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kých metod v kombinatorice. Výsledky lze zařadit do dvou hlavńıch oblast́ı.
Prvńı oblast pokrývá pr̊useč́ıkové struktury konvexńıch množin. V práci je ukázáno,

že konečné projektivńı roviny nemůžou být pr̊useč́ıkovými strukturami konvexńıch
množin pevné dimenze, což odpov́ıdá na otázku Alona, Kalaie, Matouška a Meshu-
lama. Dále je ukázáno, že d-kolabovatelnost (nutná podmı́nka na vlastnosti pr̊useč́ıkových
struktur konvexńıch množin v dimenzi d) je NP-těžká k rozpoznáńı pro d ≥ 4. A také
je ukázáno, že d-kolabovatelnost neńı nutnou podmı́nkou na vlastnosti pr̊useč́ıkových
vzor̊u dobrých pokryt́ı, což vyvraćı domněnku G. Wegnera z roku 1975.

Do druhé oblasti spadá několik výsledk̊u ohledně algoritmické obt́ıžnosti rozpoz-
náváńı simpliciálńıch komplex̊u vnořitelných do Rd. Konkrétněji, je algortmicky ne-
rozhodnutelné, zda lze k-rozměrný simpliciálńı komplex po částech lineárně vnořit do
Rd, pokud d ≥ 5 a k ∈ {d − 1, d}. Dále je tento problém NP-těžký, pokud d ≥ 4 a
d ≥ k ≥ 2d−2
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Chapter 1

Introduction

Combinatorics is a mathematical discipline attempting to enumerate the number of
objects with a given property. Usually it deals with discrete objects rather then
continuous. Although enumeration is the main question of combinatorics (at least it
has given the name to combinatorics “number of combinations”) there are also other
important branches which are interconnected with the enumeration due to similarity
of appearing objects or similarity of mathematical ideas. Thus, e.g., the questions of
whether there is an object with a given property, or whether there is an algorithm
constructing/enumerating all the objects with a given property are also an integral
part of combinatorics.

Combinatorics strongly interacts with graph theory where the objects in the ques-
tion are graphs, vertices of graphs, edges of graphs, etc. (Actually, graph theory can
be seen as a subbranch of combinatorics.) It also interacts with geometry when the
objects in the question are, e.g., points/segments/lines/triangles in a plane/space or
various other geometric objects.

Surprisingly, introducing continuous objects can often help to solve discrete com-
binatorial problems. One of the most famous results of this spirit is Lovász’s break-
through solution of Kneser’s conjecture [Lov78]. He managed to provide a tight lower
bound for chromatic number of so-called Kneser’s graph by showing that a certain
topological space is highly connected.

The task of this thesis is to solve several open problems on the boundary of com-
binatorics, geometry and topology.

Important objects for linking combinatorics and topology are simplicial complexes.
Roughly speaking, they are topological spaces formed by gluing simplices of various
dimensions together (i.e., points, edges, triangles, tetrahedra, . . . ). Their advantage
is that they have a simple combinatorial description. For a reader not familiar with
simplicial complexes we point out that the simplicial complexes are discussed in more
detail in the following chapter.

Results of the thesis. Results of the thesis focus on two main branches.

First branch regards intersection patterns of convex sets. The main question of
this branch is to describe possible intersection patterns of collections of convex sets in
the Euclidean space Rd. There is perhaps no simple description of possible intersec-
tion patterns (e.g., because of some algorithmic hardness results). There are, however,
some necessary and sufficient conditions that help understanding this area. We de-
scribe a formal viewpoint on this study and then also several new results (mostly
already published—see the bibliographic remarks below) are presented here. They

9
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include the fact that the gap between so called d-representability and d-collapsibility
can be arbitrary large; clarifying the complexity status of several algorithmic questions
from this area; and an example showing that Wegner’s d-collapsibility does not extend
to good covers. The precise statements of the results are mentioned in the introduc-
tory chapter to this branch—Chapter 3. The results are then separately proved in
Chapters 5, 6, 7, and 8.

The second branch regards the question of whether a given simplicial complex
embeds into an Euclidean space of given dimension. This area was intensively theoret-
ically studied by topologists; however, not form an algorithmic perspective. Thus we
focus on this question from an algorithmic point of view and we show some hardness
results, or even undecidability results depending on the dimensions of the complex and
the space in the question. Chapter 4 is an introductory chapter to this area. Main
results are proved in Chapter 9.

Bibliographic remarks. Most of the contents of the thesis has already been pub-
lished or is being considered for publication. (Some parts of the text were, of course,
modified in order to obtain a coherent text.) Here we would like to explain the bibli-
ographic status of the results in the thesis.

A significant part of Chapter 3 coincide with the survey article [Tan11b]. Chap-
ters 4 and 9 are based on a common work with my advisor Jǐŕı Matoušek and Uli
Wagner from ETH Zürich [MTW11]. Chapter 5 is new.1 Chapter 6 follows [Tan10b];
however, the contents of the Sections 6.3 and 6.4 is not published anywhere. The
contents of Chapter 7 is mainly from [Tan10a] and the contents of Chapter 8 from
[Tan11a].

1However, an article based on the contents of the chapter was recently submitted to a journal.



Chapter 2

Preliminaries on simplicial
complexes

Simplicial complexes are central objects for translating combinatorics into topology
and vice versa. We guess that the reader is already familiar with simplicial complexes;
however, we still prefer to introduce simplicial complexes in full detail. The reader
familiar with simplicial complexes can skip this chapter and consult it only if a problem
occurs. We present here only fundamental properties of simplicial complexes used
throughout the thesis. More advanced properties are introduced exactly before they
(first) usage.

We also refer to another sources covering simplicial complexes such as [Hat01,
Mat03, Mun84].

We deal with finite abstract simplicial complexes, i.e., collections K of subsets of a
finite set X such that if α ∈ K and β ⊂ α, then β ∈ K. Elements of K are faces of
K. The dimension of a face α ∈ K is defined as dimα = |α| − 1. The dimension of a
simplicial complex is the maximum of dimensions of its faces. The set of vertices of K
is defined as V (K) := {v ∈ X : {v} ∈ K}.

In some cases we simplify the notation (if there is no risk of confusing reader).
For instance we may write v instead of {v} for a face containing a single vertex or ab
instead of {a, b} for an edge.

A geometric simplicial complex can be obtained from an abstract simplicial complex
K in such a way that a face α ∈ K is replaced by a (nondegenerated!) simplex s(α) of
dimension dimα in an Euclidean space Rd in the following way (see Figure 2).

• A vertex v ∈ V (K) is mapped to a point p(v) ∈ Rd.

• A face α ∈ K is mapped to s(α) = conv{p(v); v ∈ V (K)}.

• For α, β ∈ K we have s(α ∩ β) = s(α) ∩ s(β).

If we need to distinguish geometric and abstract simplicial complexes we call s(α)
a geometric face of K. For many purposes it is not necessary to distinguish abstract
and geometric simplicial complexes; and we will not distinguish them if there is no
risk of confusing the reader. However, if we write a simplicial complex or even just a
complex, we primarily always mean an abstract simplicial complex.

Graphs coincide with 1-dimensional simplicial complexes. If V ′ is a subset of
vertices of K then the induced subcomplex K[V ′] is a complex of faces α ∈ K such
that α ⊆ V ′. We use the notation L ≤ K for pointing out that L is an induced

11
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1 2 3

4 5

Figure 2.1: A geometric simplicial complex corresponding to an abstract simpli-
cial complex with faces {1}, {2}, {3}, {4}, {5}, {1, 2}, {1, 4}, {2, 4}, {2, 5}, {4, 5}, and
{1, 2, 4}.

1
2

3 4

5 b1 b12 b2

b123

b13
b23

b3
b34

b4

b45

b5

b24

Figure 2.2: Barycentric subdivision of a complex. For example, the vertex b13 denotes
the barycenter of the face 13 = {1, 3} (in geometric setting).

subcomplex of K. An m-skeleton of K is a simplicial complex consisting of faces of K
of dimension at most m. We denote it by K(m). The m-dimensional full simplex, ∆m,
is a simplicial complex with the vertex set {1, . . . , m + 1} and all possible faces. We
also use the notation ∆(S) for a full simplex on a set S. The geometric realization of
a complex K, denoted by |K|, is the topological space

⋃
{conv s(α) : α ∈ K}, where

s(α) are geometric faces of K. The resulting topological space does not depend (up
to a homeomorphism) on the choice of the geometric simplicial complex for a given
abstract simplicial complex.

Barycentric subdivision. Given a simplicial complex K, sometimes we need to
refine K while the geometric realization of K remains unaffected. A suitable tool for
such a task is the barycentric subdivision of K.

From geometric point of view we put a new vertex into the barycenter of every
geometric face of K. Then we form a new simplicial complex whose vertices are the
barycenters and whose faces are simplices formed in between these barycenters.

It is perhaps more convenient to state the precise definition in abstract setting.
Given a simplicial complex K the barycentric subdivision of K is a simplicial complex
sdK whose set of vertices is the set K \ ∅ and whose faces are collections {α1, . . . , αm}
of faces of K such that

α1 ) α2 ) · · · ) αm 6= ∅.

The vertices of sdK play role of barycenters of faces of K \ ∅. The faces of sdK are the
simplices in between of these barycenters. See Figure 2.2.

The complexes K and sdK have the same geometric realization, i.e., |K| = | sdK|.



Chapter 3

Intersection patterns of convex sets

An important branch of combinatorial geometry regards studying intersection patterns
of convex sets. Research in this area was initiated by a theorem of Helly [Hel23] which
can be formulated as follows: If C1, . . . , Cn are convex sets in Rd, n ≥ d+ 1, and any
collection of d+1 sets among C1, . . . , Cn has a nonempty intersection, then all the sets
have a common point. We will focus on results of similar spirit.

3.1 d-representable complexes

First we introduce d-representable simplicial complexes which provide a systematic
way for studying intersection patterns of convex sets. Let C be a collection of some
subsets of a given set X . The nerve of C, denoted by N(C), is a simplicial complex
whose vertices are the sets in C and whose faces are subcollections {C1, . . . , Ck} ⊆ C
such that the intersection C1 ∩ · · · ∩ Ck is nonempty. The notion of nerve is designed
to record the ‘intersection pattern’ of the sets in C.

A simplicial complex K is d-representable if it is isomorphic to the nerve of a
finite collection of convex sets in Rd. Such a collection of convex sets is called a d-
representation for K. As it was mentioned above, d-representable complexes exactly
record all possible intersection patterns of finite collections of convex sets in Rd.

Using the notion of d-representability, the Helly theorem can be reformulated as
follows: A d-representable simplicial complex does not contain a k-dimensional simpli-
cial hole for k ≥ d, i.e., a complex isomorphic to ∆

(k)
k+1. (We remark that a geometric

representation of k-dimensional simplicial hole is homeomorphic to the k-sphere Sd;
and it is the simplest way, how to obtain the k-sphere as a simplicial complex.)

Example 3.1. Figure 3.1 shows a collection C = {C1, C2, C3, C4, C5} of convex sets (on
left) an their nerve (on right). In another words the simplicial complex on right is
2-representable and C is a 2-representation of it.

Let us also remark that it is possible to put various restrictions to the convex sets in
the definition of d-representability without affecting the definition. These restrictions
can be summarized in the following simple lemma.

Lemma 3.2. Let K be a simplicial complex. The following conditions are equivalent.

(1) K is d-representable;

(2) K is the nerve of a collection of convex polytopes;

13
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C1

C2

C3

C4

C5

C1

C2 C3

C4

C5

Figure 3.1: A 2-representable complex and its nerve.

(3) K is the nerve of a collection of compact convex sets;

(3′) K is the nerve of a collection of closed convex sets;

(4) K is the nerve of a collection of bounded open convex sets.

(4′) K is the nerve of a collection of open convex sets;

Proof. First we show the implication (1) ⇒ (2). Let {Cv} be a d-representation of K
(Cv corresponds to a vertex v). For a face α of K we pick a point pα belonging to all Cv
where v ∈ α. For v ∈ V (K) let C ′

v = conv{pα : v ∈ α}. Then {C ′
v} is a representation

of K using convex polytopes. (Note that C ′
v ⊆ Cv.)

The implications (2) ⇒ (3) ⇒ (3′) are obvious.
It is not hard to see (3) ⇒ (4) if the compact convex sets representing K are blown

up a bit.
The implications (4) ⇒ (4′) ⇒ (1) and (3′) ⇒ (1) are again obvious.

3.2 d-collapsible and d-Leray complexes

There are two other important classes of simplicial complexes related to the d-repres-
entable ones. Informally, a simplicial complex is d-collapsible if it can be vanished
by removing faces of dimension at most d − 1 which are contained in a single maxi-
mal face; a simplicial complex is d-Leray if its induced subcomplexes do not contain,
homologically, d-dimensional holes.

Wegner [Weg75] proved that d-representable simplicial complexes are d-collapsible
and also that d-collapsible complexes are d-Leray.

Now we precisely define d-collapsible complexes and then d-Leray complexes.
Let K be a simplicial complex. Let T be the collection of inclusion-wise maximal

faces of K. A face σ is d-collapsible if there is only one face τ = τ(σ) ∈ T containing
σ (possibly σ = τ), and moreover dim σ ≤ d− 1. The simplicial complex

K
′ := K \ {η ∈ K : η ⊇ σ}

is an elementary d-collapse of K. For such a situation, we use the notation K → K
′.

A simplicial complex is d-collapsible if there is a sequence,

K → K1 → K2 → · · · → ∅,
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→ → →

→ → →

σ = τ = {5, 6} σ = {6}, τ = {1, 6}

σ = {5}, τ = {3, 4, 5}
σ = ∅, τ = {1, 2, 3, 4}

K σ = {1, 5},
τ = {1, 4, 5}

Figure 3.2: A 2-collapsing of a simplicial complex.

of elementary d-collapses ending with an empty complex.

Example 3.3. A simplicial complex K consisting of a full tetrahedron, two full triangles
and one hollow triangle in Figure 3.2 is 2-collapsible. For a proof there is a 2-collapsing
of K drawn on the picture. In every step the faces σ and τ are indicated.

A simplicial K complex is d-Leray if the ith reduced homology group H̃i(L) (over Q)
vanishes for every induced subcomplex L ≤ K and every i ≥ d.

We mention several remarks regarding d-collapsible and d-Leray complexes.

• The fact that d-collapsible complexes are d-Leray is simple (for a reader familiar
with homology) since d-collapsing does not affect homology of dimension d or
more.

It is a bit less trivial to show that a d-representable complex K is d-collapsible.
The idea is to slide a generic hyperplane (from infinity to minus infinity) over
a d-representation for K and gradually cut off whatever is on the positive side
of the hyperplane. See Figure 3.3 and the text bellow the picture for a more
detailed sketch. The reader is referred to [Weg75] for full details.

The inclusion of d-representable complexes in d-Leray complexes can be also
deduced, without using Wegner’s results, from the nerve theorem (see Theo-
rem 3.9).

• A d-dimensional simplicial complex is (d + 1)-collapsible and hence also (d +
1)-Leray. For a complex K the smallest possible ℓ such that K is d-Leray is
traditionally called the Leray number of K.

• Neither d-representability, d-collapsibility nor the Leray number is an invariant
under a homeomorphism: the full simplex ∆m is 0-representable; however, its
barycentric subdivision is not even (m− 1)-Leray, since it contains an (m− 1)-
sphere as an induced subcomplex.

• It is not very difficult to see that every induced subcomplex of a d-collapsible
complex is again d-collapsible. If K[V ′] ≤ K and K → K1 → · · · → ∅ is a d-
collapsing of K, then K[V ′] → K1[V

′] → · · · → ∅ = ∅[V ′] is a d-collapsing for
K[V ′], where some steps are possibly trivial, i.e., Ki[V

′] = Ki+1[V
′].
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A

B

C

D

h

h′

+−

A

C

B

D

p

Figure 3.3: A schematic sketch of the proof of Wegner’s theorem. A generic hyperplane
h is slided from infinity to minus infinity until there is a nontrivial intersection of the
convex sets on its positive side. In this case it slides to h′ and it cuts off A∩B∩C (it also
cuts off A∩C, but for the moment we consider a maximal collection). From genericity
there is a single point p ∈ A∩B∩C ∩h′. It can be shown (using Helly’s theorem) that
there is only at most d sets of the starting collection necessary to obtain p. In this case
{p} = A ∩ C ∩ h′. Thus we obtain a d-collapse with σ = {A,C} and τ = {A,B,C}.
Finally, A ∩ (h′)−, . . . , D ∩ (h′)− form a d-representation for the resulting collapsed
complex thus the procedure can be repeated.

• The Helly theorem easily follows from the fact that d-representable complexes
are contained in d-collapsible ones (or d-Leray ones). For we have that a d-
dimensional simplicial hole is neither d-collapsible nor d-Leray.

On the other hand these two notions provide (much) stronger limitations to
intersection patterns than the Helly theorem. For instance they also exclude (in
dimension 2) the boundary of the octahedron (i.e., the simplicial complex with
vertices {−3,−2,−1, 1, 2, 3} and faces α such that there is no i ∈ {1, 2, 3} with
−i, i ∈ α) or a triangulation of a torus.

3.3 d-representability of complexes of small dimen-

sion

Every finite simplicial complex is d-representable for d big enough. Let K be
a simplicial complex on vertex set {1, . . . , n}. Let x1, . . . , xn be affinely independent
points in Rn−1 (i.e., they form a simplex). For a nonempty face α = {a1, . . . , at} ∈ K

let bα be the barycentre of the points xa1 , . . . , xat . Then for i ∈ {1, . . . , n} we set
Ci := conv{bα : i ∈ α, α ∈ K}. The reader is welcome to check that sets Ci1 , . . . , Cik
intersect if and only if {i1, . . . , ik} ∈ K. Thus, the nerve of C1, . . . , Cn is isomorphic to
K. See Figure 3.4 for an illustration. (If we really would not care about the dimension,
it would be even easier to check the situation where the points bα are set to be the
vertices of a simplex of dimension |K| − 1.)
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Figure 3.4: Representing a complex.

There is, however, another way how to obtain a representation of a complex de-
pending on the dimension of the complex.

Theorem 3.4 (Wegner [Weg67], Perel’man [Per85]). Let K be a d-dimensional sim-
plicial complex. Then K is (2d+ 1)-representable.

The references for Theorem 3.4 are due to Eckhoff [Eck93]. (Perel’man rediscovered
Wegner’s result). Unfortunately, I have not been able to check the proof by Perel’man
(in Russian). In Chapter 5 we supply an idea of the proof of the theorem (the proof
is different from Wegner’s one and it was communicated by Jǐŕı Matoušek).

The value 2d+ 1 in Theorem 3.4 is the least possible; see Chapter 5 for a proof.

3.4 Gaps among the notions

In this section we overview how the notions of d-representable, d-collapsible and d-
Leray complexes differ.

3.4.1 The gap between representability and collapsibility

For d = 0 all three notions 0-representable, 0-collapsible and 0-Leray coincide and
they can be replaced with ‘being a simplex’.

For d = 1: 1-representable complexes are clique complexes over interval graphs ; 1-
collapsible and 1-Leray complexes are clique complexes over chordal graphs (we remark
that results in [LB63, Weg75] easily imply these statements).

For d ≥ 2 there is perhaps no simple characterization of d-representable, d-collaps-
ible and d-Leray complexes. Wegner [Weg75] gave an example of complex, which is 2-
collapsible but not 2-representable. Alon, Kalai, Matoušek and Meshulam [AKMM02]
asked how big can be the gap between representability and collapsibility. Matoušek and
the author [MT09] found d-collapsible complexes that are not (2d− 2)-representable.
Later, the author [Tan10b] improved this result by finding 2-collapsible complexes
that are not d-representable (for any fixed d). We sketch the first construction, and
then we present the second construction in full detail. (Even the weaker construction
contains some steps of their own interest.)

