− (f(b)− f(a)) = φ(h)− φ(0) ,

where
ψ(t) = f(h, t)− f(0, t) and φ(t) = f(t, h)− f(t, 0) .

We have that ψ′(t) = ∂yf(h, t) − ∂yf(0, t) and φ′(t) = ∂xf(t, h) − ∂xf(t, 0).
Lagrange mean value theorem gives two expresions

f(d)− f(b)− f(c) + f(a) = ψ′(t0)h = (∂yf(h, t0)− ∂yf(0, t0))h

= φ′(s0)h = (∂xf(s0, h)− ∂xf(s0, 0))h ,

where 0 < s0, t0 < h are intermediate points. Applying the theorem once more
on differences of partial derivatives of f , we obtain the following

f(d)− f(b)− f(c) + f(a) = ∂x∂yf(s1, t0)h
2 = ∂y∂xf(s0, t1)h

2, s1, t1 ∈ (0, h) .

Points σ = (s1, t0) and τ = (s0, t1) belong to [0, h]2 and we have ∂x∂yf(σ) =
∂y∂xf(τ) (since both sides equal to (f(d)− f(b)− f(c) + f(a))/h2).

For an open set U ⊂ Rm we denote by Ck(U) the set of functions f : U →
R, such that all their partial derivatives of order up to k (inclusive) (exist and)
are continuous on U .

Corollary 43 (Reordering partial derivatives). For every function f = f(x1, x2, . . . , xm)
from Ck(U) values of its partial derivatives up to order k do not depend on the
order of variables—for l ≤ k and a ∈ U it holds that

∂lf

∂xil∂xil−1
. . . ∂xi1

(a) =
∂lf

∂xjl∂xjl−1
. . . ∂xj1

(a) ,

whenever (i1, . . . , il) and (j1, . . . , jl) differ only by permutation of the elements.

Proof. (idea) If a sequence v = (j1, . . . , jl) is a permutation of the sequence
u = (i1, . . . , il), one can turn u into v only by swapping consecutive pairs of
elements (in a bubble sort like manner). Then the equality of partial derivatives
follows from the previous theorem.
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Since only the multiset of variables matters in case of continuous partial
derivatives, we can more briefly write ∂x2 instead of ∂x∂x. For instance, for f
from C5(U) on U we have

∂5f

∂y ∂x ∂y ∂y ∂z
=

∂5f

∂y2 ∂x ∂z ∂y
=

∂5f

∂x ∂z ∂y3
=

∂5f

∂z ∂y3 ∂x
.

Local extrema of multivariate functions
Extrema of the multivariate functions are defined as follows. A function

f : U → R, where U ⊂ Rm is an open neighborhood of a point a, has in a

• strict local minimum, if there exists δ > 0, such that 0 < ‖x− a‖ < δ ⇒
f(x) > f(a),

• (non-strict) local minimum, if there exists δ > 0, such that 0 < ‖x−a‖ <
δ ⇒ f(x) ≥ f(a).

Strict and non-strict local minimum are defined analogously. A function f :
M → R, where M ⊂ Rm, has maximum on a set M if f(a) ≥ f(x) for every
x ∈M . Again, minimum is defined analogously.

Recall facts about extrema of function of a single variable from winter:

1. if f ′(a) 6= 0, f does not have a local extremum in a;

2. if f ′(a) = 0 and f ′′(a) > 0, f has a strict local minimum in a and

3. if f ′(a) = 0 and f ′′(a) < 0, f has a strict local maximum in a.

If f ′(a) = f ′′(a) = 0, we canot decide whether f has extremum in a or not
without further analysis. If f ′(a) = 0 (a is a ”suspicious” point), we cannot,
based on the value of the second derivative f ′′(a) rule out the existence of a
local extremum. As we shall see, this is not the case for multivariate functions.

In winter term, it was shown that continuous function has extrema on closed
bounded interval. This generalizes to multivariate functions. We say that a
set M ⊂ Rm is bounded, if there exists a real R > 0, such that M ⊂ B(0, R).
Recall thatM is closed, if its complement Rm\M is open. We say thatM ⊂ Rm

is compact, when it is closed and bounded.

Theorem 44 (Extrema on compact). Let M ⊂ Rm be a nonempty compact
set and f : M → R a continuous function on M . Then f attains minimum
and maximum on M .