Let E be a (d − 1)-dimensional simplicial complex which is not embeddable in

R2d−2. Such a complex always exist, for example the van Kampen complex ∆
(d−1)
2d ;

see [vK32], or the Flores complex [Flo34], which is the join of d copies of a set of three
independent points. The first example is the nerve N(E). It is d-collapsible but not
(2d− 2)-representable due to the following two propositions [MT09].



18 CHAPTER 3. INTERSECTION PATTERNS OF CONVEX SETS

Proposition 3.5. Let K be a simplicial complex such that the nerve N(K) is n-
representable. Then K embeds in Rn, even linearly.

Proposition 3.6. Let F be a family of sets, each of size at most n. Then the nerve
N(F) is n-collapsible.

Another construction (coincidentally) attaining the weaker bound 2d − 2 is dis-
cussed in Chapter 5 (the bound can be derived from Theorem 5.1).

The second (stronger) example regards finite projective planes seen as simplicial
complexes. Let (P,L) be a finite projective plane, where P is the set of its points
and L is the set of its lines. There is a natural simplicial complex P associated to the
projective plane. Its ground set is P and faces are the collections of points lying on a
common line.

It is not hard to show that P is 2-collapsible. Non-representability of P is summa-
rized in the following theorem [Tan10b].

Theorem 3.7. For every d ∈ N there is a q0 = q0(d) such that if a complex P

correspond to a projective plane of order q ≥ q0 then P is not d-representable.

We remark that the assumption q ≥ q0 cannot be left out since every projective
plane (P,L) of order q can be easily represented by convex sets in R2q+1; see Theo-
rem 3.4.

Theorem 3.7 is proved in Chapter 6. Some details on finite projective planes are
also discussed there. In addition, Theorem 3.7 is also extended for some other almost
disjoint set systems.

3.4.2 The gap between collapsibility and Leray number

Wegner showed an example of complex which is 2-Leray but not 2-collapsible, namely
a triangulation D of the dunce hat. If we consider the multiple join D ⋆ · · · ⋆ D of
d copies of D, we obtain a complex which is 2d-Leray but not (3d − 1)-collapsible.
See [MT09] for more details.

3.5 Algorithmic perspective

As we consider different criteria for d-representability, it is also natural to ask whether
there is an algorithm for recognition d-representable complexes. We denote this algo-
rithmic question as d-Representability. More precisely, the input of this question
is a simplicial complex. The size of the input is the number of faces of the complex.
The value d is considered as a fixed integer. The output of the algorithm is the answer
whether the complex is d-representable.

We can also ask similar questions for d-collapsible and d-Leray complexes as relax-
ations of the previous problem. Thus we have algorithmic problems d-Collapsibility

and d-LerayNumber.

Representability. The first mentioned problem d-Representability is perhaps
the most difficult among the three algorithmic questions. It is NP-hard for d ≥
2. Reduction can be done in a very similar fashion as a reduction for hardness of
recognition intersection graphs of segments [KM89, KM94]. Full details can be found
in Section 7.5. It is not known to the author whether d-Representability belongs
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to NP. On the other hand it is not hard to see that there is a PSPACE algorithm
for d-Representability. It is based on solving systems of polynomial inequalities.
See [KM94, Theorem 1.1(i)(a)] for a very similar reduction.

Collapsibility. The main result of [Tan10a] claims that d-Collapsibility is NP-
complete for d ≥ 4 and it is polynomial time solvable for d ≤ 2. For d = 3, the
problem remains open. We prove the results in Chapter 7.

Leray number. The last question, d-LerayNumber, is polynomial time solvable.
An equivalent characterization of d-Leray complexes is when induced subcomplexes
are replaced with links of faces (including an empty face). See [KM06, Proposition
3.1] for a proof. The tests on links can be done in polynomial time since it is sufficient
to test the homology up to the dimension of the complex.

Greedy collapsibility. The algorithmic results above suggest that it is easier to
test/compute the Leray number than collapsibility. However, if we are interested in
them because of a hint for representability, computing collapsibility still can be more
convenient, since d-collapsibility is closer to d-representability than the Leray number.
An example from Section 3.4 is maybe a bit unconvincing; however, there is a more
important example. As it is shown in Section 3.6 (and in Chapter 8 in more detail),
d-collapsibility can distinguish collections of convex sets and good covers.

An useful tool for computation could be greedy d-collapsibility. We say that a
simplicial complex K is greedily d-collapsible if it is d-collapsible and any sequence of
d-collapses of K ends up in a complex which is still d-collapsible. In another words
greedy collapsibility allows us to collapse the faces of K in whatever order without
risk of being stuck. Thus, if a complex is greedily d-collapsible, then there is a simple
(greedy) algorithm for showing that it is d-collapsible. Not all d-collapsible complexes
are greedily d-collapsible. Complexes which are not greedily d-collapsible for d ≥ 3
are constructed in Chapter 7. However, none of these complexes is d-representable. In
summary there is a hope for obtaining a simple algorithm for showing that a complex
is either d-collapsible or it is not d-representable if the answer to the following question
is true.

Problem 3.8. Is it true that every d-representable simplicial complex is greedily d-
collapsible?

3.6 Good covers

A good cover in Rd is a collection of open sets in Rd such that the intersection of any
subcollection is either empty or a contractible (in particular, the sets in the collection
are contractible).1 We consider only finite good covers. A simplicial complex is topo-
logically d-representable if it is isomorphic to the nerve of a (finite) good cover in Rd.
We should emphasize that (for our purposes) a good cover need not cover whole Rd.

Topologically d-representable complexes generalize d-representable complexes since
every collection of convex sets is a good cover.

1The definition of a good cover is not fully standard in the literature. For example, it may be
assumed that sets in the collection are closed instead of open, or that the intersections are homeo-
morphic to (open) balls instead of contractible. These differences are not essential for the most of
the purposes mentioned here, because all these options satisfy the assumptions of a nerve theorem
(see the text bellow).
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3.6.1 Nerve theorems

Suppose we are given a collection F of subsets of Rd. If the sets are “sufficiently nice”
and also all their intersections are sufficiently nice then the nerve of the collection,
N(F), is homotopy equivalent to the union of the sets in the collection,

⋃
F . For

a weaker assumption on “sufficiently nice”, it is possible to derive not necessarily
homotopy equivalence, but at least equivalence on homology (up to some level). Such
results are known as homotopic/homological nerve theorems.

We mention here a one of possible versions (suitable for our purposes); see [Hat01,
Corollary 4G.3].

Theorem 3.9 (A homotopy nerve theorem). Let F be a collection of open contractible
sets in a paracompact space X such that

⋃
F = X and every nonempty intersection

of finitely many sets in F is contractible (or empty). Then the nerve N(F) and X are
homotopy equivalent.

Corollary 3.10. The nerve of every good cover is d-Leray.

3.6.2 Good covers versus collections of convex sets

Good covers have many similar properties as collections of convex sets. Many results
on intersection patterns of convex sets can be generalized for good covers. See Section 6
of [Tan11b] for a collection of results of this spirit. An exceptional case is Theorem 3.7
which cannot be generalized for good covers.

On the other hand it is not hard to see that topologically d-representable complexes
are strictly more general than d-representable complexes for d ≥ 2. There is a less
trivial example on Figure 8.1 showing that there is a complex which is topologically
d-representable but not d-collapsible. Originally, Wegner conjectured that there is no
such example. See Chapter 8 for more details.

There is another important difference among collections of convex sets and good
covers from a computational point of view. It is algorithmically undecidable whether
a simplicial complex is topologically d-representable for d ≥ 5. (Let us recall that
d-Representability belongs to PSPACE.) This result is obtained in a common work
with D. Tonkonog [TT11]; however, the current status is a manuscript in preparation.



Chapter 4

Embedding simplicial complexes

Does a given (finite) simplicial complex K of dimension at most k admit an embed-
ding into Rd? We consider the computational complexity of this question, regarding
k and d as fixed integers. Besides its intrinsic interest for the theory of computing, an
algorithmic view of a classical subject such as embeddability may lead to new ques-
tions and also to a better understanding of known results. For example, computation
complexity can be seen as a concrete “measuring rod” that allows one to compare the
“relative strength” of various embeddability criteria, respectively of examples show-
ing the necessity of dimension restrictions in the criteria. Moreover, hardness results
provide concrete evidence that for a certain range of the parameters (outside the so-
called metastable range), no simple structural characterization of embeddability (such
as Kuratowski’s forbidden minor criterion for graph planarity) is to be expected.

For algorithmic embeddability problems, we consider piecewise linear (PL) embed-
dings. Let us remark that there are at least two other natural notions of embeddings
of simplicial complexes in Rd: linear embeddings (also called geometric realizations),
which are more restricted than PL embeddings, and topological embeddings, which give
us more freedom than PL embeddings. We will recall the definitions in Chapter 9;
here we quickly illustrate the differences with a familiar example: embeddings of 1-
dimensional simplicial complexes, a.k.a. simple graphs, into R2. For a topological
embedding, the image of each edge can be an arbitrary (curved) Jordan arc, for a PL
embedding it has to be a polygonal arc (made of finitely many straight segments), and
for a linear embedding, it must be a single straight segment. For this particular case
(k = 1, d = 2), all three notions happen to give the same class of embeddable com-
plexes, namely, all planar graphs (by Fáry’s theorem). For higher dimensions there
are significant differences, though, which we also discuss in Section 9.1.

Here we are interested mainly in embeddability in the topological sense (as opposed
to linear embeddability, which is a much more geometric problem and one with a very
different flavor), but since it seems problematic to deal with arbitrary topological
embeddings effectively, we stick to PL embeddings, which can easily be represented in
a computer.

We thus introduce the decision problem Embedk→d, whose input is a simplicial
complex K of dimension at most k, and where the output should be YES or NO
depending on whether K admits a PL embedding into Rd.

We assume k ≤ d, since a k-simplex cannot be embedded in Rk−1. For d ≥ 2k + 1
the problem becomes trivial, since it is well known that every finite k-dimensional
simplicial complex embeds in R2k+1, even linearly (this result goes back to Menger).

21



22 CHAPTER 4. EMBEDDING SIMPLICIAL COMPLEXES

In all other cases, i.e., k ≤ d ≤ 2k, there are both YES and NO instances; for the
NO instances one can use, e.g., examples of k-dimensional complexes not embeddable
in R2k due to Van Kampen [vK32] and Flores [Flo34]. These complexes were already
defined in Subsection 3.4.1.

Let us also note that the complexity of this problem is monotone in k by definition,
since an algorithm for Embedk→d also solves Embedk′→d for all k

′ ≤ k.

Tractable cases. It is well known that Embed1→2 (graph planarity) is linear-time
solvable [HT74]. Based on planarity algorithms and on a characterization of complexes
embeddable in R2 due to Halin and Jung [HJ64], it is not hard to come up with a
polynomial-time decision algorithm for Embed2→2. Outline of such an algorithm is
given in Appendix A of [MTW11].

There are many problems in computational topology that are easy for low dimen-
sions (say up to dimension 2 or 3) and become intractable from some dimension on
(say 4 or 5); we will mention some of them later. For the embeddability problem,
the situation is subtler, since there are tractable cases in arbitrarily high dimensions,
namely, Embedk→2k for every k ≥ 3.

The algorithm is based on ideas of Van Kampen [vK32], which were made precise
by Shapiro [Sha57] and independently by Wu [Wu65]. A treatment in an algorithmic
context, and a self-contained elementary presentation of the algorithm (but not a proof
of correctness) can be found in Appendix D of [MTW11].

Hardness. According to a celebrated result of Novikov ([VKF74]; also see, e.g.,
[Nab95] for an exposition), the following problem is algorithmically unsolvable: Given
a d-dimensional simplicial complex, d ≥ 5, decide whether it is homeomorphic to Sd,
the d-dimensional sphere. By a simple reduction we obtain the following result:

Theorem 4.1. Embed(d−1)→d (and hence also Embedd→d) is algorithmically unde-
cidable for every d ≥ 5.

This has an interesting consequence, which in some sense strengthens results of
Brehm and Sarkaria [BS92]:

Corollary 4.2. For every computable (recursive) function f : N → N and for every
d ≥ 5 there exist n and a finite (d − 1)-dimensional simplicial complex K with n
simplices that PL-embeds in Rd but such that no subdivision of K with at most f(n)
simplices embeds linearly in Rd.

Our main result is hardness for cases where d ≥ 4 and k is larger than roughly 2
3
d.

Theorem 4.3. Embedk→d is NP-hard for every pair (k, d) with d ≥ 4 and d ≥ k ≥
2d−2
3

.

We prove a special case of this theorem, NP-hardness of Embed2→4, in Section 9.3;
the proof is somewhat more intuitive than for the general case and it contains most of
the ideas. All the remaining cases are proved in Section 9.4.

Let us briefly mention where the dimension restriction k ≥ (2d− 2)/3 comes from.
There is a certain necessary condition for embeddability of a simplicial complex into
Rd, called the deleted product obstruction. A celebrated theorem of Haefliger and
Weber, which is a far-reaching generalization of the ideas of Van Kampen mentioned
above, asserts that this condition is also sufficient provided that k ≤ 2

3
d − 1 (these k

are said to lie in the metastable range). The condition on k in Theorem 4.3 is exactly
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d =
k = 2 3 4 5 6 7 8 9 10 11 12 13 14
1 P + + + + + + + + + + + +
2 P ? NPh + + + + + + + + + +
3 ? NPh NPh P + + + + + + + +
4 NPh UND NPh NPh P + + + + + +
5 UND UND NPh NPh ? P + + + +
6 UND UND NPh NPh NPh ? P + +
7 UND UND NPh NPh NPh ? ? P

Table 4.1: The complexity of Embedk→d (P = polynomial-time solvable, UND =
algorithmically undecidable, NPh = NP-hard, + = always embeddable, ? = no result
known).

that k must be outside of the metastable range (we refer to Appendix B of [MTW11]
for a brief discussion and references).

There are examples showing that the restriction to the metastable range in the
Haefliger–Weber theorem is indeed necessary, in the sense that whenever d ≥ 3 and
d ≥ k > (2d− 3)/3, there are k-dimensional complexes that cannot be embedded into
Rd but the deleted product obstruction fails to detect this. We use constructions of
this kind, namely, examples due to Segal and Spież [SS92], Freedman, Krushkal, and
Teichner [FKT94], and Segal, Skopenkov, and Spież [SSS98], as the main ingredient
in our proof of Theorem 4.3.

Discussion. The current complexity status of Embedk→d is summarized in Ta-
ble 4.1. The most interesting currently open cases are perhaps (k, d) = (2, 3) and
(3, 3). These are outside the metastable range, and it took the longest to find an
example showing that they are not characterized by the deleted product obstruction;
see [GS06]. That example does not seem to lend itself easily to a hardness reduction,
though.

A variation on the proof of our undecidability result (Theorem 4.1) shows that
both Embed2→3 and Embed3→3 are at least as hard as the problem of recognizing
the 3-sphere (that is, given a simplicial complex, decide whether it is homeomorphic
to S3). The latter problem is in NP [Iva08, Sch04], but no hardness result seems to
be known.

For the remaining questionmarks in the table (with d ≥ 9), which all lie in the
metastable range, it seems that existing tools of algebraic topology, such as Postnikov
towers and/or suitable spectral sequences, could lead at least to decision algorithms, or
even to polynomial-time algorithms in some cases. Here the methods of “constructive
algebraic topology” mentioned below, which imply, e.g., the computability of higher
homotopy groups, should be relevant. However, as is discussed, e.g., in [RRS06],
computability issues in this area are often subtle, even for questions considered well
understood in classical algebraic topology. Current work of Čadek, Krčál, Matoušek,
Sergeraert, Vokř́ınek and Wagner [ČKM+11] focuses on this case and offer some new
tools that could eventually lead to clarifying the complexity status of this case.

The NP-hardness results presented here are probably not the final word on the
computational complexity of the corresponding embeddability problems; for example,
some or all of these might turn out to be undecidable.
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Related work. Among the most important computational problems in topology are
the homeomorphism problem for manifolds, and the equivalence problem for knots.
The first one asks if two given manifolds M1 and M2 (given as simplicial complexes,
say) are homeomorphic. The second one asks if two given knots, i.e., PL embeddings
f, g S1 → R3, are equivalent, i.e., if there is a PL homeomorphism h R3 → R3 such
that f = h ◦ g. An important special case of the latter in the knot triviality problem:
Is a given knot equivalent to the trivial knot (i.e., the standard geometric circle placed
in R3)?

There is a vast amount of literature on computational problems for 3-manifolds
and knots. For instance, it is algorithmically decidable whether a given 3-manifold
is homeomorphic to S3 [Rub95, Tho94], or whether a given polygonal knot in R3 is
trivial [Hak61]. Indeed, both problems have recently shown to lie in NP [Iva08, Sch04],
[HLP99]. The knot equivalence problem is also algorithmically decidable [Hak61,
Hem79, Mat97], but nothing seems to be known about its complexity status. We
refer the reader to the above-mentioned sources and to [AHT06] for further results,
background and references.

In higher dimensions, all of these problems are undecidable. Markov [Mar58]
showed that the homeomorphism problem for d-manifolds is algorithmically unde-
cidable for every d ≥ 4. For d ≥ 5, this was strengthened by Novikov to the unde-
cidability of recognizing Sd (or any other fixed d-manifold), as was mentioned above.
Nabutovsky and Weinberger [NW96] showed that for d ≥ 5, it is algorithmically un-
decidable whether a given PL embedding f Sd−2 → Rd is equivalent to the standard
embedding (placing Sd−2 as the “equator” of the unit sphere Sd−1, say). For further
undecidability results, see, e.g., [NW99] and the survey by Soare [Soa04].

Another direction of algorithmic research in topology is the computability of homo-
topy groups. While the fundamental group π1(X) is well-known to be uncomputable
[Mar58], all higher homotopy groups of a given finite simply connected simplicial (or
CW) complex are computable (Brown [Bro57]). There is also a #P -hardness result
of Anick [Ani89] for the computation of higher homotopy, but it involves CW com-
plexes presented in a highly compact manner, and thus it doesn’t seem to have any
direct consequences for simplicial complexes. More recently, there appeared several
works (Schön [Sch91], Smith [Smi98], and Rubio, Sergeraert, Dousson, and Romero,
e.g. [RRS06]) aiming at making methods of algebraic topology, such as spectral se-
quences, “constructive”; the last of these has also resulted in an impressive software
called KENZO.

A different line of research relevant to the embedding problem concerns linkless
embeddings of graphs. Most notably, results of Robertson, Seymour, and Thomas
[RST95] on linkless embeddings provide an interesting sufficient condition for embed-
dability of a 2-dimensional complex in R3, and they can thus be regarded as one of the
known few positive results concerning Embed2→3. We refer to Section 6 of [MTW11]
for further details.



Chapter 5

Representability of simplicial
complexes of a given dimension

In this chapter we first show that every d-dimensional simplicial complex is (2d+ 1)-
representable (c.f. Theorem 3.4). Then we show that the value 2d + 1 is the least
possible by constructing d-dimensional complexes which are not 2d-representable.

Sketch of a proof of Theorem 3.4. Let K be a d-representable complex with n vertices.

A k-neighborly polytope is a convex polytope such that every k vertices form a face
of the polytope. It is well known that there are 2k-dimensional k-neighborly polytopes
with arbitrary number of vertices for every k ≥ 1. For instance cyclic polytopes satisfy
this property. (See, e.g., [Mat02] for a background on convex polytopes including
cyclic polytopes.)

Let Q be a (2d + 2)-dimensional (d + 1)-neighborly polytope with n vertices. Let
Q∗ be a polytope dual to Q. It has n facets and any d+ 1 of its facets share a face of
the polytope. Finally, we consider the Schlegel diagram of Q∗. The Schlegel diagram
of an m-dimensional convex polytope is a projection of the polytope to (m− 1)-space
through a point beyond one of its facets (the point is very close to the facet). See
Figure 5.1 for the Schlegel diagram of a cube. In particular the facets of Q∗ project
to convex sets C1, . . . , Cn in R2d+1 such that each d + 1 of them share the projection
of a face of Q∗ (on their boundary). Thus if we look at the nerve N of C1, . . . , Cn,
then it contains full d-skeleton of a simplex with n vertices. Therefore, without loss of
generality, we can assume that K is a subcomplex of N. Let ϑ = {Ci1, . . . , Cij} be a face
of N which does not belong to K. The sets Ci1 , . . . , Cij intersect on their boundaries
and it is possible to remove their intersection by removing a small neighborhood of
Ci1 ∩ · · · ∩Cij in each of the sets while keeping the sets convex. Hence only ϑ and the
superfaces of ϑ disappear from the nerve during this procedure. After repeating the
procedure we obtain a collection of convex sets with the nerve K.

Theorem 5.1. The barycentric subdivision sd∆
(d)
2d+2 of d-skeleton of the full (2d+2)-

simplex is not 2d-representable.

Theorem 5.1 can be easily extended to the barycentric subdivision of any d-
dimensional simplicial complex K such that the Van Kampen obstruction of K is not
zero.

For the proof we will need two auxiliary results.
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Figure 5.1: Schlegel diagram of a cube. The reference point is rather more far away
in order to make the picture more lucid.

Theorem 5.2 (Van Kampen - Flores theorem; see, e.g., [Mat03, Theorem 5.1.1]).

Let K = ∆
(d)
2d+2. Then for any continuous map f : |K| → R2d there are two disjoint

d-dimensional simplices γ and δ of K such that their images f(|γ|) and f(|δ|) intersect.

We remark that the conclusion of the theorem remains true if K is replaced with any
d-dimensional complex with non-zero Van Kampen obstruction. The interested reader
is referred to [MTW11, Appendix D] for an elementary exposition of Van Kampen
obstruction or to [Mel09] for a survey on it.

Let α and β be faces of a simplicial complex K. We say that α and β are remote
if there is no edge ab ∈ K with a ∈ α, b ∈ β.

Lemma 5.3. Let K be a collection of convex sets in Rm and let K := N(K) be the nerve
of K. Then there is a linear map g : | sdK| → Rm such that g(| sdα|) ∩ g(| sdβ|) = ∅
for any remote α, β ∈ K.

Proof. First we specify g on the vertices of sdK then we extend it linearly to the whole
sdK. See Figure 5.2

A vertex of sdK is a simplex of K, i.e., a subcollection K′ of K with a nonempty
intersection. Let us pick a point p(K′) inside ∩K′. We set g(K′) := p(K′) for K′ ∈ K.
As we already mentioned, we extend g linearly to sdK.

If α = K′ ∈ K, then g(| sdα|) ⊆ ∪K′. Thus g(sdα) ∩ g(sd β) = ∅ for remote
α, β ∈ K.

Proof of Theorem 5.1. Let K = sd∆
(d)
2d+2. For contradiction we assume that K is 2d-

representable. Let K be the 2d-representation of it. (Without loss of generality K =
N(K).) According to Lemma 5.3 there is a map g : | sdK| → R2d such that g(| sdα|) ∩
g(| sdβ|) = ∅ for any remote α, β ∈ K.

Since sdK = sd sd∆
(d)
2d+2, we have |∆

(d)
2d+2| = |K| = | sdK|, and thus we can also

apply g to simplices of ∆
(d)
2d+2.

Let γ and δ be disjoint simplices of ∆
(d)
2d+2. Let α be a simplex of sd γ and β

a simplex of sd δ. Then α and β are remote in K. Thus g(| sdα|) ∩ g(| sdβ|) = ∅.
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Figure 5.2: Mapping sdK into K. The notation is simplified. For instance 12 stands
for {1, 2}, p123 stands for p({1, 2, 3}), etc.

Consequently, g(|γ|) ∩ g(|δ|) = ∅ for any choice of γ and δ. However, this contradicts
the Van Kampen-Flores theorem.
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Chapter 6

Non-representability of projective
planes

Let us recall that the main purpose of this chapter is to prove the following theorem.

Theorem 3.7. For every d ∈ N there is a q0 = q0(d) such that if a complex P

correspond to a projective plane of order q ≥ q0 then P is not d-representable.

First we recall some basis facts about finite projective planes.

Finite projective planes. A finite projective plane of order q ≥ 2 is a pair (P,L)
where P is a finite set of points, and L ⊆ 2P is a set of subsets of P (called lines) such
that (i) every two points are contained in a unique line, (ii) every two lines intersect
in a unique point, and (iii) every line contains q+1 points. It follows that every point
is contained in q+1 lines and |P | = |L| = q2 + q+1, see e.g. [MN98] for more details.

It is well known that a projective plane of order q exists whenever q is a power of
a prime. We remark that it is a well known open problem to decide whether there are
projective planes of other orders.

It is also known that a finite projective plane cannot be represented in Rd so that
the points of the projective plane are points in Rd and the lines of the projective plane
are the inclusionwise maximal collections of points lying on a common Euclidean line.
This fact follows for example from Sylvester-Gallai theorem: if p1, . . . , pn are points in
the plane not all of them lying on a common line, then there is a line in the plane which
intersects exactly two of these points (see [Gal44] for original solution and [Kel86] for
an elegant proof). Our task is to obtain a similar result where the Euclidean lines are
replaced by convex sets.

Representability of set systems. Let (X,B) be a set system where X is a finite
set and B is a set of some subsets of X . The elements of B will be called blocks. (The
motivation for name ‘blocks’ comes form balanced incomplete block designs (BIBDs)
that will be defined later.) We say that (X,B) is representable by convex sets in Rd if
there are convex sets CB ⊂ Rd for every block B ∈ B such that for any B1, . . . , Bk ∈ B
the convex sets CB1

, . . . , CBk
intersect if and only if the blocks B1, . . . , Bk have a

common point in X .
We strongly distinguish the terms d-representable simplicial complex and a set

system representable by convex sets in Rd; they have a different meaning. In fact,
they are dual in a certain sense. A set system (X,B) is representable by convex sets
in Rd if and only if the nerve of B is d-representable.1

1Ultimately we want to translate our results on representability of set systems (X,B) by convex
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X

Z1

Z2

Zd+1

a

Figure 6.1: Positive-fraction selection theorem: every triangle formed by the sets Zi
contains a.

Our main tools are the positive-fraction selection lemma and the fact that the
projective planes (considered as bipartite graphs) are expanders.

We also have the following consequence of Theorem 3.7 which answers the question
of Alon at al. [AKMM02] (as announced above) and which is proved in Section 6.2.

Corollary 6.1. Let d > 1 be an integer and let q0 = q0(d) be the integer from The-
orem 3.7. Let (P,L) be the projective plane of order q ≥ q0. Let Kq be a simplicial
complex whose vertices are points in P and whose faces are subsets of lines in L. Then
Kq is 2-collapsible and is not d-representable.

6.1 Proof of Theorem 3.7

In this section we prove Theorem 3.7. We need few preliminaries. Assume that
(Z1, . . . , Zk) is a k-tuple of sets. By a transversal of this k-tuple we mean any set
T = {t1, . . . , tk} such that ti ∈ Zi for every i ∈ [k]. We need the following result due
to Pach [Pac98]; see also [Mat02, Theorem 9.5.1]. See Figure 6.1.

Theorem 6.2 (Positive-fraction selection theorem; a special case). For every natural
number d, there exists c = c(d) > 0 with the following property. Let X ⊂ Rd be a finite
set of points in general position (i.e., there are no d + 1 points lying in a common
hyperplane). Then there is a point a ∈ Rd and disjoint subsets Z1, . . . , Zd+1, with
|Zi| ≥ c|X| such that the convex hull of every transversal of (Z1, . . . , Zd+1) contains a.

Later we refer to the constant c(d) from the theorem as to Pach’s constant.
We remark that the proof of Theorem 6.2 uses several involved tools such as weak

hypergraph regularity lemma or same-type lemma (therefore we do not reproduce any
details of the proof here). We should also remark that this is only a special case of
Pach’s theorem (but general enough); Pach moreover assumes that Zi ⊆ Xi, where
X1 ∪ · · · ∪Xd+1 is a partition of X , and in this setting |Zi| ≥ c|Xi|.

We also need the following expansion property of the projective plane [Alo85,
Theorem 2.1], [Alo86].

sets into d-representability of the nerve of B. We could work only with d-representable complexes
from the beginning. However, this would lead to more complicated and less lucid statements of
results. The disadvantage is that we have to introduce new (dual) terminology. See Table 6.1 for a
dictionary.
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an exception

P1

P2

Pd+1

P

Figure 6.2: Almost all lines intersect all of P1, . . . , Pd+1.

Theorem 6.3. Let (P,L) be a projective plane of order q. Let A ⊆ P . Then |{ℓ ∈
L : ℓ ∩A = ∅}| ≤ n3/2/|A|, where n = q2 + q + 1.

Alon, Haussler and Welzl [AHW87] used this expansion property in the context of
range searching problems. They showed that the points of a projective plane (of high
enough order) cannot be partitioned into a small number of sets P1, . . . , Pm so that
for every projective line ℓ the set

⋃

ℓ∩Pi 6=∅,Pi
Pi contains only a given fraction of all the

points. Known results on range searching problems imply that a projective plane of
a high order cannot be represented by halfspaces or simplices in Rd. However, the
author is not aware that this approach would imply the result for convex sets.

For completeness, we also reproduce a short proof of Theorem 6.3.

Proof of Theorem 6.3. Let M = (mpℓ) be an n × n matrix with rows indexed by the
points of P and columns indexed by the lines of L. We set mpℓ := 1 if p ∈ ℓ and
mpℓ := 0 otherwise. The matrix MMT has real nonnegative eigenvalues λ1 ≥ λ2 ≥
· · · ≥ λn.

By a theorem of Tanner [Tan84]

|N(A)| ≥
(q + 1)2|A|

((q + 1)2 − λ2)|A|/n+ λ2

where N(A) denotes {ℓ ∈ L : ℓ ∩ A 6= ∅}, the neighborhood of A.
It is not hard to compute that λ1 = (q+1)2 and λ2 = · · · = λn = q. Consequently,

|N(A)| ≥
(q + 1)2|A|

|A|+ q
= n−

q(n− |A|)

|A|+ q
≥ n−

n3/2

|A|
.

Proof of Theorem 3.7. For contradiction, we assume that (P,L) is representable by
convex sets in Rd; i.e., there are convex sets Cℓ for ℓ ∈ L such that Cℓ1, . . . , Cℓk
intersect if and only if ℓ1, . . . , ℓk contain a common point. By standard tricks, we can
assume that these sets are open (see Lemma 3.2).

Let p ∈ P . We know that
⋂

p∈ℓ

Cℓ is nonempty (and open). Let xp be a point of

this intersection. We define X := {xp : p ∈ P}. Because of the openness of the
intersections we can assume that X is in general position.



32 CHAPTER 6. NON-REPRESENTABILITY OF PROJECTIVE PLANES

Let c = c(d) > 0, a ∈ Rd, and Z1, . . . , Zd+1 be the (output) data from Theorem 6.2
(when applied to X). We know that |Zi| ≥ c|X|. Let us set Pi := {p ∈ P : xp ∈ Zi}
and Mi := {ℓ ∈ L : ℓ ∩ Pi = ∅}. By Theorem 6.3 with A = Pi we get

|Mi| ≤
n3/2

|Pi|
=
n3/2

|Zi|
≤
n3/2

c|X|
=
n3/2

cn
≤

n

2(d+ 1)
=

|L|

2(d+ 1)

provided that q (and hence n as well) is sufficiently large (depending on d and c).
Hence the set L′ := L\(M1∪· · ·∪Md+1) of lines that intersect each of P1, . . . , Pd+1

contains at least half of the lines of L. Now let ℓ ∈ L′ and let pi ∈ ℓ ∩ Pi. Then
(xp1, . . . , xpd+1

) is a transversal of (Z1, . . . , Zd+1). Thus a ∈ conv{xp1 , . . . , xpd+1
} ⊆ Cℓ,

and so a is contained in at least |L|
2

of the Cℓ. This is a contradiction since at most
q + 1 sets among the Cℓ can have a nonempty intersection.

6.2 Proof of the gap between d-representability and

d-collapsibility

Proof of Corollary 6.1. The fact that the complex Kq is 2-collapsible is essentially
mentioned in [AKMM02, discussion below Problem 15] (without a proof).

All the inclusionwise maximal faces of Kq are of the form σℓ = {p : p ∈ ℓ} for
ℓ ∈ L. Two such faces intersect only in a vertex, thus it is possible to 2-collapse
these faces gradually to the vertices; the details are given in Lemma 6.4 below. After
these collapsings, it is sufficient to remove the vertices (which are already inclusionwise
maximal).

It remains to show that Kq is not d-representable. We consider the dual projective
plane (L, P̄ ), where P̄ := {{ℓ ∈ L : p ∈ ℓ} : p ∈ P}. In particular we can identify a
point p ∈ P with a dual line {ℓ ∈ L : p ∈ ℓ} ∈ P̄ .

Theorem 3.7 applied for this dual plane (L, P̄ ) essentially states that Kq is not
d-representable (convex sets in the statement now correspond to the lines in P̄ , which
we have identified with P—the set of vertices of Kq).

Lemma 6.4. Let ∆ be a d-simplex, i.e., a simplicial complex with [d + 1] as the set
of vertices and with all the possible faces. Then there is a sequence of elementary
2-collapses that starts with ∆ and ends with the simplicial complex that contains all
the vertices of ∆ and no faces of higher dimension.

Proof. In every elementary 2-collapse we only mention the smaller face σ (here we
adopt the notation from the definition of an elementary d-collapse), since a 2-collapse
is uniquely determined by σ.

The following sequence of choices of σ provides the required 2-collapsing (the faces
are ordered in the lexicographical order, see Figure 6.3).

{1, 2}, {1, 3}, . . . , {1, d+ 1}, {2, 3}, . . . , {2, d+ 1}, {3, 1}, . . . , {d, d+ 1}.
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Figure 6.3: Collapsing a simplex to its vertices.

set system simplicial complex
(X,B) N(B)
representable by convex sets in Rd d-representable
size of X number of maximal simplices of N(B) (*)
size of B number of vertices of N(B)
size of a block B ∈ B number of maximal simplices containing B (*)
max{deg x : x ∈ X} dimN(B)

Table 6.1: A dictionary for translating properties of set systems into properties of
simplicial complexes. The lines denoted with (*) assume that the system is almost
disjoint and it does not contain blocks of size 1. Then the maximal simplices of N(B)
are in one to one correspondence with points of X . The symbol deg x denotes the
number of blocks containing a point x ∈ X .

6.3 A modest generalization

The approach in the proof of Theorem 6.3 can be generalized to other almost disjoint
set systems then just projective planes. Let (X,B) be a set system. We say that
(X,B) is almost disjoint if |B ∩B′| ≤ 1 for any two blocks B,B′ ∈ B. (It is k-almost
disjoint if |B ∩ B′| ≤ k.)

From a set system to a simplicial complex. Here we summary how to get a
simplicial complex from a set system, which was briefly mentioned in previous sections.
Let (X,B) be a set system. We consider the simplicial complex N(B), i.e., the nerve
of B. We recall that in this case the blocks in B are the vertices of N(B) and faces of
N(B) are collections of blocks having a point x ∈ X in common.

Representability of (X,B) by convex sets in Rd is equivalent to d-representability
of N(B). If (X,B) is almost disjoint then N(B) is 2-collapsible using the same approach
as in Section 6.2. More generally, if (X,B) is k-almost disjoint then N(B) is (k + 1)-
collapsible; however, we focus only on almost disjoint set systems. See Table 6.1.

A generalization. Let us now consider d as a fixed integer. We have shown that
there is q0 = q0(d) such that a projective plane (P,L) of order q which is at least
q0 is not representable by convex sets in Rd. However, the value q0(d) is huge when
compared with d (in our approach it depends on Pach’s constant). In particular, it
means the size of blocks in (X,B) := (P,L) is huge and also each point x of X belongs
to a huge number of blocks (in another words degree of x is large). It is natural to ask
whether the approach can apply for smaller values of these parameters.

For the size of blocks we offer the following affirmative answer.

Theorem 6.5. There is an almost disjoint set system (X,B) with blocks of size d+ 1
which is not representable by convex sets in Rd.
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The question on degree we pose as a problem.

Problem 6.6. What is the smallest possible maximum degree of vertices of an almost
disjoint set system which is not representable by convex sets in Rd?

It is perhaps even more natural to ask this in the terms of simplicial complexes;
see Table 6.1.

Problem 6.7. What is the smallest dimension of a 2-collapsible simplicial complex
which is not d-representable?

Note that the above mentioned problems need not be equivalent; however, a small
value in Problem 6.6 can be translated into a small value in 6.7.

Proof of Theorem 6.5 is probabilistic and is given in Section 6.4. The remainder of
this section is devoted to a discussion on explicit constructions of almost disjoint set
systems.

BIBDs. A balanced incomplete block design with parameters v, b, r, k and λ is a set
system (X,B) satisfying the following conditions.

• |X| = v;

• |B| = b;

• every point x ∈ X is contained in exactly r blocks B ∈ B;

• |B| = k for every B ∈ B; and

• every two distinct points x, y ∈ X are together contained in exactly λ blocks.

The parameters have to satisfy the relations bk = vr and λ(v− 1) = r(k− 1); thus
b and r are uniquely determined by v, k and λ. We abbreviate such a block design as
(v, k, λ)-BIBD. In addition (v, k, 1)-BIBDs are almost disjoint.

It is not fully characterized for which values of parameters do (v, k, λ) exist. On the
other hand if k and λ are fixed, then for every v0 there is v ≥ v0 such that a (v, k, λ)-
BIBD exist [Wil75] (it is even sufficient if v is large enough and satisfy certain number
theoretic conditions). There are several known explicit constructions of BIBDs; see,
e.g., [VM04] and the references therein (for case λ = 1).

Advantages and disadvantages of using BIBDs for non-representability. An
advantage of BIBDs is that the eigenvalues of MMT can be very easily computed
where M is the matrix of incidence of points of X and blocks of B. Then the theorem
of Tanner [Tan84] can be used in a very similar way as in the proof of Theorem 6.3 ob-
taining a generalization of Theorem 6.3 for BIBDs. Then we can use this generalization
similarly as in proof of Theorem 3.7.

On the downside, using our approach, we obtain a reasonable bound for non-
representability of (v, k, 1)-BIBD only if the number of blocks b is proportional to v
(i.e., v is not much larger then k2).

This lead us to a following problem.

Problem 6.8. Is there an explicit construction of a set system in Theorem 6.5? Is
there a construction coming from a BIBD?
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6.4 A random almost disjoint set system

Let d be a fixed integer. Depending on d we chose a large enough integer v = v(d) and
we set b = ⌈C(d) · v ln v⌉ where C = C(d) is another large enough integer. We specify
values of v and C later.