For instance the unit sphere S = {x ∈ Rn| ||x|| = 1} in Rn, is a compact
set and thus every continuous function f : S → R attains minimum and
maximum on S.

We fist introduce some notation and recall some facts from linear algebra.
Let A = (ai,j) ∈ Rn×n be a real symmetric matrix (ai,j = aj,i) of size n× n. A
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quadratic form corresponding to this matrix is a function of n variables defined
as

PA(x1, x2, . . . , xn) = xAxT =
n∑

i,j=1

ai,jxixj : Rn → R ,

where x is a row vector (x1, x2, . . . , xn) and xT is the corresponding column
vector.

A matrix A is

• pozitive (negative) definite, if PA(x) > 0 (PA(x) < 0) for every x ∈
Rn\{0};

• pozitive (negative) semidefinite, if PA(x) ≥ 0 (PA(x) ≤ 0) for every
x ∈ Rn and

• indefinite, if it is none of the previous, that is, there exist x,y ∈ Rn such
that PA(x) > 0 and PA(y) < 0.

Hessian matrix Hf (a) of a function f in a point a, where U ⊂ Rm is an
open neighborhood of a and f : U → R is a function with all partial derivatives
of second order on U , is a metrix recording values of these derivatives in a:

Hf (a) =

(
∂2f

∂xi∂xj
(a)

)m
i,j=1

.

By theorem that ∂x∂y = ∂y∂x, if f ∈ C2(U) its Hessian matrix is symmetric.

Theorem 45 (Necessary condition for local extremum.). Let f : U → R,
where U ⊂ Rm is an open neighborhood of a. If ∇f(a) 6= 0, then f does not
have local extremum in a.

Proof. For i = 1, . . .m, define auxiliary functions of a single variable gi(h) =
f(a + hēi). Note that g′i(0) = ∂fxi(a). By results from winter term, it follows
that if ∂fxi(a) 6= 0, gi does not have an extremum in 0. Moreover, if gi does
not have an extremum in 0, f does not have an extremum in a.

Theorem 46 (Sufficient conditions for local extrema). Let f ∈ C2(U), where
U ⊂ Rm is an open neighborhood of a.

1. If ∇f(a) = 0 and Hf (a) is positive (negative) definite, then f has local
minimum (maximum) in a.

2. If ∇f(a) = 0 and Hf (a) is indefinite, f does not have local extremum in
a.

Sylvester kriterion from linear algebra gives the following way to recognize
definiteness of a symmetric matrix: if all subdeterminants dm = det(ai,j)

m
i,j=1,

1 ≤ m ≤ n, are non-zero, then, if all of them are positive, the matrix A is
pozitive definite, if (−1)mdm > 0, 1 ≤ m ≤ n, then A is negative definite, and
the matrix is indefinite otherwise. (If some of the determinants are zero, we
don’t know.)
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Lecture 11 (15.5.2019)
(translated and slightly adapted from lecture notes by Martin Klazar)

Implicit functions. As we know from linear algebra, system of n linear
equations with n variables ai,1y1 + ai,2y2 + . . .+ ai,nyn + bi = 0, i = 1, 2, . . . , n,
where ai,j ∈ R are given constants and det(ai,j)

n
i,j=1 6= 0, has for each choice

of n constants bi unique solution y1, y2, . . . , yn. Moreover, this solution yj is a
homogenous linear functions of bi, that is: yj(b1, b2, . . . , bn) = cj,1b1 + cj,2b2 +
. . . + cj,nbn, j = 1, 2, . . . , n, for some constants cj,i ∈ R (this follows from
Crammer’s rule).

We now generalize this result to the situation when the linear functions are
replaced by general functions. We will consider a system of n equations with
m+ n variables

F1(x1, . . . , xm, y1, . . . , yn) = 0

F2(x1, . . . , xm, y1, . . . , yn) = 0
...

Fn(x1, . . . , xm, y1, . . . , yn) = 0 ,

where Fi are real functions defined on some neighborhood of a point (x̄0, ȳ0)
in Rm+n, where x̄0 ∈ Rm and ȳ0 ∈ Rn, is a solution of the system, that is
F1(x0,y0) = F2(x0,y0) = . . . = Fn(x0,y0) = 0. We shall see that under
certain conditions it is possible to express variables y1, y2, . . . , yn as functions
yi = fi(x1, x2, . . . , xm) of variables x1, x2, . . . , xm on some neighborhood of x0.
Even in simplest cases we cannot expect to have necessarily a solution, not to
speak of a unique one. Consider example the following single equation

F (x, y) = x2 + y2 − 1 = 0.