We set X to be a v-element set. Next we set B′ to be a multiset {Bi}
b
i=1 where Bi

is a uniformly chosen random (d + 1)-element subset of X (the choices for different i
are independent).

The target is to exclude some of the blocks of B′ obtaining a set B such that (X,B)
is almost disjoint but not d-representable with a positive probability. Then we are
done since the size of blocks is d+ 1.

Let c = c(d) be the Pach’s constant. Let A = {A1, . . . Ad+1} be a collection of
disjoint subsets of X of size at least cv. We call such A a c-partition. Let B be a set
of size d+1. We say that B hits A if B ∩Ai 6= ∅ for every i ∈ [d+1]. The probability
that a block B ∈ B′ hits A is at least p = p(d) := (d+ 1)! · c(d).

The proof of Theorem 6.5 can be deduced from the following three lemmas. The
lemmas are proved at the end of this section.

Lemma 6.9. Let us assume that v = v(d) and C = C(d) are large enough. Then the
probability that for every c-partition A there are at least bp/2 blocks of B′ hitting A is
at least 9

10
.

Lemma 6.10. Let us assume that v = v(d) and C = C(d) are large enough. Let M
denotes max{deg(x) : x ∈ X} where deg(x) is the number of blocks of B′ containing
x. Then the probability of the event {M < bp/4} is at least 9

10
.

Lemma 6.11. Let us assume that v = v(d) and C = C(d) are large enough. We say
that a block Bi ∈ B′ is conflict if it has at least two common elements with some other
block Bj ∈ B′. Then the probability that the number of conflict blocks is less then bp/4
is at least 9

10
.

Proof of Theorem 6.5. The system B′ satisfy with probability at least 7
10

the events of
Lemmas 6.9, 6.10, and 6.11 simultaneously. Thus there has to exist a system B′′ for
which all the events are valid. Let B be the subsystem of B′′ of all blocks that are not
conflict. In particular, B is just a set (and no multiset).

Is is obvious that (X,B) is almost disjoint and the size of blocks equal d+ 1. We
show that (X,B) is not representable by convex sets in Rd. We proceed analogically
as in the proof of Theorem 3.7.

For contradiction, we assume that (X,B) is representable by convex sets in Rd;
i.e., there are convex sets CB for B ∈ B such that CB1

, . . . , CBk
intersect if and only if

B1, . . . , Bk contain a common point. Again we can assume that these sets are open.
Let x ∈ X . There is again a point yx ∈

⋂

x∈B

CB. We define Y := {yx : x ∈ X}. We

also define YB := {yx : x ∈ B} for B ∈ B. Because of the openness of the intersections
we can assume that Y is in general position.

Again, let c(d) be the Pach’s constant; and a ∈ Rd, and Z1, . . . , Zd+1 be the
(output) data from Theorem 6.2 (when applied to Y ). We know that |Zi| ≥ c|Y |. By
Lemmas 6.9 and 6.11 there at least bp/4 blocks B such that YB intersects all sets Zi.
In particular a belongs to conv YB for at least bp/4 blocks B ∈ B. This contradicts
Lemma 6.10.
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A common tool for proving Lemmas 6.9 and 6.10, is the well known Chernoff
Bound; see, e.g., [MR02]. We will need it in the following form (P(S) denotes the
probability of an event S):

Theorem 6.12 (Chernoff Bound). Let p ∈ [0, 1] and let {Vi}
n
i=1 be independent ran-

dom variables such that P(Vi = 1) = p and P(Vi = 0) = 1 − p. Let V = V1 + · · ·Vn.
Then

P(|V − np| > t) < 2e−t
2/3np

for 0 ≤ t ≤ np.

Proof of Lemma 6.9. First we fix a c-partition A. Let Vi be the random variable
attaining 1 if the block Bi hits A and 0 otherwise. As we observed above P(Vi =
1) = p and P(Vi = 0) = 1 − p. In addition variables Vi are independent due to our
construction. We set V =

∑
Vi. Then, using Chernoff’s Bound, we have:

P(V < bp/2) < P(|V − bp| > bp/2) < 2e−bp/12.

In another words, the probability that at least bp/2 blocks of B′ hit A is at least
1− 2e−bp/12.

It is easy to see that there are less then vvc(d+1) choices of A. Thus the probability
that for every c-partition A there are at least bp/2 blocks of B′ hitting A is at least

1− vvc(d+1)2e−bp/12 ≥ 1− e(v·ln v)c(d+1)−C(d)(v·ln v)p/12 ≥ 1−
1

10

assuming that C(d) is large enough.

Proof of Lemma 6.10. Let x ∈ X . Let Vi be the random variable attaining 1 if x ∈ Bi

and 0 otherwise. It is easy to see that P(Vi = 1) = d+1
v

and P(Vi = 0) = 1− d+1
v
. The

variables Vi are again independent and we again set V =
∑
Vi.

Similarly as in the proof of Lemma 6.9 we have:

P

(

M <
bp

4

)

> 1− vP

(

V ≥
bp

4

)

> 1− vP

(

V >
b(d+ 1)

2v

)

>

> 1− 2ve−b(d+1)/(12v) > 1−
1

10
.

We recall that b ≥ Cv ln v for the very last inequality.

Proof of Lemma 6.11. Let Bi, Bj ∈ B′. The probability that |Bi ∩Bj | ≥ 2 is less than

(
d+1
2

)(
v−2
d−1

)

(
v
d+1

) ≤ K(d)v−2

where K(d) is independent of v. Thus the probability, that Bi is a conflict block is less
than bK(d)v−2 ≤ K ′(d)v−1 ln v, where K ′(d) is again independent of v. In summary,
the expected number of conflict blocks is less than bK ′(d)v−1 ln v ≤ K ′′(d) ln2 v for
K ′′(d) independent of v.

Let E denotes the expectation. Using the inequality P(U ≥ mE(U)) ≤ 1
m

for a
nonnegative random variable U we derive that with probability at least 9

10
there is

less than 10K ′′(d) ln2 v conflict blocks which is less than bp/4 assuming that v is large
enough.



Chapter 7

Computational complexity of
d-collapsibility

The main purpose of this chapter is to prove the following theorem.

Theorem 7.1. (i) 2-Collapsibility is polynomial time solvable.

(ii) d-Collapsibility is NP-complete for d ≥ 4.

In Section 7.5 we also focus on the complexity status of d-Representability.
Suppose that d is fixed. A good face is a d-collapsible face of K such that Kσ is

d-collapsible; a bad face is a d-collapsible face of K such that Kσ is not d-collapsible.
Now suppose that K is a d-collapsible complex. It is not immediately clear whether

we can choose elementary d-collapses greedily in any order to d-collapse K, or whether
there is a “bad sequence” of d-collapses such that the resulting complex is no longer
d-collapsible. Therefore, we consider the following question: For which d there is a
d-collapsible complex K such that it contains a bad face? The answer is:

Theorem 7.2. (i) Let d ≤ 2. Then every d-collapsible face of a d-collapsible com-
plex is good.

(ii) Let d ≥ 3. Then there exists a d-collapsible complex containing a bad d-collapsible
face.

Theorem 7.1(i) is a straightforward consequence of Theorem 7.2(i). Indeed, if we
want to test whether a given complex is 2-collapsible, it is sufficient to greedily collapse
d-collapsible faces. Theorem 7.2(i) implies that we finish with an empty complex if
and only if the original complex is 2-collapsible.

Our construction for Theorem 7.2(ii) is an intermediate step to proving Theo-
rem 7.1(ii).

Related complexity results. Let us recall related complexity results (in a bit more
detail than in Chapter 3).

By a modification of a result of Kratochv́ıl and Matoušek on string graphs ([KM89];
see also [Kra91]), one has that 2-Representability is NP-hard. Moreover, this result
also implies that d-Representability is NP-hard for d ≥ 2. Details are given in
Section 7.5.

Finally, d-LerayNumber is polynomial time solvable, since an equivalent char-
acterization of d-Leray complexes is that it is sufficient to test whether the homology

37



38 CHAPTER 7. COMPUTATIONAL COMPLEXITY OF d-COLLAPSIBILITY

(of dimension greater or equal to d) of links1 of faces of the complex in the question
vanishes. These tests can be performed in a polynomial time; see [Mun84] (note that
the k-th homology of a complex of dimension less than k is always zero; note also that
the homology is over Q, which simplifies the situation—computing homology for this
case is indeed only a linear algebra).

A particular example of computational interest. A collection of convex sets in
Rd has a (p, q)-property with p ≥ q ≥ d + 1 if among every p sets of the collection
there is a subcollection of q sets with a nonempty intersection. The (p, q)-theorem of
Alon and Kleitman states that for all integers p, q, d with p ≥ q ≥ d + 1 there is an
integer c such that for every finite collection of convex sets in Rd with (p, q)-property
there are c points in Rd such that every convex set of the collection contains at least
one of the selected points. Let c′ = c′(p, q, d) be the minimum possible value of c for
which the conclusion of the (p, q)-theorem holds. A significant effort was devoted to
estimating c′. The first unsolved case regards estimating c′(4, 3, 2). The best bounds2

are due to Kleitman, Gyárfás and Tóth [KGT01]: 3 ≤ c′(4, 3, 2) ≤ 13. It seems that
the actual value of c′(4, 3, 2) is rather closer to the lower bound in this case, and thus
it would be interesting to improve the lower bound even by one.3

Here 2-collapsibility could come into the play. When looking for a small example
one could try to generate all 2-collapsible complexes and check the other properties.

Collapsibility inWhitehead’s sense. Beside d-collapsibility, collapsibility in White-
head’s sense is much better known (called simply collapsibility). In the case of col-
lapsibility, we allow only to collapse a face σ that is a proper subface of the unique
maximal face containing σ. On the other hand, there is no restriction on dimension
of σ.

Let us mention that one of the important differences between d-collapsibility and
collapsibility is that every finite simplicial complex is d-collapsible for d large enough;
on the other hand not an every finite simplicial complex is collapsible.

Malgouyres and Francés [MF08] proved that it is NP-complete to decide, whether
a given 3-dimensional complex collapses to a given 1-dimensional complex. How-
ever, their construction does not apply to d-collapsibility. A key ingredient of their
construction is that collapsibility distinguishes a Bing’s house with thin walls and a
Bing’s house with a thick wall. However, they are not distinguishable from the point of
view of d-collapsibility. They are both 3-collapsible, but none of them is 2-collapsible.

Technical issues. Throughout this section we will use several technical lemmas about
d-collapsibility. Since I think that the main ideas of the paper can be followed even
without these lemmas I decided to put them separately to Section 7.4. The reader is
encouraged to skip them for the first reading and look at them later for full details.

7.1 2-collapsibility

Here we prove Theorem 7.2(i).

The case d = 1 follows from the fact that d-collapsible complexes coincide with
d-Leray ones ([LB63, Weg75]). Indeed, let K be a 1-collapsible complex and let σ be

1A link of a face σ in a complex K is the complex {η ∈ K : η ∪ σ ∈ K, η ∩ σ = ∅}.
2Known to the author.
3Kleitman, Gyárfás and Tóth offer $30 for such an improvement.
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its 1-collapsible face. We have that K is 1-Leray, which implies that Kσ is 1-Leray
(1-collapsing does not affect homology of dimensions 1 and more). This implies that
Kσ is 1-collapsible, i.e., σ is good. In fact, the case d = 1 can be also solved by a
similar (simpler) discussion as the following case d = 2.

Claim 7.3. Let σ be a good face of K and let σ′ be a 2-collapsible face of Kσ. Then
σ′ is a good face of Kσ.

Proof. The complex Kσ is 2-collapsible since σ is a good face of K. If σ′ were a bad face
of Kσ, then Kσ would be a smaller counterexample to Theorem 7.2(i) contradicting
the choice of K.

Recall that τ(σ) denotes the unique maximal superface of a collapsible face σ.
Two collapsible faces σ and σ′ are independent if τ(σ) 6= τ(σ′); otherwise, they are
dependent. The symbol St(σ,K) denotes the (open) star of a face σ in K, which consists
of all superfaces of σ in K (including σ). We remark that St(σ,K) = [σ, τ(σ)] in case
that σ is collapsible.

Claim 7.4. Let σ, σ′ ∈ K be independent 2-collapsible faces. Then σ is a 2-collapsible
face of Kσ′ , σ

′ is a 2-collapsible face of Kσ, and (Kσ)σ′ = (Kσ′)σ.

Proof. Since τ(σ) 6= τ(σ′), we have σ 6⊆ τ(σ′). Thus, St(σ,K) = St(σ,Kσ′), implying
that τ(σ) is also a unique maximal face containing σ when considered in Kσ′ . It means
that σ is a collapsible face of Kσ′ . Symmetrically, σ′ is a collapsible face of Kσ. Finally,

(Kσ)σ′ = (Kσ′)σ = K \ {η ∈ K : σ ⊆ η or σ′ ⊆ η} .

Claim 7.5. Any two 2-collapsible faces of K are dependent.

Proof. For contradiction, let σ, σ′ be two independent 2-collapsible faces in K. First,
suppose that one of them is good, say σ, and the second one, i.e., σ′, is bad. The face
σ′ is a collapsible face of Kσ by Claim 7.4. Thus, (Kσ)σ′ is 2-collapsible by Claim 7.3.
But (Kσ)σ′ = (Kσ′)σ by Claim 7.4, which contradicts the assumption that σ′ is a bad
face.

Now suppose that σ and σ′ are good faces. Then at least one of them is independent
of σB, which yields the contradiction as in the previous case. Similarly, if both of σ
and σ′ are bad faces, then at least one of them is independent of σG.

Due to Claim 7.5 there exists a universal τ ∈ K such that τ = τ(σ) for every
2-collapsible σ ∈ K. Let us remark that K 6= ∆(τ) since σB is a bad face.

The following claim represents a key difference among 2-collapsibility and d-collaps-
ibility for d ≥ 3. It wouldn’t be valid in case of d-collapsibility.

Claim 7.6. Let σ be a good face and let σ′ be a bad face. Then σ ∩ σ′ = ∅.

Proof. It is easy to prove the claim in the case that either σ or σ′ is a 0-face. Let us
therefore consider the case that both σ and σ′ are 1-faces. For contradiction suppose
that σ ∩ σ′ 6= ∅, i.e., σ = {u, v}, σ′ = {v, w} for some mutually different u, v, w ∈ τ .
Then τ\{u} is a unique maximal face in Kσ that contains σ

′, so (Kσ)σ′ exists. Similarly,
(Kσ′)σ exists and the same argument as in the proof of Claim 7.4 yields (Kσ)σ′ = (Kσ′)σ.
Similarly as in the proof of Claim 7.5, (Kσ)σ′ is 2-collapsible (due to Claim 7.3), but
it contradicts the fact that σ′ is a bad face.



40 CHAPTER 7. COMPUTATIONAL COMPLEXITY OF d-COLLAPSIBILITY

σk

σB

ητ τk

Figure 7.1: The simplices τ , τk and η.

The complex K is 2-collapsible. Let K = K1 → K2 → · · · → Km = ∅ be a 2-
collapsing of K, where Ki+1 = Ki\ [σi, τi]. Clearly, τ1 = τ . Let k be the minimal integer
such that τk 6⊆ τ . Such k exists since K 6= ∆(τ). (Let us recall that ∆(τ) denotes the
full simplex on set τ .) Moreover, we can assume that all the faces σ1, . . . , σk are edges.
This assumption is possible since collapsing a vertex can be substituted by collapsing
the edges connected to the vertex and then removing the isolated vertex at the very
end of the process. See Lemma 7.15 for details.

Claim 7.7. The face σk is a subset of τ , and it is not a 2-collapsible face of K.

Proof. Suppose for contradiction that σk 6⊆ τ . Then St(σk,K) = St(σk,Ki) since only
subsets of τ are removed from K during the first i 2-collapses. It implies that σk is a
2-collapsible face of K contradicting the definition of τ .

It is not a 2-collapsible face of K since it is contained in τ and τk 6⊆ τ .

Claim 7.8. The faces σ1, σ2, . . . , σk−1 are good faces of K.

Proof. First we observe that each σi is 2-collapsible face of K for 0 ≤ i ≤ k − 1. If σi
was not 2-collapsible then there is a face ϑ ∈ K containing σi such that ϑ 6⊆ τ . Then
ϑ ∈ Ki due to minimality of k. Consequently τi cannot be the unique maximal face of
Ki containing σi since ϑ contains σi as well.

In order to show that the faces are good we proceed by induction. The face σ1 is
a good face of K since there is a d-collapsing of K starting with σ1.

Now we assume that σ1, . . . , σi−1 are good faces of K for i ≤ k − 1. If there is an
index j < i such that σj ∩ σi 6= ∅ then σi is good by Claim 7.6. If this is not the case
then we set σ1 = {x, y}. The faces σi∪{x} and σi ∪{y} belong to Ki; however, σ1∪σi
does not belong to Ki since σ1 was collapsed. Thus σi does not belong to a unique
maximal face.

Let η = σk ∪ σB. See Figure 7.1. Claim 7.7 implies that η ⊆ τ . By Claim 7.6 (and
the fact that σk is not a good face—a consequence of Claim 7.7) the face η does not
contain a good face. Thus, η ∈ Kk by Claim 7.8. In particular η ⊆ τk since τk is a
unique maximal face of Kk containing σk, hence σB ⊆ τk. On the other hand, τ is a
unique maximal face of K ⊇ Kk containing σB since σB is a 2-collapsible face, which
implies τk ⊆ τ . It is a contradiction that τk 6⊆ τ . 2
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7.2 d-collapsible complex with a bad d-collapse

In this section we prove Theorem 7.2(ii).
We start with describing the intuition behind the construction. Given a full com-

plex K = ∆(S) (the cardinality of S is 2d), any (d− 1)-face is d-collapsible. However,
once we collapse one of them, say σB, the rest (d − 1)-faces will be divided into two
sets, those which are collapsible in KσB (namely, Σ), and those which are not (namely,
Σ̄). For example, when d = 2, given a tetrahedron, after collapsing one edge, among
the rest five edges, four are collapsible and one is not. The idea of the construction is
to attach a suitable complex C to K in such a way that

• the faces of Σ are properly contained in faces of C (and thus they cannot be
collapsed until C is collapsed);

• there is a sequence of d-collapses of some of the faces of Σ̄ such that C can be
subsequently d-collapsed.

In summary the resulting complex is d-collapsible because of the second requirement.
However, if we start with σB, we get stuck because of the first requirement.

7.2.1 Bad complex

Now, for d ≥ 3, we construct a bad complex B, which is d-collapsible but it contains
a bad face. A certain important but technical step of the construction is still left out.
This is to give the more detailed intuition to the reader. Details of that step are given
in the subsequent subsections.

The complex Cglued.
Suppose that σ, γ1, . . . , γt are already known (d − 1)-dimensional faces of a given

complex L. These faces are assumed to be distinct, but not necessarily disjoint. We
start with the complex K = ∆(σ) ∪∆(γ1) ∪ · · · ∪∆(γt). We attach a certain complex
C to L′. The resulting complex is denoted by Cglued(σ; γ1, . . . , γt). Here we leave out
the details; however, the properties of Cglued are described in the forthcoming lemma
(we postpone the proof of this lemma).

Lemma 7.9. Let L, L
′, and Cglued = Cglued(σ; γ1, . . . , γt) be the complexes from the

previous paragraph. Then we have:

(i) If σ is a maximal face of L, then L ∪ Cglued ։ L \ {σ}.

(ii) The only d-collapsible face of Cglued is the face σ.

(iii) Suppose that d is a constant. Then the number of faces of Cglued is O(t).

Let S = {p, q1, . . . , qd−1, r1, . . . , rd} be a 2d-element set. Consider the full simplex
∆(S). We name its (d− 1)-faces:

ι = {p, q1, . . . , qd−1} is an initial face,
λi = {q1, . . . , qd−1, ri} are liberation faces for i ∈ [d],
σB = {r1, . . . , rd}, we will show that σB is a bad face.
The remaining (d − 1)-faces are attaching faces; let us denote these faces by α1, . . . ,
αt.
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p

q1

r1

r2

ι

α1

α2

σB

λ1

λ2

Cglued (ι;α1, α2)

2
S

B

Figure 7.2: A schematic drawing of the complexes ∆(S) and B.

We define B by

B = ∆(S) ∪ Cglued(ι;α1, . . . , αt).

See Figure 7.2 for a schematic drawing.

Proof of Theorem 7.2(ii). We want to prove that B is d-collapsible, but it contains a
bad d-collapsible face.

First, we observe that σB is a bad face. By Lemma 7.9(ii) and the inspection, the
only d-collapsible faces of B are λi and σB for i ∈ [d]. After collapsing σB there is no
d-collapsible face, implying that σB is a bad face.

n order to show d-collapsibility of B we need a few other definitions. The complex
R is defined by

R = {σ ∈ ∆(S) : if {q1, . . . , qd−1} ⊆ σ then σ ⊆ ι} .

We observe that R\{ι} is d-collapsible and also that ∆(S) ։ R by collapsing all libera-
tion faces (in any order). In fact, the first observation is a special case of Lemma 7.11(ii)
used for the NP-reduction.

An auxiliary complex A is defined in a similar way to B:

A = R ∪ Cglued(ι;α1, . . . , αt).

We show d-collapsibility of B by the following sequence of d-collapses:

B ։ A ։ R \ {ι} ։ ∅.

The fact that B ։ A is quite obvious—it is sufficient to d-collapse the liberation
faces. More precisely, we use Lemma 7.16 with K = B, K′ = ∆(S), and L′ = R. The
fact that A ։ R\{ι} follows from Lemma 7.9(i). We already observed that R\{ι} ։ ∅
when defining R.
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7.2.2 The complex C

Our proof relies on constructing d-dimensional d-collapsible complex C such that its
first d-collapse is unique. We call this complex a connecting gadget. Precise properties
of the connecting gadget are stated in Proposition 7.10.

Before stating the proposition we define the notion of distant faces. Suppose that
K is a simplicial complex and let u, v be two of its vertices. By dist(u, v) we mean
their distance in graph-theoretical sense in the 1-skeleton of K. We say that two faces
ω, η ∈ K are distant if dist(u, v) ≥ 3 for every u ∈ ω, v ∈ η.

Proposition 7.10. Let d ≥ 2 and t ≥ 0 be integers. There is a d-dimensional complex
C = C(ρ; ζ1, . . . , ζt) with the following properties:

(i) It contains (d− 1)-dimensional faces ρ, ζ1, . . . , ζt such that each two of them are
distant faces.

(ii) Let C′ = C′(ρ; ζ1, . . . , ζt) be the subcomplex of C given by C′ = ∆(ρ) ∪ ∆(ζ1) ∪
· · ·∪∆(ζt). Then C ։ (C′ \{ρ}). In particular, C is d-collapsible since (C′ \{ρ})
is d-collapsible.

(iii) The only d-collapsible face of C is the face ρ.

(iv) Suppose that d is a constant. Then the number of faces of C is O(t).

7.2.3 The complex C(ρ)

We start our construction assuming t = 0; i.e., we construct the connecting gadget
C = C(ρ).

We remark that the construction of C is in some respects similar to the construction
of generalized dunce hats. We refer to [AMS93] for more background.

The geometric realization of C(ρ). First, we describe the geometric realization,
‖C‖, of C. Let P be the d-dimensional crosspolytope, the convex hull

conv {e1,−e1, . . . , ed,−ed}

of the vectors of the standard orthonormal basis and their negatives. It has 2d facets

Fs = conv {s1e1, . . . , sded} ,

where s = (si)
d
i=1 ∈ {−1, 1}d (s for sign). We want to glue all facets together except

the facet Fu where u = (1, . . . , 1) (see Figure 7.3).
More precisely, let s ∈ {−1, 1}d \ {u}. Every x ∈ Fs can be uniquely written as

a convex combination x = xa,s = a1s1e1 + · · · + adsded where a = (ai)
d
i=1 ∈ [0, 1]d

and
∑d

i=1 ai = 1. For every such fixed a we glue together the points in the set
{

xa,s : s ∈ {−1, 1}d \ {u}
}

; by X we denote the resulting space. We will construct C

in such a way that X is a geometric realization of C.

Triangulations of the crosspolytope. We define two auxiliary triangulations of
P—they are depicted in Figure 7.4. The simplicial complex J is the simplicial complex
with vertex set {0, e1,−e1, . . . , ed,−ed}. The set of its faces is given by the maximal
faces

{0, s1e1, s2e2, . . . , sded} where s1, s2, . . . , sd ∈ {−1, 1} .
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Fu

Fu

d = 2 d = 3

Figure 7.3: The space X . The arrows denote, which facets are identified.

The complex J is a triangulation of P .

Let ϑ be the face {0, e1, . . . , ed}. The complex H is constructed by iterated stellar
subdivisions starting with J and subdividing faces of J \ ∆(ϑ) (first subdividing d-
dimensional faces, then (d− 1)-dimensional, etc.). Formally, H is a complex with the
vertex set (J \∆(ϑ)) ∪ ϑ and with faces of the form

{{σ1, . . . , σk} ∪ τ} where σ1 ) · · · ) σk ) τ ; σ1, . . . , σk ∈ J \∆(ϑ); τ ⊆ ϑ; k ∈ N0.

The construction of C. Informally, we obtain C from H by the same gluing as was
used for constructing X from P .

Formally, let ≈ be an equivalence relation on (J \∆(ϑ)) ∪ ϑ given by
ei ≈ {−ei} for i ∈ [d],
σ1 ≈ σ2 for σ1, σ2 ∈ J \∆(ϑ),

σ1 = {s1ek1 , . . . , smekm}, σ2 = {s′1ek1 , . . . , s
′
mekm}

where si, s
′
i ∈ {−1, 1} and 1 ≤ k1 < · · · < km ≤ d.

For an equivalence relation ≡ on a set X we define ≡+ to be an equivalence relation
on Y ⊂ 2X inherited from ≡; i.e., we have, for Y1, Y2 ∈ Y , Y1 ≡+ Y2 if and only if
there is a bijection f : Y1 → Y2 such that f(y) ≡ y for every y ∈ Y1.

We define C = H/≈+ . One can prove that C is indeed a simplicial complex and
also that ‖C‖ is homeomorphic to X (since the identification C = H/≈+ was chosen to
follow the construction of X).

The faces of C are the equivalence classes of ≈+. We use the notation 〈σ〉 for such
an equivalence class given by σ ∈ H. By ρ we denote the face 〈{e1, . . . , ed}〉 of C.

7.2.4 The complex C(ρ; ζ1, . . . , ζt)

Now we assume that t ≥ 1 and we construct the complex C(ρ; ζ1, . . . , ζt), which is a
refinement of C(ρ). The idea of the construction is quite simple. We pick an interior
simplex of C(ρ); and we subdivide it in such a way that we obtain distant (d − 1)-
dimensional faces ζ1, . . . , ζt (and also distant from ρ). For completeness we show a
particular way how to get such a subdivision.

A suitable triangulation of a simplex. An example of the following construction
is depicted in Figure 7.5. Let ∆ be a d-dimensional (geometric) simplex with a set of
vertices V = {v1, . . . ,vd+1}, let b be its barycentre, and let t be an integer. Next, we



d-COLLAPSIBLE COMPLEX WITH A BAD d-COLLAPSE 45

e1−e1

e2

−e2

0 0 e1

e2

{−e1}

{−e2}

{−e1, e2}

ϑ

J\2ϑ

Figure 7.4: The triangulations J (left) and H (right) of P with d = 2.

define

W =

{

wi,j : wi,j = b+
j

3t
(vi − b), i ∈ [d+ 1], j ∈ [3t]

}

.

Note that V ⊂W . For j ∈ [t], ζj is a (d− 1)-face {w1,3j−2,w2,3j−2, . . . ,wd,3j−2}.
Now we define polyhedra Q1, . . . , Q3t. The polyhedron Q1 is the convex hull

conv {w1,1 . . . ,wd+1,1}. For j ∈ [3t] \ {1} the polyhedron Qj is the union of the
convex hulls ⋃

i∈[d+1]

conv {wk,l : k ∈ [d+ 1] \ {i} , l ∈ {j − 1, j}} .

The polyhedron Q1 is a simplex. For j > 1, the polyhedra Qj are isomorphic to the
prisms ∂∆d × [0, 1], where ∆d is a d-simplex. Each such prism admits a (standard)
triangulation such that ∂∆d × {0} and ∂∆d × {1} are not subdivided (see [Mat03,
Exercise 3, p. 12]).

Let D(ζ1, . . . , ζt) denote an abstract simplicial complex on a vertex set W , which
comes from a triangulation of ∆ obtained by first subdividing it into the polyhedra
Q1, . . . , Q3t and subsequently triangulating these polyhedra as described above.

The definition of C(ρ; ζ1, . . . , ζt). Let ξ be a d-face of H such that ‖ξ‖ ⊂ int ‖H‖.
Although there are multiple such d-faces only some of them are used as ξ. For example,
in Figure 7.5, only one out of four such d-faces is chosen. Suppose that the set V (from
above) is the set of vertices of ξ. We define

C(ρ; ζ1, . . . , ζt) = (C(ρ) \ {〈ξ〉}) ∪ D(ζ1, . . . , ζt)

while recalling that 〈ξ〉 denotes the equivalence class of ≈+ from the definition of C.
See Figure 7.5.

Proof of Proposition 7.10. The claims (i), (iii) and (iv) follow straightforwardly from
the construction. Regarding the claim (ii), informally, we first d-collapse the face ρ;
after that we d-collapse the “interior” of C in order to collapse all d-dimensional faces
except the faces that should remain in C′ \ {ρ}. Formally, we use Lemma 7.17.

Gluing. Here we focus on gluing briefly discussed above Lemma 7.9. As the name of
connecting gadget suggests, we want to use it (in Section 7.3) for connecting several
other complexes (gadgets). In particular, we want to have some notation for gluing
this gadget. We introduce this notation here.
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ζ1

ζ2

v1 =w1,3t v2 =w2,3t

v3 =w3,3t

ρ

Figure 7.5: The complex D(ζ1, ζ2) (left) and C(ρ; ζ1, ζ2) (right), here d = 2.

Again we suppose that σ, γ1, . . . , γt are already known (d−1)-dimensional faces of a
given complex L. They are assumed to be distinct, but not necessarily disjoint. There
is a complex K = ∆(σ) ∪ ∆(γ1) ∪ · · · ∪ ∆)γt). We take a new copy of C(ρ; ζ1, . . . , ζt)
and we perform identifications ρ = σ, ζ1 = γ1, . . . , ζt = γt. After these identifications,
the complex K∪C(ρ; ζ1, . . . , ζt) is denoted by Cglued(σ; γ1, . . . , γt). Note that C (before
gluing) and Cglued are generally not isomorphic since the gluing procedure can identify
some faces of C.

Proof of Lemma 7.9. The first claim follows from Lemma 7.19. The second claim fol-
lows from Proposition 7.10(i) and (iii). The last claim follows from Proposition 7.10(iv).

7.3 NP-completeness

Here we prove Theorem 7.1(ii). Throughout this section we assume that d ≥ 4 is
a fixed integer. We have that d-COLLAPSIBILITY is in NP since if we are given
a sequence of faces of dimension at most d − 1 we can check in a polynomial time
whether this sequence determine a d-collapsing of a given complex.

For NP-hardness, we reduce the problem 3-SAT to d-COLLAPSIBILITY. The
problem 3-SAT is NP-complete according to Cook [Coo71]. Given a 3-CNF formula
Φ, we construct a complex F that is d-collapsible if and only if Φ is satisfiable.

7.3.1 Sketch of the reduction

Let us recall the construction of the bad complex B. We have started with a simplex
∆(S) and we distinguished the initial face ι and the bad face σB. We were allowed to
start the collapsing either with σB or with liberation faces and then with ι. As soon as
one of the options was chosen the second one was unavailable. The idea is that these
two options should represent an assignment of variables in the formula Φ.

A disadvantage is that we cannot continue after collapsing σB . Thus we rather
need to distinguish two initial faces ι+ and ι− each of them having its own liberation
faces. However, we need that these two collections of liberation faces do not interfere.
That is why we have to assume d ≥ 4.
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Figure 7.6: A schematic pictures of simplicial gadgets; the liberation faces of the merge
gadget are distinguished.

For every variable xj of the formula Φ we thus construct a certain variable gadget
Vj with two initial faces ι+j and ι−j . For a clause C i in the formula Φ there is a clause
gadget G

i. Initially it is not possible to collapse clause gadgets. Assume, e.g., that
C i contains variables xj and xj′ in positive occurrence and xj′′ in negative occurrence.
Then it is possible to collapse Gi as soon as ι+j , ι

+
j′ , or ι

−
j′′ was collapsed. (This is

caused by attaching a suitable copy of the connection gadget C from the previous
section.) Thus the idea is that the complex F in the reduction is collapsible if and only
if all clause gadgets can be simultaneously collapsed which happens if and only if Φ is
satisfiable.

There are few more details to be supplied. Similarly as for the construction of B we
have to attach a copy T of the connecting gadget C to the faces which are neither initial
nor liberation (i.e., to attaching faces). This step is necessary for controlling which
faces can be collapsed. This copy of connecting gadget is called a tidy connection and
once it is activated (at least on of its faces is collapsed) then it is consequently possible
to collapse the whole complex F. Finally, there are inserted certain gadgets called
merge gadgets. Their purpose is to merge the information obtained by clause gadgets:
they can be collapsed after collapsing all clause gadgets and then they activate the
tidy connection. The precise definition of F will be described in following subsections.
At the moment it can be helpful for the reader to skip few pages and look at Figure 7.7
(although there is a notation on the picture not introduced yet).

7.3.2 Simplicial gadgets

Now we start supplying the details. As sketched above we introduce several gadgets
called simplicial gadgets. They consist of full simplices (on varying number of vertices)
with several distinguished (d − 1)-faces. These gadgets generalize the complex ∆(S).
Every simplicial gadget contains one or more (d − 1)-dimensional pairwise disjoint
initial faces. Every initial face ι contains several (possibly only one) distinguished
(d− 2)-faces called bases of ι. The liberation faces of the gadget are such (d− 1)-faces
λ that contain a base of some initial face ι, but λ 6= ι. The remaining (d− 1)-faces are
attaching faces.

Now we define several concrete examples of simplicial gadgets.

The variable gadget. The variable gadget V = V(ι+, ι−, β+, β−) is described by the
following table:
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vertices: p+, q+1 , . . . , q
+
d−1, p

−, q−1 , . . . , q
−
d−1;

initial faces: ι+ =
{
p+, q+1 , . . . , q

+
d−1

}
, ι− =

{
p−, q−1 , . . . , q

−
d−1

}
;

bases: β+ =
{
q+1 , . . . , q

+
d−1

}
, β− =

{
q−1 , . . . , q

−
d−1

}
.

The clause gadget. The clause gadget G(ι, λ1, λ2, λ3) is given by:
vertices: p1, . . . , pd, q;
initial face: ι = {p1, p2, . . . , pd};
bases: β1 = ι \ {p1}, β2 = ι \ {p2}. β3 = ι \ {p3}.

Every base βj is contained in exactly one liberation face λj = βj ∪ {q}.

The merge gadget. The merge gadget M(ιmerge, λmerge,1, λmerge,2) is given by:
vertices: p1, . . . , pd, q, r;
initial face: ιmerge = {p1, p2, . . . , pd};
base: ιmerge \ {p1}.

The merge gadget contains exactly two liberation faces, which we denote λmerge,1 and
λmerge,2.

We close this subsection by proving a lemma about d-collapsings of simplicial gad-
gets.

Lemma 7.11. Suppose that S is a simplicial gadget, ι is its initial face, β ⊆ ι is a base
face, and λ1, . . . , λt are liberation faces containing β. Then d-collapsing of λ1, . . . , λt
(even in any order) yields a complex R such that

(i) ι is a maximal face of R;

(ii) R \ {ι} is d-collapsible;

(iii) R \ {ι} ։ ∆(ι′) where ι′ is an initial face different from ι (if exists).

Proof. We prove each of the claims separately.

(i) Let V be the set of vertices of S and let λt+1 = ι. We (inductively) observe
that d-collapsing of faces λ1, . . . , λk for k ≤ t yields a complex in which λk+1 is
contained in a unique maximal face (V \ (λ1 ∪ · · · ∪ λk)) ∪ β. This implies that
R is well defined and also finishes the first claim since

(V \ (λ1 ∪ · · · ∪ λt)) ∪ β = ι.

We remark that the few details skipped here are exactly the same as in the proof
of Lemma 7.14.

(ii) We observe that β is a maximal (d−2)-face of R \ {ι} and Sβ = R \ {ι, β}, hence
R\{ι} → Sβ. (We recall that Kσ denotes the resulting complex of an elementary
d-collapse K → Kσ = K \ [σ, τ(σ)].) Next, Sβ ։ S∅ = ∅ by Lemma 7.14.

(iii) Similarly as before we have R \ {ι} → Sβ. Let v be a vertex of β, we have
Sβ → S{v} by Lemma 7.14. The complex S{v} is a full simplex (S with removed
v), this complex even 1-collapse to ∆(ι′) by collapsing vertices of V \ (ι′ ∪ {v})
(in any order).
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7.3.3 The reduction

Let the given 3-CNF formula be Φ = C1∧C2∧· · ·∧Cn, where each C i is a clause with
exactly three literals (we assume without loss of generality that every clause contains
three different variables). Suppose that x1, . . . , xm are variables appearing in the
formula. For every such variable xj we take a fresh copy of the variable gadget and we
denote it by Vj = Vj(ι

+
j , ι

−
j , β

+
j , β

−
j ). For every clause C i containing variables xj1 , xj2

and xj3 (in a positive or negative occurrence) we take a new copy of the clause gadget
and we denote it by Gi = Gi(ιi, λij1, λ

i
j2
, λij3). Moreover, for C i with i ≥ 2, we also take

a new copy of the merge gadget and we denote it Mi = Mi(ιimerge, λ
i
merge,1, λ

i
merge,2).

Now we connect these simplicial gadgets by glued copies of the connecting gadget
called connections.

Suppose that a variable xj occurs positively in the clauses C i1 , . . . , C ik . We con-
struct the positive occurrence connections by setting

O
+
j = Cglued(ι

+
j ;λ

i1
j , . . . , λ

ik
j ).

The negative occurrence connections O
−
j are constructed similarly (we use ι−j instead

of ι+j ; and we use clauses in which is xj in negative occurrence).
The merge connections are defined by

I11 = Cglued(ι
1;λ2merge,2);

I
i
1 = Cglued(ι

i;λimerge,1) where i ∈ {2, . . . , n};
Ii2 = Cglued(ι

i
merge;λ

i+1
merge,2) where i ∈ {2, . . . , n− 1}.

For convenient notation we denote I11 also by I12.
Finally, the tidy connection is defined by

T = Cglued(ι
n
merge;α1, . . . , αt)

where α1, . . . , αt are attaching faces of all simplicial gadgets in the reduction, namely
the variable gadgets Vj for j ∈ [m], the clause gadgets Gi for i ∈ [n], and the merge
gadgets Mi for i ∈ {2, . . . , n}.