For |x| > 1 there is no y with f(x, y) = 0. For |x0| < 1, we have in a sufficiently
small open interval containing x0 two solutions

f(x) =
√

1− x2 and g(x) = −
√

1− x2.

This is better, but we have two values in each point, contradicting the definition
of a function. To achieve uniqueness, we have to restrict not only the values of
x, but also the values of y to an interval (y0−∆, y0+∆) (where F (x0, y0) = 0).
That is, if we have a particular solution (x0, y0) we have a “window”

(x0 − δ, x0 + δ)× (y0 −∆, y0 + ∆)

through which we see a unique solution.
But in our example there is also the case (x0, y0) = (1, 0), where there is a

unique solution, but no suitable window as above, since in every neighborhood
of (1, 0), there are no solutions for any value x slightly bigger and two solutions
for value x slightly smaller.
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Theorem 47 (Implicit function Theorem.). Let F (x, y) be a function of n+ 1
variables defined in a neighbourhood of a point (x0, y0). Let F have continuous
partial derivatives up to the order p ≥ 1 and let

F (x0, y0) = 0 and
∂F

∂y
(x0, y0) 6= 0.

Then there exist δ > 0 and ∆ > 0 such that for every x with ||x − x0|| < δ
there exists precisely one y with |y − y0| < ∆ such that

F (x, y) = 0.

Furthermore, if we write y = f(x) for this unique solution y, then the function

f : B(x, δ)→ R

has continuous partial derivatives up to the order p. Moreover,

∂f

∂xi
(x) = −

∂F
∂xi

(x, f(x))
∂F
∂y

(x, f(x))

for every i = 1, . . . n.

We will not prove this theorem, however, we show how to derive the formula
for partial derivatives of the implicit function f , assuming they exist.

Since we have
0 ≡ F (x, f(x));

taking a derivative of both sides (using the Chain Rule) we obtain.

0 =
∂F

∂xi
(x, f(x)) +

∂F

∂y
(x, f(x)) · ∂f

∂xi
(x).

.
From this, we can express ∂f

∂xi
(x). Differentiating further, we obtain in-

ductively linear equations from which we can compute the values of all the
derivatives guaranteed by the theorem.

For more than a system of several functions, we can apply the previous
theorem inductively, eliminating variables one by one.

Theorem 48 (Implicit functions). Let

F = (F1, F2, . . . , Fn) : W → Rn

be a mapping defined on a neighborhood W ⊂ Rm+n of a point (x0,y0), where
x0 ∈ Rm and y0 ∈ Rn, satisfying the following conditions:

1. Fi = Fi(x,y) ∈ C1(W ) for 1 ≤ i ≤ n.

2. Fi(x0,y0) = 0 for 1 ≤ i ≤ n.
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3. det(


∂F1

∂y1

∂F1

∂y2
. . . ∂F1

∂yn

...
... · · · ...

∂Fn

∂y1
∂Fn

∂y2
. . . ∂Fn

∂yn

 (x0,y0)) 6= 0.

Then there exist neighborhoods U ⊂ Rm and V ⊂ Rn of x0 a y0 such that
U × V ⊂ W and for every x ∈ U there exists exactly one y ∈ V satisfying
Fi(x,y) = 0 for 1 ≤ i ≤ n. In other words, there exist a mapping f =
(f1, f2, . . . , fn) : U → V such that

∀(x,y) ∈ U × V : F (x,y) = 0 ⇐⇒ y = f(x) .

Moreover fi is C1(U) for every i = 1, . . . n.

Constrained extrema. From Implicit functions theorem one can derive a
necessary condition for local extrema on sets defined by a system of equations.

Let U ⊂ Rm be an open set and let

f, F1, . . . , Fn : U → R

be functions from C1(U), where n < m. We wish to find extrema of f on a set

H = {x ∈ U | F1(x) = F2(x) = · · · = Fn(x) = 0} .

Such a set usually does not have any internal points. Example of such a set is
a unit sphere in Rm:

{x ∈ Rm | x21 + x22 + . . .+ x2m − 1 = 0} .

Theorem 49 (Lagrange multipliers). Let U ⊂ Rm be an open set,

f, F1, . . . , Fn : U → R

be functions from C1(U), where n < m and let

H = {x ∈ U | F1(x) = F2(x) = · · · = Fn(x) = 0} .