The complex F in the reduction is defined by

F =

m⋃

j=1

Vj ∪
n⋃

i=1

G
i ∪

n⋃

i=2

M
i ∪

m⋃

j=1

(O+
j ∪ O

−
j ) ∪

n⋃

i=1

I
i
1 ∪

n−1⋃

i=2

I
i
2 ∪ T.

See Figure 7.7 for an example.
We observe that the number of faces of F is polynomial in the number of clauses

in the formula (regarding d as a constant). Indeed, we see that the number of gadgets
(simplicial gadgets and connections) is even linear in the number of variables. Each
simplicial gadget has a constant size. Each connection has at most linear size due to
Lemma 7.9(iii).

Collapsibility for satisfiable formulae. We suppose that the formula is satisfiable
and we describe a collapsing of F; see Figure 7.8.

We assign each variable TRUE or FALSE so that the formula is satisfied. For every
variable gadget Vj we proceed as follows. First, suppose that xj is assigned TRUE.
We d-collapse4 the liberation faces containing β+

j (see Lemma 7.11(i)), after that ι+j

4Note that after d-collapsing a liberation face containing β+

j the liberation faces containing β−

j

are no more d-collapsible (and vice versa). This will be a key property for showing that unsatisfiable
formulae yield to non-collapsible complexes.
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Figure 7.7: A schematic example of F for the formula Φ = (x1∨x2∨x3)∧ (¬x1∨¬x2∨
x4)∧(¬x1∨¬x3∨¬x4)∧(x2∨¬x3∨x4). Initial faces are drawn as points. (Multi)arrows
denote connections. Each (multi)arrow points from the unique d-collapsible face of the
connection to simplicial gadgets that are attached to the connection by some of its
liberation faces.
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Figure 7.8: d-collapsing of F for the Φ from Figure 7.7 assigned (FALSE, TRUE,
TRUE, FALSE). The numbers denote the order in which the parts of F vanish.
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is d-collapsible, and we d-collapse O
+
j (following Lemma 7.9(i) in the same way as in

the proof of Theorem 7.2(ii)). Similarly, we d-collapse O
−
j if xj is assigned FALSE.

We use several times Lemma 7.11(i) and Lemma 7.9(i) in the following paragraphs.
The use is very similar is in the previous one, thus we do not mention these lemmas
again.

After d-collapsings described above, we have that every clause gadget Gi contains at
least one liberation face that is d-collapsible since we have chosen such an assignment
that the formula is satisfied. We d-collapse this liberation face and after that the face
ιi is d-collapsible. We continue with d-collapsing the merge gadgets Ii1 for i ∈ [n].

Next we gradually d-collapse the merge gadgets Ii2 for i ∈ {2, . . . , n− 1}. For this,
we have that both liberation faces of I22 are d-collapsible, we d-collapse them and we
have that ι2merge is d-collapsible. We d-collapse I22 and now we continue with the same
procedure with I32, the I42, etc.

Finally, we d-collapse the tidy gadget. The d-collapsing of tidy gadget makes all
the attaching faces of simplicial gadgets d-collapsible. After this “tidying up” we can
d-collapse all variable gadgets (using Lemma 7.11(iii)), then all remaining connections,
and at the end all remaining simplicial gadgets due to Lemma 7.11(ii).

Non-collapsibility for unsatisfiable formulae. Now we suppose that Φ is unsat-
isfiable and we prove that F is not d-collapsible.

For contradiction, we suppose that F is d-collapsible. Let

F = F1 → F2 → · · · → ∅

be a d-collapsing of F. We call it our d-collapsing. For a technical reason, according
to Lemma 7.15, we can assume that first (d − 1)-dimensional faces are collapsed and
after that faces of less dimensions are removed.

Let us fix a subcomplex Fℓ in our d-collapsing. Let N be a connection (one of that
forming F) and let Nℓ = Fℓ ∩ N. We say that N is activated in Fℓ if Nℓ is a proper
subcomplex of N.

The connection N is defined as Cglued(σ; γ1, . . . , γs) for some (d−1)-faces σ, γ1, . . . , γs
of simplicial gadgets in F. We remark that Lemma 7.9(ii) implies that if N is activated
in Fℓ then σ 6∈ Fℓ.

We also prove the following lemma about activated connections.

Lemma 7.12. Let Fℓ be a complex from our d-collapsing such that T is not activated
in Fℓ. Then we have:

(i) Let j ∈ [m]. If the positive occurrence connection O
+
j is activated in Fℓ, then the

negative occurrence connection O
−
j is not activated in Fℓ (and vice versa).

(ii) Let i ∈ [n]. If the merge connection Ii1 is activated in Fℓ, then at least one of the
three occurrence connections attached to G

i is activated in Fℓ.

(iii) Let i ∈ {2, . . . , n− 1}. If the merge connection Ii2 is activated in Fℓ, then the
merge connections Ii1 and I

i−1
2 are activated in Fℓ.

Proof. Let us consider first ℓ− 1 d-collapses of our d-collapsing

F = F1 → F2 → · · · → Fℓ,

where Fk+1 = Fk \ [σk, τk] for k ∈ [ℓ−1]. According to assumption on our d-collapsing,
we have that σ1, . . . , σℓ−1 are (d− 1)-dimensional (since T is not activated in Fℓ yet).

Now we prove each of the claims separately.
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(i) For a contradiction we suppose that both O
+
j and O

−
j are activated in Fℓ.

We consider the variable gadget Vj . We say that an index k ∈ [ℓ− 1] is relevant
if σk ∈ Vj . We observe that if k is a relevant index then σk is a liberation face
or an initial face of Vj , because attaching faces are contained in T.

By positive face we mean either the initial face ι+j or a liberation face containing
β+
j . A negative face is defined similarly. Let k+ (respectively k−) be the smallest

relevant index such that σk+ is a positive face (respectively negative face). These
indexes have to exist since both O

+
j and O

−
j are activated in Fℓ. Without loss of

generality k+ < k−.

We show that σk− is not a d-collapsible face of Fk−−1, thus we get a contradiction.
Indeed, let S = σk+ \ σk−. We have |S| ≥ 2 since d ≥ 4 (here we crucially use
this assumption). Let s ∈ S. Then we have σk− ∪{s} ∈ Fk−−1, because σk− ∪{s}
does not contain a positive subface (it does not contain β+

j since |σk− ∩ β+
j | ≤ 1,

but |β+
j | ≥ 3). On the other hand σk− ∪ S 6∈ Kk−−1 since it contains σk+. I.e.,

σk− is not in a unique maximal face.

(ii) We again define a relevant index; this time k ∈ [ℓ − 1] is relevant if σk ∈ Gi.
We consider the smallest relevant index k′. Again we have that σk′ is either the
initial face ιi or a liberation face of Gi. In fact, σk′ cannot be ι

i: by Lemma 7.9(ii)
we would have that Ii1 ⊆ Fk′−1 and also Gi ⊆ Fk′−1 from minimality of k′, which
would contradict that σk′ is a collapsible face of Fk′−1. Thus σk′ is a liberation face
of Gi. This implies, again by Lemma 7.9(ii), that at least one of the occurrence
gadgets attached to liberation faces is activated even in Fk′−1.

(iii) By a similar discussion as in previous step we have that at least one of the liber-
ation faces λimerge,1 and λimerge,2 of Mi have to be d-collapsed before d-collapsing
ιimerge. However, we observe that d-collapsing only one of these faces is still
insufficient for possibility of d-collapsing ιimerge. Hence both of the liberation

faces have to be d-collapsed, which implies that both the gadgets Ii1 and I
i−1
2 are

activated in Fℓ.

We also prove an analogy of Lemma 7.12 for the tidy gadget. We have to modify
the assumptions, that is why we use a separate lemma. The proof is essentially same
as the proof of Lemma 7.12(iii), therefore we omit it.

Lemma 7.13. Let ℓ be the largest index such that T is not activated in Fℓ, then the
merge connections In1 and I

n−1
2 are activated in Fℓ.

2

Now we can quickly finish the proof of non-collapsibility. Let ℓ be the integer from
Lemma 7.13. By this lemma and repeatedly using Lemma 7.12(iii) we have that all
merge connections are activated in Fℓ. By Lemma 7.12(ii), for every clause gadget
Gi there is an occurrence gadget attached to Gi, which is activated in Fℓ. Finally,
Lemma 7.12(i) implies that for every variable xj at most one of the occurrence gadgets
O

+
j , O

−
j is activated in Fℓ. Let us assign xj TRUE if it is O+

j and FALSE otherwise.
This is satisfying assignment since for every Gi at least one occurrence gadget attached
to it is activated in Fℓ. This contradicts the fact that Φ is unsatisfiable.

2
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→ → → →

K1 = K K2 = Kσ′ K3 K4 Kσ

σσ′ v1

v2 v3

Figure 7.9: An example of 2-collapsing K → Kσ′ ։ Kσ.

7.4 Technical properties of d-collapsing

In this section, we prove several auxiliary lemmas on d-collapsibility used throughout
the paper.

7.4.1 d-collapsing faces of dimension strictly less than d− 1

Lemma 7.14. Let K be a complex, d an integer, and σ a d-collapsible face (in partic-
ular, dim σ ≤ d− 1). Let σ′ ⊇ σ be a face of K of dimension at most d − 1. Then σ′

is d-collapsible and Kσ′ ։ Kσ.

Proof. We assume that σ 6= σ′ otherwise the proof is trivial.
First, we observe that τ(σ) is a unique maximal face containing σ′. Indeed, σ′ ⊆

τ(σ) since τ(σ) is the unique maximal face containing σ, and also if η ⊇ σ′, then
η ⊇ σ, which implies η ⊆ τ(σ). Hence we have that σ′ is d-collapsible.

Let v1 be a vertex of σ′ \σ. It is sufficient to prove that Kσ′ ։ Kσ′\{v1} and proceed
by induction. Thus, for simplicity of notation, we can assume that σ′ = σ ∪ {v1}.

Let v2, . . . , vt be vertices of τ(σ) \ σ′. By ηi we denote the face σ ∪ {vi} for i ∈ [t].
(In particular, σ′ = η1.) For i ∈ [t+ 1] we define a complex Ki by the formula

Ki = {η ∈ K : η 6⊇ η1, . . . , η 6⊇ ηi−1} = {η ∈ K : if η ⊇ σ then vj 6∈ η for j < i} .

From these descriptions we have that ηi is a d-collapsible face of Ki contained in a
unique maximal face τi = τ(σ) \ {v1, . . . , vi−1}. Moreover (Ki)ηi = Ki+1. Thus, we
have a d-collapsing

K = K1 → K2 → · · · → Kt+1.

See Figure 7.9 for an example.
To finish the proof it remains to observe that K2 = Kσ′ and Kt+1 is a disjoint union

of Kσ and {σ}, hence Kt+1 → Kσ.

As a corollary, we obtain the following lemma.

Lemma 7.15. Suppose that K is a d-collapsible complex. Then there is a d-collapsing
of K such that first only (d− 1)-dimensional faces are collapsed and after that faces of
dimensions less then (d− 1) are removed.

Proof. Suppose that we are given a d-collapsing of K. Suppose that in some step we
d-collapse a face σ that is not maximal and its dimension is less than d − 1. Let us
denote this step by K

′ → K
′
σ. Let σ

′ ⊇ σ be such a face of K′ that either dim σ′ = d−1
or σ′ is a maximal face. Then we replace this step by d-collapsing K′ → K′

σ′ ։ Kσ.
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։ ։implies

K’ L’ K L

Figure 7.10: Complexes K, K′, L and L′ from the statement of Lemma 7.16.

We repeat this procedure until every d-collapsed face is either of dimension d − 1
or maximal. We observe that this procedure can be repeated only finitely many times
since in every replacement we increase the number of elementary d-collapses in the
d-collapsing, while this number is bounded by the number of faces of K.

Finally, we observe that if we first remove a maximal face of dimension less than
d− 1 and then we d-collapse a (d− 1)-dimensional face, we can swap these steps with
the same result.

7.4.2 d-collapsing to a subcomplex

Suppose that K is a simplicial complex, K′ is a subcomplex of it, which d-collapses to
a subcomplex L′. If certain conditions are satisfied, then we can perform d-collapsing
K′

։ L′ in whole K; see Figure 7.10 for an illustration. The precise statement is given
in the following lemma.

Lemma 7.16 (d-collapsing a subcomplex). Let K be a simplicial complex, K′ a sub-
complex of K, and L

′ a subcomplex of K′. Assume that if σ ∈ K
′ \L′, η ∈ K, and η ⊇ σ,

then η ∈ K′ \ L′. Moreover assume that K′
։ L′. Then L = (K \K′)∪ L′ is a simplicial

complex and K ։ L.

Proof. It is straightforward to check that L is a simplicial complex using the equiva-
lence

η ∈ L if and only if η ∈ K and η /∈ K′ \ L′.

In order to show K ։ L, it is sufficient to show the following (and proceed by
induction over elementary d-collapses):

Suppose that σ′ is a d-collapsible face of K′ such that K′
σ′ ⊇ L′. Then we have

1. σ′ is a d-collapsible face of K.

2. If σ ∈ K′
σ′ \ L

′, η ∈ Kσ′ and η ⊇ σ, then η ∈ K′
σ′ \ L

′.

3. L = (Kσ′ \ K
′
σ′) ∪ L′.

We prove the claims separately:

1. We know that σ′ /∈ L′ since K′
σ′ ⊇ L′. Thus, σ′ ∈ K′ \ L′. If η′ ∈ K and

η′ ⊇ σ′, then, by the assumption of the lemma, η′ ∈ K′ \ L′ ⊆ K′. In particular,
the maximal faces in K

′ containing σ′ coincide with the maximal faces in K

containing σ′. It means that σ′ is a d-collapsible face of K.
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Figure 7.11: In top right picture there are complexes K and L from Lemma 7.17; L is
thick and dark. In top left picture there is the graph G2(K \ L). Collapsing K ։ L is
in bottom pictures.

2. We have K′
σ′ \ L′ ⊆ K′ \ L′ and Kσ′ ⊆ K. Thus the assumption of the lemma

implies that η ∈ K
′ \ L′. Next we have Kσ′ ∩K

′ = K
′
σ′ since the maximal faces in

K′ containing σ′ coincide with the maximal faces in K containing σ′. We conclude
that η ∈ K′

σ′ \ L
′.

3. One can check that K \ K′ = Kσ′ \ K
′
σ′ .

Suppose that F is a set system. For an integer k we define the graph Gk(F) =
(V (Gk), E(Gk)) as follows:

V (Gk) = {F ∈ F : |F | = k + 1 (i.e., dimF = k if F is regarded as a face)};
E(Gk) = {{F, F ′} : F, F ′ ∈ V (Gk), F ∩ F ′ ∈ F and |F ∩ F ′| = k}.

Lemma 7.17 (d-collapsing a d-dimensional complex). Suppose that K is a d-dimen-
sional complex, L is its subcomplex and the following conditions are satisfied:

• K \ L contains a d-collapsible face σ such that τ(σ) ∈ K \ L;

• Gd(K \ L) is connected;

• for every (d− 1)-face η ∈ K \ L there are at most two d-faces in K \ L containing
η.

Then K ։ L.
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Proof. See Figure 7.11 when following the proof. Let τ0 = τ(σ), τ1, . . . , τj be an order
of vertices of Gd(K \ L) such that for every i ∈ [j] the vertex τi has a neighbor τn(i)
with n(i) < i. Such an order exists by the second condition. Let σi = τi ∩ τn(i).

Consider the following sequence of elementary d-collapses

K → K0 = Kσ,
Ki−1 → Ki = (Ki−1)σi for i ∈ [j].

This sequence is indeed a sequence of elementary d-collapses since τn(i) /∈ Ki−1, thus
τi is a unique maximal face containing σi in Ki−1 by the third condition. Moreover,
σi ∈ K \ L. Thus, Kj is a supercomplex of L.

The set system Kj \L contains only faces of dimensions d−1 or less. Hence Kj ։ L

by removing faces, which establishes the claim.

7.4.3 Gluing distant faces

Let k be an integer. Suppose that K is a simplicial complex and let ω = {u1, . . . , uk+1},
η = {v1, . . . , vk+1} be two k-faces of K. By

K(ω = η)

we mean the resulting complex under the identification u1 = v1, . . . , uk+1 = vk+1

(note that this complex is not unique—it depends on the order of vertices in ω and η;
however, the order of vertices is not important for our purposes).

In a similar spirit, we define

K(ω1 = η1, . . . , ωt = ηt)

for k-faces ω1, . . . , ωt, η1, . . . , ηt.

Lemma 7.18 (Collapsing glued complex). Suppose that ω and η are two distant faces
in a simplicial complex K. Let L be a subcomplex of K such that ω, η ∈ L. Suppose that
K d-collapses to L. Then K(ω = η) d-collapses to L(ω = η).

Proof. Let K → K2 → K3 → · · · → L be a d-collapsing of K to L. Our task is to show
that

K(ω = η) → K2(ω = η) → K3(ω = η) → · · · → L(ω = η)

is a d-collapsing of K(ω ≃ η) to L(ω ≃ η).

It is sufficient to show K(ω = η) → K2(ω = η) and proceed by induction.

For purposes of this proof, we distinguish faces before gluing ω = η by Greek
letters, say σ, σ′, and after gluing by Greek letters in brackets, say [σ], [σ′]. E.g., we
have ω 6= η, but [ω] = [η].

Suppose that K2 = Kσ for a d-collapsible face σ. We want to show that [τ(σ)] is the
unique maximal face containing [σ]. By the distance condition, we can without loss
of generality assume that σ ∩ η = ∅ (otherwise we swap ω and η). Suppose [σ′] ⊇ [σ].
Now we show that σ′ ⊇ σ: if σ ∩ ω = ∅ then [σ] = σ, and hence σ′ ⊆ σ since the
vertices of σ are not glued to another vertices); if σ∩ω 6= ∅ then σ′ ∩ η = ∅ due to the
distance condition, which implies σ′ ⊇ σ. Hence τ(σ) ⊇ σ′, and [τ(σ)] ⊇ [σ′]. Thus
[τ(σ)] is the unique maximal face containing [σ].
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Lemma 7.19 (Collapsing of the connecting gadget). Let t be an integer. Let L be
a complex with distinct d-dimensional faces σ, γ1, . . . , γt such that σ is a maximal
face of L. Let C = C(ρ, ζ1, . . . , ζt) and C′ = C′(ρ, ζ1, . . . , ζt) be complexes defined in
Section 7.2.

Then the complex (L∪̇C)(σ = ρ, ζ1 = γ1, . . . , ζt = γt) d-collapses to the complex
(L∪̇C′)(σ = ρ, ζ1 = ϕ1, . . . , ζt = γt) \ {σ} .

Proof. First, we observe that

(L∪̇C)(σ = ρ) ։ (L∪̇C′)(σ = ρ) \ {σ} .

This follows from Lemma 7.16 by setting K = (L∪̇C)(σ = ρ), K′ = C, L′ = C′ \ {σ},
and then L = (L∪̇C′)(σ = ρ) \ {σ}. Assumptions of the lemma are satisfied by
Proposition 7.10(ii) and the inspection.

Now it is sufficient to iterate Lemma 7.18, assumptions are satisfied by Proposi-
tion 7.10(i).

7.5 The complexity of d-representability

In this section we prove that d-Collapsibility is NP-hard for d ≥ 2.

Intersection graphs. Let F be a set system. The intersection graph I(F) of F is
defined as the (simple) graph such that the set of its vertices is the set F and the set
of its edges is the set {{F, F ′} : F, F ′ ∈ F , F 6= F ′, F ∩ F ′ 6= ∅}. Alternatively, I(F)
is the 1-skeleton of the nerve of F .

A string graph is a graph, which is isomorphic to an intersection graph of finite
collection of curves in the plane. By STR we denote the set of all string graphs. By
CON we denote the class of intersection graphs of finite collections of convex sets in
the plane, and by SEG we denote the class of intersection graphs of finite collections
of segments in the plane. Finally, by SEG(≤ 2) we denote the class of intersection
graphs of finite collections of segments in the plane such that no three segments share
a common point.

Suppose that G is a string graph. A system C of curves in the plane such that
G is isomorphic I(C) is called an STR-representation of G. Similar definitions apply
to another classes. We also establish a similar definition for simplicial complexes.
Suppose that K is a d-representable simplicial complex. A system C of convex sets in
Rd such that K is isomorphic to the nerve of C is called a d-representation of K.

We have STR ⊇ CON ⊇ SEG (actually, it is known that the inclusions are strict).
Furthermore, suppose that we are given a graph G ∈ SEG. By Kratochv́ıl and Ma-
toušek [KM94, Lemma 4.1], there is a SEG-representation of G such that no two
parallel segments of this representation intersect. By a small perturbation, we can
even assume that no three segments of this representation share a common point.
Hence SEG = SEG(≤ 2).

NP-hardness of 2-representability. Kratochv́ıl and Matoušek [KM89] prove that
for the classes mentioned above (i.e., STR, CON and SEG) it is NP-hard to recognize
whether a given graph belongs to the given class. For this they reduce planar 3-
connected 3-satisfiability (P3C3SAT) to this problem (see [Kra94] for the proof of
NP-completeness of P3C3SAT and another background). More precisely (see [KM89,
the proof of Prop. 2]), given a formula Φ of P3C3SAT they construct a graph G(Φ)
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such that G(Φ) ∈ SEG if the formula is satisfiable, but G(Φ) 6∈ STR if the formula
is unsatisfiable. Moreover, we already know that this yields G(Φ) ∈ SEG(≤ 2) for
satisfiable formulae.

Let us consider G(Φ) as a 1-dimensional simplicial complex. We will derive that
G(Φ) is 2-representable if and only if Φ is satisfiable.

If we are given a 2-representation of G(Φ) it is also a CON-representation of G(Φ)
since G(Φ) is 1-dimensional. Hence G(Φ) is not 2-representable for unsatisfiable for-
mulae.

On the other hand, a SEG(≤ 2)-representation of G(Φ) is also a 2-representation
of G(Φ). Thus G(Φ) is 2-representable for satisfiable formulae.

In summary, we have that 2-Collapsibility is NP-hard.

d-representability of suspension. Let K be a simplicial complex and let a and b
be two new vertices. By the suspension of K we mean the simplicial complex

suspK = K ∪ {{a} ∪ σ : σ ∈ K} ∪ {{b} ∪ σ : σ ∈ K} .

Lemma 7.20. Let d be an integer. A simplicial complex K is (d− 1)-representable if
and only if suspK is d-representable.

Proof. First, we suppose that K is (d − 1)-representable and we show that suspK is
d-representable. Let K1, . . . , Kt ⊆ Rd−1 be convex set from a (d− 1)-representation of
K. Let K(a) and K(b) be hyperplanes Rd−1 × {0} and Rd−1 × {1} in Rd. It is easy to
see, that the nerve of the family

{K1 × [0, 1], . . . , Kt × [0, 1], K(a), K(b)}

of convex sets in Rd is isomorphic to suspK.
For the reverse implication, we suppose that suspK is d-representable and we

show that K is (d − 1)-representable. Suppose that K(a), K(b), K1 . . . , Kt is a d-
representation of suspK (K(a) corresponds to a and K(b) corresponds to b). We have
that {a, b} 6∈ suspK, thus there is a hyperplane H ⊆ Rd separating K(a) and K(b)
(we can assume that the sets in the representation are compact). Then the nerve of
the family

{K1 ∩H, . . . , Kt ∩H}

of convex sets in H ≃ Rd−1 is isomorphic to K.

Since 2-Collapsibility is NP-hard, we have the following corollary of Lemma 7.20
(considering complexes that are obtained as (d− 2)-tuple suspensions):

Theorem 7.21. d-Collapsibility is NP-hard for d ≥ 2.

2



Chapter 8

A counterexample to Wegner’s
conjecture

The purpose of this chapter is to prove the following theorem. The theorem is a
counterexample to Wegner’s conjecture [Weg75].

Theorem 8.1. For every d ≥ 2 there is a simplicial complex which is topologically
d-representable but not d-collapsible.

8.1 Planar case

We start this section with describing a complex L which will serve us for the planar case.
Let A1, A2, A3, B1, B2, B3, C1, C2, C3, D,X1, X2, X3, Y1, Y2, Y3, Z1, Z2, Z3 be the (open)
sets from the Figure 8.1. We also set A := {A1, A2, A3}, B := {B1, B2, B3}, C :=
{C1, C2, C3}, D := {D}, X := {X1, X2, X3}, Y := {Y1, Y2, Y3}, and Z := {Z1, Z2, Z3}.
Let L be the collection of all these sets, i.e., L := A∪B ∪C ∪D∪X ∪Y ∪Z. Finally,
L is the nerve of L.

We will show that L is topologically 2-representable but not 2-collapsible.

8.1.1 Topological representability

It is sufficient to show that L is a good cover. This property can be hand-checked;
however, we offer an alternative approach.

First we realize that all sets of L \ Z are convex. Thus L \ Z is a good cover. It
remains to check that adding sets of Z does not violate this property.

Let Z ∈ Z and let LZ := {L ∩ Z : L ∈ L}. We are done as soon as we show that
LZ1,LZ2, and LZ3 are good covers.

Because of the symmetry we show it only for LZ1. The sets of LZ1 can be trans-
formed into convex sets by a homeomorphism of R2. See Figure 8.1.1. Thus they form
a good cover.

8.1.2 Non-collapsibility by case analysis

Here we prove that L is not 2-collapsible by case analysis. We get a bit stronger
results that will help us for higher dimensions. Disadvantage of this proof is that it
does not give an explanation how is the complex constructed. Therefore we supply
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A1

A2
A3

B1 B2

B3

C1

C2

C3

D

Z1
Z2

Z3

Y1 Y2

Y3

X1

X2X3

Figure 8.1: The sets A1, . . . , Z3. We rather supply more detailed description of the
sets if the picture is print only in black and white: The sets A∗ are the ovals on the
boundary; B∗ are the small discs close to the boundary; C∗ are the trapezoid-shaped
sets; D is the triangle in the center; X∗ are the circles close to the center; Y∗ are the
deltoid-shaped sets; and Z∗ are the boomerang-shaped sets

an additional heuristic explanation in the next subsection, although it would need a
bit more effort to turn that explanation into a proof.

For a simplicial complex K we set

γ0(K) := min{d : K has a d-collapsible face}.

The fact that L is not 2-collapsible is implied by the following proposition.

Proposition 8.2. γ0(L) = 3.

In order to prove the proposition we need a simple lemma.

Lemma 8.3. Let K be a simplicial complex and σ be a 1-face (edge) of it. Assume
that u and v are vertices of K not belonging to σ such that σ ∪ {u} ∈ K, σ ∪ {v} ∈ K,
but σ ∪ {u, v} 6∈ K. Then σ is not a 2-collapsible face of K.

Proof. If τ is a unique maximal face of K containing σ then u, v ∈ τ due to the
conditions of the lemma. However, τ ⊇ σ ∪ {u, v} 6∈ K.

Proof of Proposition 8.2. In the spirit of Lemma 8.3 for every 1-face σ ∈ L we find a
couple of vertices u, v ∈ L such that σ ∪ {u}, σ ∪ {v} ∈ L, but σ ∪ {u, v} 6∈ L. It is



8.1. PLANAR CASE 61
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Figure 8.2: A transformation of LZ1 . Whatever is outside of Z1 can be ignored.

sufficient to check 1-faces since if a 0-face (vertex) w is 1-collapsible then any 1-face
containing w is 1-collapsible as well. Moreover, it is sufficient to check only some
1-faces because of the symmetries of the complex. The rest of the proof is given by
the following table.

σ u, v σ u, v σ u, v
{A1, A2} B2, Z2 {A1, B1} C1, A3 {A1, C1} B1, B2

{A1, Y1} B1, Z1 {A1, Z1} C1, A3 {B1, C1} A1, C3

{B1, Y1} C1, A3 {C1, C2} B2, D {C1, D} C2, C3

{C1, X1} Y1, Y2 {C1, Y1} B1, Z1 {C1, Z1} Y1, Z2

{D,X1} Y1, Y2 {D, Y1} C1, X3 {X1, X2} Y2, X3

{X1, Y1} D,Z1 {X1, Z1} Y1, Z2 {Y1, Z1} C1, A3

{Z1, Z2} A1, X1

8.1.3 Sketch of non-collapsibility

The purpose of this subsection is to give a rough idea why the complex L should not
be 2-collapsible. This description could be useful, for instance, for generalizations.
However, the reader can easily skip this part. The author still prefer to include this
discussion in order to explain how the complex is built up.
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Figure 8.3: Decomposition of L into two parts.

Let us split the collection L into two parts L+ := A ∪ B ∪ C ∪ D and L− :=
X ∪ Y ∪ Z. The nerve of L+, resp. L−, is denoted by L+, resp. L−. Both L+ and
L− are triangulations of a disc with only three boundary edges {A1, A2}, {A1, A3},
and {A2, A3}; resp. {Z1, Z2}, {Z1, Z3}, and {Z2, Z3}; see Figure 8.1.3. Only these
boundary faces are 2-collapsible faces of L+, resp. L−.

By suitable overlapping of L+ and L− (i.e., obtaining L) we get that also the above
mentioned boundary faces are not 2-collapsible anymore (in whole L). For instance
Z1 ∩ Z2 intersects A1 (in addition to X1 already in L−); however, A1 and X1 are
disjoint. Thus {Z1, Z2} is not a 2-collapsible face of L.

It remains to check that merging L+ and L− does not introduce any new problems.
It is, in fact, checked in a detail in the previous section. We just mention that there is
no problem with 1-faces which already appear in L

+ or L−. However; new 1-faces are
introduced when one vertex comes from L+ and the second one from L−. For another
triangulations these newly introduced faces can be 2-collapsible.1

1It would be perhaps possible to show that the complex is not 2-collapsible even if the newly
introduced faces were 2-collapsible. Listing all 1-faces in the previous subsection seems, however,
more convenient for the current purpose.
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8.2 Higher dimensions

Joins of simplicial complexes will help us to generalize the counterexample to higher
dimensions. Let K and K′ be simplicial complexes with the vertex sets V (K) and
V (K′). Their join is a simplicial complex K ⋆ K′ whose vertex set is the disjoint union
V (K) ⊔ V (K′);2 and whose set of faces is {α ⊔ β : α ∈ K, β ∈ K′}.

We need the following two lemmas.

Lemma 8.4 ([MT09, Lemma 4.2]). For every two simplicial complexes K, K′ we have
γ0(K ⋆ K

′) = γ0(K) + γ0(K
′).

Lemma 8.5. Let K be a convexly/topologically d-representable complex and K′ be a
convexly/topologically d′-representable complex. Then K⋆K′ is a convexly/topologically
(d+ d′)-representable complex.

Proof. Let F be a collection of convex sets/good cover in Rd such that K is isomorphic
to the nerve of F . Similarly F ′ is a suitable collection in Rd′ such that K′ is isomorphic
to the nerve of F ′.

Let us set

F ⋆ F ′ := {F × Rd′ : F ∈ F} ∪ {Rd × F ′ : F ′ ∈ F ′}.

Then it is easy to check that K ⋆ K′ is isomorphic to the nerve of F ⋆ F ′. Moreover
F ⋆ F ′ is a collection of convex sets/good cover in Rd+d′ .

Now we can finish the proof of our main result.

Proof of Theorem 8.1. Let T be the simplicial complex consisting of two isolated points.
The complex T is topologically 1-representable and γ0(T) = 1. Let us set

J = L ⋆ T ⋆ · · · ⋆ T
︸ ︷︷ ︸

d−2

.

In topology, the complex J would be called (d − 2)-tuple suspension of L. Then
γ0(J) = d + 1 due to Proposition 8.2 and Lemma 8.4. On the other hand, J is
topologically d-representable due to Lemma 8.5.

8.3 Conclusion

In the spirit of Helly-type theorems we could ask whether there is at least some weaker
bound for collapsibility of topologically d-representable complexes.

Question 8.6. For which d ≥ 2 there is a d′ ∈ N (as least as possible) such that every
topologically d-representable complex is d′-collapsible?

Using joins of multiple copies of L (instead of suspensions of L) we obtain the
following bound.

Proposition 8.7. For every d ≥ 2 there is a simplicial complex which is topologically
2d-representable but not (3d− 1)-collapsible.

2If A and B are sets with A ∩ B 6= ∅ then their disjoint union can be defined as A ⊔ B :=
A× {1} ∪B × {2}.
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Proof. Consider the complex L ⋆ · · · ⋆ L
︸ ︷︷ ︸

d

.

If there is a wider gap among these notions it will also reflect at the gap between
d-representable and d-Leray complexes obtained (with a similar method) by Matoušek
and the author [MT09].



Chapter 9

Hardness of embeddability

9.1 Preliminaries on PL topology

Here we review definitions and facts related to piecewise linear (PL) embeddings. We
begin with very standard things but later on we discuss notions and results which we
found quite subtle (although they might be standard for specialists), in an area where
it is sometimes tempting to consider as “obvious” something that is unknown or even
false. Some more examples and open problems, which are not strictly necessary for
the purposes of the reduction are mentioned in Appendix C of [MTW11]. For more
information on PL topology, and for facts mentioned below without proofs, we refer
to Rourke and Sanderson [RS82], Bryant [Bry02], or Buoncristiano [Buo03]. We also
refer to a survey paper by Repovš and Skopenkov [RS99] on embeddability problems.

Simplicial complexes. For purposes of this chapter we work with geometric
simplicial complexes; however, we assume that the input to the embeddability problem
is given as an abstract simplicial complex.

We recall that V (K) is the set of vertices of a complex K, and |K| denotes the
geometric realization of K, i.e., the union of all simplices in K. Often we do not
strictly distinguish between a simplicial complex and its polyhedron; for example, by
an embedding of K in Rd we really mean an embedding of |K| into Rd.

A simplicial complex K′ is a subdivision of K if |K′| = |K| and each simplex of K′ is
contained in some simplex of K.

Linear and PL mappings of simplicial complexes. A linear mapping of a
simplicial complex K into Rd is a mapping f : |K| → Rd that is linear on each simplex.
More explicitly, each point x ∈ |K| is a convex combination t0v0+t1v1+· · ·+tsvs, where
{v0, v1, . . . , vs} is the vertex set of some simplex σ ∈ K and t0, . . . , ts are nonnegative
reals adding up to 1. Then we have f(x) = t0f(v0) + t1f(v1) + · · ·+ tsf(vs).

A PL mapping of K into Rd is a linear mapping of some subdivision K′ of K into
Rd.

Embeddings. A general topological embedding of K into Rd is any continuous mapping
f : |K| → Rd that is a homeomorphism of |K| with f(|K|). Since we only consider finite
simplicial complexes, this is equivalent to requiring that f be injective.

By contrast, for a PL embedding we require additionally that f be PL, and for
a linear embedding we are even more restrictive and insist that f be (simplexwise)
linear.

PL embeddings versus linear embeddings. In contrast to planarity of graphs, lin-
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ear and PL embeddability do not always coincide in higher dimensions Brehm [Bre83]
constructed a triangulation of the Möbius strip that does not admit a linear embed-
ding into R3. Using methods from the theory of oriented matroids, Bokowski and
Guedes de Oliveira [BGdO00] showed that for any g ≥ 6, there is a triangulation of
the orientable surface of genus g that does not admit a linear embedding into R3. In
higher dimensions, Brehm and Sarkaria [BS92] showed that for every k ≥ 2, and every
d, k+1 ≤ d ≤ 2k, there is a k-dimensional simplicial complex K t PL embeds into Rd

but does not admit a linear embedding. Moreover, for any given r ≥ 0, there is such
a K such that even the r-fold barycentric subdivision K(r) is not linearly embeddable
into Rd. Corollary 4.2 is another result of this kind.

On the algorithmic side, the problem of linear embeddability of a given finite
simplicial complex into Rd is at least algorithmically decidable, and for k and d fixed, it
even belongs to PSPACE (since the problem can easily be formulated as the solvability
over the reals of a system of polynomial inequalities with integer coefficients, which
lies in PSPACE [Ren92]).

PL structures. Two simplicial complexes K and L are PL homeomorphic if there
are a subdivision K′ of K and a subdivision L′ of L such that K′ and L′ are isomorphic.

Let us recall that ∆d denote the simplicial complex consisting of all faces of a d-
dimensional simplex (including the simplex itself), and let ∂∆d consist of all faces of
∆d of dimension at most d−1. Thus, |∆d| is topologically B

d, the d-dimensional ball,
and |∂∆d| is topologically S

d−1.

A d-dimensional PL ball is a simplicial complex PL homeomorphic to ∆d, and a
d-dimensional PL sphere is a simplicial complex PL homeomorphic to ∂∆d+1. Let
us mention that a (finite) simplicial complex K is PL embeddable in Rd iff it is PL
homeomorphic to a subcomplex of a d-dimensional PL ball (and similarly, K is PL
embeddable in |∂∆d+1| iff it is PL homeomorphic to a subcomplex of a d-dimensional
PL sphere).

One of the great surprises in higher-dimensional topology was the discovery that
simplicial complexes with homeomorphic polyhedra need not be PL homeomorphic
(the failure of the “Hauptvermutung”). In particular, there exist non-PL spheres,
i.e., simplicial complexes homeomorphic to a sphere that fail to be PL spheres. More
precisely, every simplicial complex homeomorphic to S1, S2, S3, and S4 is a PL sphere,1

but there are examples of non-PL spheres of dimensions 5 and higher (e.g., the double
suspension of the Poincaré homology 3-sphere).

A weak PL Schoenflies theorem. The well-known Jordan curve theorem states
that if S1 is embedded (topologically) in R2, the complement of the image has exactly
two components. Equivalently, but slightly more conveniently, if S1 is embedded in
S2, the complement has two components. The Schoenflies theorem asserts that in the
latter setting, the closure of each of the components is homeomorphic to the disk B2.

While the Jordan curve theorem generalizes to an arbitrary dimension (if Sd−1

is topologically embedded in Sd, the complement has exactly two components), the
Schoenflies theorem does not. There are embeddings h : S2 → S3 such that the closure
of one of the components of S3 \ h(S2) is not a ball; a well known example is the
Alexander horned sphere.

The Alexander horned sphere is an infinitary construction; one needs to grow
infinitely many “horns” from the embedded S2 to make the example work. In higher

1The proof for S4 relies on the recent solution of the Poincaré conjecture by Perelman.
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dimensions, there are strictly finite examples, e.g., a 5-dimensional subcomplex K of
a 6-dimensional PL sphere S such that |K| is topologically an S5 (and K is a non-PL
sphere), but the closure of a component of |S| \ |K| is not a topological ball (see Curtis
and Zeeman [CZ61]).

Thus, one needs to put some additional conditions on the embedding to make a
“higher-dimensional Schoenflies theorem” work. We will need the following version,
in which we assume a (d − 1)-dimensional PL sphere sitting in a d-dimensional PL
sphere.