Let a ∈ H. If ∇F1(a), . . . ,∇Fn(a) are linearly independent and ∇f(a) is not
their linear combination, then f does not have a local extremum with respect
to H in a.

Equivalently: if ∇F1(a), . . . ,∇Fn(a) are linearly independent and f has
local extremum in a with respect to H , then there exist reals λ1, . . . , λn ∈ R,
called Lagrange multipliers, such that

∇f(a)−
n∑
i=1

λi∇Fi(a) = 0 .

that is,
∂f

∂xj
(a)− λ1

∂F1

∂xj
(a)− · · · − λn

∂Fn
∂xj

(a) = 0

for every 1 ≤ j ≤ m.
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Lecture 12 (22.5.2019)
(translated and slightly adapted from lecture notes by Martin Klazar)

Metric and topological spaces
Metric space is a structure formalizing distance. It is a pair (M,d) consist-

ing of M 6= ∅ and a function of two variables

d : M ×M → R,

called a metric, which satisfies the following three axioms:

• d(x, y) ≥ 0 (non-negativity) a d(x, y) = d(y, x) (symmetry),

• d(x, y) = 0 ⇐⇒ x = y and

• d(x, y) ≤ d(x, z) + d(z, y) (triangle inequality).

The non-negativity of the metric in a) does not have to be required, it
follows from axioms b) and c). Here are some examples of metric spaces.
Axioms a) and b) can usually be checked easily. Proving triangle inequality is
often more difficult.

Example 5. M = Rn a p ≥ 1 is a real number. At M we define dp(x, y)
metrics

dp(x, y) =

(
n∑
i=1

|xi − yi|p
)1/p

(x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn)). For n = 1 we get classical metrics
|x− y| to R and for p = 2, n ≥ 2 Euclidean metrics

d2(x, y) = ‖x− y‖ =
√

(x1 − y1)2 + (x2 − y2)2 + · · ·+ (xn − yn)2.

For p = 1, n ≥ 2 we get Manhattan metric

d1(x, y) =
n∑
i=1

|xi − yi|

and for p→∞ maximum metric

d∞(x, y) = max
1≤i≤n

|xi − yi| .

Example 6. For M we take a set of all bounded functions f : X → R defined
on the X set. At M then we have supremum metric

d(f, g) = sup
x∈X
|f(x)− g(x)| .
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Example 7. For a connected graph G = (M,E) with a set of vertices M , we
have a metric

d(u, v) = the number of edges on the shortest path in G joining vertices u and v

Example 8. Let A be a set (alphabet) and let M = Am be the set of strings
of length m over the alphabet A (u = a1a2 . . . am, v = b1b2 . . . bm). So called
Hamming Metric

d(u, v) = number of coordinates i, for which ai 6= bi .

It measures the degree of difference between the two words, i.e., the smallest
number of changes in the letters needed for converting u into v.

We will introduce a few basic concepts; with many we have already met in
Euclidean spaces. Let (M,d) be a metric space. Then

• (open) ball in M with centre a ∈ M and radius R 3 r > 0 is the set
B(a, r) = {x ∈M | d(a, x) < r};

• A ⊂M is open set if ∀a ∈ A ∃r > 0 : B(a, r) ⊂ A;

• A ⊂M is a closed set if M\A is an open set;

• A ⊂ M is a bounded set if there is a point a ∈ M and a radius r > 0
that A ⊂ B(a, r);

• A ⊂ M is a compact set if each sequence of points (an) ⊂ A has a
convergent subsequence, whose limit lies in A.

Convergence and limit are generalized from the real axis to the general metric
space in an obvious way: sequence (an) ⊂ M is convergent and has a limit
a ∈M , (we write limn→∞ an = a) when

∀ε > 0 ∃n0 : n > n0 ⇒ d(an, a) < ε

In other words, limn→∞ d(an, a) = 0 (we have converted it to the real sequence
limit).

We have already mentioned the properties of open sets: ∅ and M are open,
union of any system sets of open sets is an open set, and the intersection of
any finite system of open sets is an open set. By switching to the complement,
we have the dual properties of closed sets: ∅ and M are closed, the union of
any finite system of closed sets is a closed set, and the intersection of any set
system of closed sets is a closed set.

Theorem 50 (Characterisation of closed sets). A set A ⊂M is closed in M ,
if and only if the limit of every convergent sequence (an) ⊂ A belongs to A.
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Proof. Let A ⊂ M be a closed set and (an) ⊂ A a convergent sequence. If
limn→∞ an = a 6∈ A, there exists a radius r > 0 such that B(a, r) ⊂M\A. But
then d(an, a) ≥ r for every n, this contradicts that limn→∞ an = a. So a ∈ A.

Conversely, if the A ⊂M is not a closed set, there is a point a ∈M\A such
that for each radius r > 0 is B(a, r)∩A 6= ∅. We put r = 1/n, n = 1, 2, . . ., and
for each n choose a point an ∈ B(a, 1/n) ∩ A. Then (an) ⊂ A is a convergent
sequence with limn→∞ an = a, but a 6∈ A.

Topological spaces. Topological spaces are generalization of metric
spaces. The pair T = (X, T ), where X is the set and T is a system of its
subsets is a topological space if T has the following properties:

(i) ∅, X ∈ T ,

(ii)
⋃
U ∈ T for every subsystem U ⊂ T , and

(iii)
⋂
U ∈ T for every finite subsystem U ⊂ T .

Sets in the T system is called the open sets of the topological space T (their
complements to X are then closed sets of the T space). Example of topological
space are the open sets of each metric space. However, there are plenty of
topological spaces, which are not metrizable (i.e. do not come from metric
space).

Continuous mappings. Let (M,d) and (N, e) be two metric spaces. We
say that a mapping

f : M → N

is continuous, if

∀a ∈M, ε > 0 ∃δ > 0 : b ∈M,d(a, b) < δ ⇒ e(f(a), f(b)) < ε .

.

Theorem 51 (Topological definition of continuity). A mapping f : M → N
between metric spaces is continuous, if and only if for every open set B ⊂ N
is its preimage f−1(B) = {x ∈M | f(x) ∈ B} open set in M .

Theorem 52 (Compact ⇒ closed and bounded). Each compact set in the
metric space is closed and bounded.

Proof. Let A ⊂ M be a subset in metric space (M,d). When A is not closed,
there is convergence the sequence (an) ⊂ A, whose limit a does not belong
to A. Each subsequence of (an) is also convergent and has the same limit a.
This means that no subsequence (an) is has its limit within A (the limit is
determined unambiguously) and thus A is not compact.

When A is not bounded, it is not contained in any B(a, r) balls and we
can easily build a sequence (an) ⊂ A with the property that d(am, an) ≥ 1 for
every two indices 1 ≤ m < n. This property contradicts sequence convergence
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(why?) every subsequence of (an)has this property , so (an) has no convergent
subsequence. A is not compact again.

We define a sequence (an) ⊂ A with the specified property inductively.
We take the first point a1 ∈ A arbitrarily. Assume that we have already
constructed points a1, a2, . . . , ak of A, such that the distance of each pair is at
least 1. Then we take any sphere B(a, r), which contains all of these points
(each finite set is bounded) and consider the B(a, r + 1) sphere. Since A is
not bounded, there exists point ak+1 ∈ A that is not in B(a, r+ 1). According
to the triangle inequality, d(ak+1, x) ≥ 1 for every point x ∈ B(a, r) (why?).
Thus ak+1 has distance at least 1 from each point a1, a2, . . . , ak a a1, a2, . . . , ak
we can extend to a1, a2, . . . , ak, ak+1. Thus defined sequence ak, k = 1, 2, . . .
has the required property.

Probably the simplest example showing that the converse does not hold in
general is the following. Let (M,d) be a trivial metric space, where d(x, y) = 1
for x 6= y a d(x, x) = 0 (verify that this is a metric space), and the M set is
infinite. Then each the sequence (an) ⊂ M , where an are mutually different
points (for the existence of such a sequence we need infinity M) satisfies that
d(am, an) ≥ 1 for every two indices 1 ≤ m < n. As we know, such a sequence
has no convergent subsequence and therefore M is not a compact set. But M
is a closed set and it is also bounded because it is a subset of B(a, 2) for any
point a ∈M .

As we have already mentioned, the converse holds for the Euclidean spaces.

Theorem 53 (Closed and bounded ⇒ compact in Rk). Each closed and
bounded set in the Euclidean space Rk is compact.

Theorem 54 (Continuous function attains extremes on compact). Let f :
M → R be a continuous function from the metric space (M,d) into the Eu-
clidean space R1 and M is compact. Then f has minimum and maximum on
M .
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