Theorem 9.1 (Weak PL Schoenflies Theorem). Let f be a PL embedding of ∂∆d into
∂∆d+1. Then the complement |∂∆d+1| \ f(|∂∆d|) has two components, whose closures
are topological d-balls.

For a proof of this theorem, see, e.g., [New60] or [Gla71]. A simple, inductive proof
is to appear in the upcoming revised edition of the book [Buo03] by Buoncristiano and
Rourke.

Let us remark that a “strong” PL Schoenflies theorem would claim that under the
conditions of Theorem 9.1, the closure of each of the components is a PL ball, but the
validity of this stronger statement is known only for d ≤ 3, while for each d ≥ 4 it is
(to our knowledge) an open problem.

Genericity. First let us consider a linear mapping f of a simplicial complex K into
Rd. We say that f is generic if f(V (K)) is a set of distinct points in Rd in general
position. If σ, τ ∈ K are disjoint simplices, then the intersection f(σ) ∩ f(τ) is empty
for dim σ + dim τ < d and it has at most one point for dim σ + dim τ = d.

A PL mapping of K into Rd is generic if the corresponding linear mapping of the
subdivision K′ of K is generic.

A PL embedding can always be made generic (by an arbitrarily small perturbation).

Linking and linking numbers. Let k, ℓ be integers, and let f : Sk → Rk+ℓ+1 and
g : Sℓ → Rk+ℓ+1 be PL embeddings with f(Sk) ∩ g(Sℓ) = ∅ (so here we regard Sk and
Sℓ as PL spheres). We will need two notions capturing how the images of f and g
are “linked” (the basic example is k = ℓ = 1, where we deal with two disjoint simple
closed curves in R3). For our purposes, we may assume that f and g are mutually
generic (i.e. f ⊔ g, regarded as a PL embedding of the disjoint union Sk ⊔ Sℓ into
Rk+ℓ+1, is generic).

The images f(Sk) and g(Sℓ) are unlinked if f can be extended to a PL mapping
f̄ : Bk+1 → Rk+ℓ+1 of the (k + 1)-dimensional ball such that f̄(Bk+1) ∩ g(Sℓ) = ∅.

To define the modulo 2 linking number of f(Sk) and g(Sℓ), we again extend f to
a PL mapping f̄ : Bk+1 → Rk+ℓ+1 so that f̄ and g are still mutually generic (but oth-
erwise arbitrarily). Then the modulo 2 linking number is the number of intersections
between f̄(Bk+1) and g(Sℓ) modulo 2 (it turns out that it does not depend on the
choice of f̄). In the sequel, we will use the phrase “odd linking number” instead of the
more cumbersome “nonzero linking number modulo 2” (although “linking number” in
itself has not been properly defined).

These geometric definitions are quite intuitive. However, alternative (equivalent in
our setting but more generally applicable) definitions are often used, phrased in terms
of homology or mapping degree, which are in some respects easier to work with (e.g.,
they show that linking is symmetric, i.e., f(Sk) and g(Sℓ) are unlinked iff g(Sℓ) and
f(Sk) are unlinked).
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9.2 Undecidability: Proof of Theorem 4.1

We begin with a statement of Novikov’s result mentioned in the introduction (unde-
cidability of Sd recognition for d ≥ 5) in a form convenient for our purposes.

Theorem 9.2 (Novikov). Fix d ≥ 5. There is an effectively constructible sequence
of simplicial complexes Σi, i ∈ N, with the following properties:

(1) Each |Σi| is a homology d-sphere.

(2) For each i, either Σi is a PL d-sphere, or the fundamental group of Σi is non-
trivial (in particular, Σi is not homeomorphic to the d-sphere).

(3) There is no algorithm that decides for every given Σi which of the two cases
holds.

We refer to the appendix in [Nab95] for a detailed proof. We begin the proof of
Theorem 4.1 with the following simple lemma.

Lemma 9.3. Let Σ be a simplicial complex whose polyhedron is a homology d-sphere,
d ≥ 2. (The same proof works for any homology d-manifold.) Let K be the (d − 1)-
skeleton of Σ. For every d-simplex σ ∈ Σ, the set |K| \ ∂σ is path connected (here ∂σ
is the relative boundary of σ).

Proof. By Lefschetz duality (see, e.g., [Mun84, Theorem 70.2]), |Σ| \ σ is path con-
nected. Indeed, Lefschetz duality yields H0(|Σ| \ σ) ∼= Hd(Σ, σ) (homology with Z2

coefficients, say). The exact homology sequence of the pair (Σ, σ), together with the
fact that σ is contractible, yields Hd(Σ) ∼= Hd(Σ, σ) ∼= Z2.

Next, we claim that if γ is a path in |Σ| \ σ connecting two points x, y ∈ |K|, then
x and y can also be connected by a path in |K| \ ∂σ. Indeed, given a d-dimensional
simplex τ ∈ Σ \ σ, we have ∂τ \ σ path-connected. Hence we can modify γ as follows:
Letting a := min{t : γ(t) ∈ τ} and b := max{t : γ(t) ∈ τ}, we replace the segment of
γ between γ(a) and γ(b) by a path η in ∂τ \ σ. Having performed this modification
for every τ ∈ Σ\σ (in some arbitrary order), we end up with a path connecting x and
y that lies entirely within |K| \ ∂σ.

Lemma 9.4. Let d ≥ 2. Suppose that Σ is a homology d-sphere, and let K be its
(d− 1)-skeleton.

(i) If Σ is a PL sphere, then K PL embeds into Rd.

(ii) If K PL embeds into Rd, then Σ is homeomorphic to Sd.

Proof. Part (i) is clear.
For part (ii), let us suppose that f is a PL embedding of K into Rd. Since K

is compact, the image of f is contained in some big d-dimensional simplex, and by
taking this simplex as one facet of ∆d+1, we can consider f as a PL embedding of
K into ∂∆d+1. Consider a d-simplex σ of Σ. By the weak PL Schoenflies theorem
(Theorem 9.1), |∂∆d+1| \ f(∂σ) has two components, whose closures are topological
d-balls. Moreover, since |K| \∂σ is path-connected, its image under f must be entirely
contained in one of these components.

Therefore, we can use the closure of the other component to extend f to a topologi-
cal embedding of σ. By applying this reasoning to each d-face, we obtain a topological
embedding g of Σ into ∂∆d+1. It follows for instance from Alexander duality (see, e.g.,
[Mun84, Theorem 74.1]) that g must be surjective, i.e., a homeomorphism.
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Proof of Theorem 4.1. The undecidability of Embed(d−1)→d for d ≥ 5 is an
immediate consequence of Theorem 9.2 and Lemma 9.4. 2

Proof of Corollary 4.2. Let us suppose that there is a recursive function f con-
tradicting the statement. That is, every (d− 1)-dimensional K with n simplices that
PL-embeds in Rd at all has a subdivision with at most f(n) simplices that embeds
linearly. Then, given a (d − 1)-dimensional complex K with n simplices, we could
generate all subdivisions K ′ of K with at most f(n) simplices (see Acquistapace et
al. [ABB90], Proposition 2.15) and, using the PSPACE algorithms mentioned in Sec-
tion 9.1, test the linear embeddability of each K ′ in Rd. This would yield a decision
algorithm for Embed(d−1)→d, contradicting Theorem 4.1. 2

9.3 Hardness of embedding 2-dimensional complexes

in R4

We will reduce the problem 3-SAT to Embed2→4. Given a 3-CNF formula ϕ, we
construct a 2-dimensional simplicial complex K that is PL embeddable in R4 exactly
if ϕ is satisfiable.

First we define two particular 2-dimensional simplicial complexes G (the clause
gadget) and X (the conflict gadget). They are closely related to the main example of
Freedman et al. [FKT94]: X is taken over exactly, and G is a variation on a construction
in [FKT94] (which, in turn, is similar in some respects to an example of Segal and
Spież [SS92], with some of the ideas going back to Van Kampen [vK32]).

9.3.1 The clause gadget

To construct G, we begin with a 6-dimensional simplex on the vertex set {v0, v1, . . . , v6},
and we let F be the 2-skeleton of this simplex (F for “full” skeleton). Then we make a
hole in the interior of the three triangles (2-simplices) v0v1v2, v0v1v3, and v0v2v3. That
is, we subdivide each of the triangles and from each of these subdivisions we remove
a small triangle in the middle, as is indicated in Fig. 9.1.2

This yields the simplicial complex G.
Let ω1, ω2, ω3 be the three small triangles we have removed (where ω1 comes from

the triangle v0v2v3 etc.). We call them the openings of G and we let OG := {ω1, ω2, ω3}
be the set of openings. Thus, G ∪ OG is a subdivision of the full 2-skeleton F.

If we remove from F the vertices v0, v1, v2 and all simplices containing them, we
obtain the boundary of the 3-simplex {v3, v4, v5, v6}. Topologically it is an S2, we call
it the complementary sphere of the opening ω3, and we denote it by Sω3

. The com-
plementary spheres of the openings ω1 and ω2 are defined analogously. The following
lemma is a variation on results in Van Kampen [vK32]:

Lemma 9.5.

(i) For every generic PL embedding f of G into R4 there is at least one opening
ω ∈ OG such that the images of the boundary ∂ω and of the complementary
sphere Sω have odd linking number.

2Alternatively, we could also make the clause gadget by simply removing the the triangles v0v1v2,
v0v1v3, and v0v2v3 from F. However, the embedding of the resulting complex K for satisfiable formulas
ϕ would become somewhat more complicated.
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Figure 9.1: The clause gadget G, its openings, and one of the complementary spheres.

(ii) For every opening ω ∈ OG there exists an embedding of G into R4 in which only
∂ω is linked with its complementary sphere. More precisely, there exists a generic
linear mapping of the full 2-skeleton F into R4 whose restriction to |G∪OG \{ω}|
is an embedding.

Proof of (i). This is very similar to Lemma 6 in [FKT94]. Let f0 be a generic PL map
(not necessarily an embedding) of F into R4. Van Kampen proved that

∑

{σ,τ}

|f0(σ) · f0(τ)|

is always odd, where |f0(σ) · f0(τ)| denotes the number of intersections between the
image of σ and the image of τ , and the sum is over all unordered pairs of disjoint
2-dimensional simplices σ, τ ∈ F (the genericity of f0 guarantees that the intersection
f0(σ) ∩ f0(τ) consists of finitely many points). (See Appendix D of [MTW11] for a
wider context of this result.)

Now let us consider a generic PL embedding f of G into R4, and let us extend
it piecewise linearly and generically (and otherwise arbitrarily) to the openings of G.
The resulting map can also be regarded as a generic PL map f0 of F into R4. For such
an f0, |f0(σ) ·f0(τ)| can be nonzero only if σ contains an opening ω of G and τ belongs
to its complementary sphere Sω (or the same situation with σ and τ interchanged).
Thus, for at least one ω ∈ OG, f0(ω) intersects f(Sω) in an odd number of points, and
this means exactly that f(∂ω) and f(Sω) have odd linking number.

Proof of (ii). It suffices to exhibit a generic linear map f0 of F into R4 such that the
images of two disjoint 2-simplices intersect (at a single point), and this intersection
is the only multiple point of f0. Such a mapping was constructed by Van Kampen
[vK32]: 5 of the vertices are placed as vertices of a 4-dimensional simplex in R4, and
the remaining two are mapped in the interior of that simplex.
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Figure 9.2: Attaching a disk to the polygonal line E. MODIFY D!
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Figure 9.3: A 3-dimensional embedding of the conflict gadget.

9.3.2 The conflict gadget

To construct X, we start with the 1-dimensional simplicial complex E shown in Fig. 9.2
left, consisting of two triangular loops Σa and Σb and an edge c connecting them. We
also fix an orientation of Σa, Σb, and c (marked by arrows). Then we take a disk D

and we attach its boundary to E as indicated in Fig. 9.2 right; the disk is triangulated
sufficiently finely so that the result of the attachment is still a simplicial complex. This
is the complex X.

We observe that topologically, X is a “squeezed torus” (the reader may want to
recall the usual construction of a torus by gluing the opposite sides of a square; this
well-known construction would be obtained from the attachment as above if the edge
c were contracted to a point). Fig. 9.3 shows such a squeezed torus embedded in R3

(with the loops Σa and Σb drawn circular rather than triangular).

Lemma 9.6.

(i) [FKT94, Lemma 7] Let Sa and Sb be PL 2-spheres. Then there is no PL embed-
ding f of Sa ⊔ Sb ⊔ X (disjoint union) into R4 such that

• the 1-sphere f(Σa) and the 2-sphere f(Sa) have odd linking number, and so
do f(Σb) and f(Sb);

• f(Σa) and f(Sb) are unlinked, and so are f(Σb) and f(Sa).

(ii) Let f be a generic linear embedding of E in R3 (not R4 this time) such that
f(Σa) and f(Σb) are unlinked, and let δ > 0. Then there is a PL embedding
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f of X in R3 extending f whose image is contained in the set N = N(f, δ) :=
N(Ta, δ)∪N(f(Σb), δ)∪N(f(c), δ), where Ta is the triangle bounded by the loop
f(Σa) and N(A, δ) denotes the δ-neighborhood of a set A (in R3 in our case).3

(Symmetrically, and this is the main point of the construction, we can also embed
X into N(f(Σa), δ)∪N(Tb, δ)∪N(f(c), δ), thus leaving a hole on the other side.)

For a proof of part (i) we refer to (a few words about the basic approach of the
proof will be said in the proof of Lemma 9.9 below), and for part (ii) to Fig. 9.3.

9.3.3 The reduction

Let the given 3-CNF formula be ϕ = C1∧C2∧· · ·∧Cm, where each Ci is a clause with
three literals (each literal is either a variable or its negation). For each Ci, we take
a copy of the clause gadget G and we denote it by Gi (the Gi have pairwise disjoint
vertex sets). We fix a one-to-one correspondence between the literals of Ci and the
openings of Gi, letting ω(λ) be the opening corresponding to a literal λ.

Let us say that a literal λ in a clause Ci is in conflict with a literal µ in a clause
Cj if both λ and µ involve the same variable x but one of them is x and the other the
negation x. For convenience we assume, without loss of generality, that two literals
from the same clause are never in conflict.

Let Ξ consist of all (unordered) pairs {ω(λ), ω(µ)} of openings corresponding to
pairs {λ, µ} of conflicting literals in ϕ. For every pair {ω, ψ} ∈ Ξ we take a fresh copy
Xωψ of the conflict gadget X. We identify the loop Σa in Xωψ with the boundary ∂ω
and the loop Σb with ∂ψ (the rest of Xωψ is disjoint from the clause gadgets and the
other conflict gadgets).

The simplicial complex K assigned to the formula ϕ is

K :=

( m⋃

i=1

Gi

)

∪

(
⋃

{ω,ψ}∈Ξ

Xωψ

)

.

It remains to show that K is PL embeddable in R4 exactly if ϕ is satisfiable.

Nonembeddability for unsatisfiable formulas. This is a straightforward conse-
quence of Lemma 9.5(i) and Lemma 9.6(i).

Indeed, if f is a PL embedding of K into R4, which we may assume to be generic,
there is an opening in each clause gadget Gi such that f(∂ωi) has odd linking number
with the complementary sphere f(Sωi

); let us call it a occupied opening of Gi. Since
ϕ is not satisfiable, whenever we choose one literal from each clause, there are two of
the chosen literals in conflict. Thus, there are two occupied openings ω ∈ OGi

and
ψ ∈ OGj

that are connected by a conflict gadget Xωψ.

Then the supposed PL embedding f provides us an embedding as in Lemma 9.6(i)
with Sa = Sω, Sb = Sψ, and X = Xωψ. Concerning the assumptions in the lemma,
we already know that f(Sω) and f(∂ω) have odd linking number, and so do f(Sψ)
and f(∂ψ). It remains to observe that f(∂ω) cannot be linked with f(Sψ) (and vice
versa), since Gi contains a disk bounded by ∂ω: For example (refer to Fig. 9.1), ∂ω3

is the boundary of the disk consisting of the triangles v0v1v4, v0v2v4, v1v2v4 and the

3Formally N(A, δ) = {x ∈ R3 : dist(x,A) ≤ δ}, where dist(x,A) is the Euclidean distance of x
from the set A.
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triangles in the subdivision of v0v1v2 different from ω3. So the lemma applies and K is
not embeddable.

Embedding for satisfiable formulas. Given a satisfying assignment for ϕ, we
choose a witness literal λi for each clause Ci that is true under the given assignment
(and we will refer to the remaining two literals of Ci as non-witness ones). No two
witness literals can be in conflict.

We describe an embedding of K into R4 corresponding to this choice of witness
literals.

Let us choose distinct points p1, . . . , pm ∈ R4. For each i = 1, 2, . . . , m, we let fi
be a generic linear embedding of the clause gadget Gi into a small neighborhood of
pi (and far from the other pj) as in Lemma 9.5(ii), where the role of ω in the lemma
is played by the witness opening of Gi (i.e., the one corresponding to to the witness
literal of Ci). In particular, the interiors of the triangles bounded by fi(∂ω

′) and by
fi(∂ω

′′) are disjoint from fi(Gi), where ω
′ and ω′′ are the non-witness openings of Gi.

Taking all the fi together defines an embedding f of the union of the clause gadgets,
and it remains to embed the conflict gadgets.

To this end, we will assign to each conflict gadget Xωψ a “private” set Pωψ ⊂ R4

homeomorphic to the 3-dimensional set N from Lemma 9.6(ii), and we will embed Xωψ

into Pωψ. Each Pωψ will be disjoint from all other Pω′ψ′ and also from all the images
f(Gi), except that Pωψ has to contain the loops f(∂ω) and f(∂ψ) where the conflict
gadget Xωψ should be attached. In order to fit enough almost-disjoint homeomorphic
copies of N into the space, we will “fold” them suitably.

We know that for every pair {ω, ψ} of openings connected by a conflict gadget, at
least one of ω and ψ is non-witness. Let us choose the notation so that ω is non-witness
and thus unoccupied in the embedding f .

We will build Pωψ from three pieces: a set Q+
ωψ that plays the role of N(Ta, δ) in

Lemma 9.6(ii), a set Qψω that plays the role of N(f(Σb), δ), and a “connecting ribbon”
in the role of N(f(c), δ).

Now let ω be an opening of some Gi, witness or non-witness. Let t be the number
of openings ψ that are connected to ω by a conflict gadget. The sets Qωψ and Q+

ωψ we
want to construct are indexed by these ψ, but with some abuse of notation, we will
now regard them as indexed by an index j running from 1 to t, i.e., as Qω1 through
Qωt (and similarly for Q+

ωψ).

For concise notation let us write Σ = f(∂ω) and let T be the triangle in R4 having
Σ as the boundary. Let ε > 0 be a parameter and let T ε := {x ∈ T : dist(x, ∂T ) ≤ ε}
be the part of T at most ε away from the boundary of T . Since the subdivided triangle
in Gi containing ω in its interior is embedded linearly by f , there is an ε > 0 such
that if we start at a point x ∈ T ε and go distance at most ε in a direction orthogonal
to T , we do not hit f(Gi). Moreover, if ω is non-witness and thus all of T is free of
f(Gi), we can take any x ∈ T with the same result. Fig. 9.4 tries to illustrate this in
dimension one lower, where we have a segment T in R3 instead of a triangle T in R4.
Thus, there are a set Qω ⊂ R4 with Qω ∩ f(Gi) = Σ and a homeomorphism (actually,
a linear isomorphism) h : Qω → T ε×B2 with h(T ε) = T ε× {0}, where 0 is the center
of the disk B2. Similarly, if ω is non-witness, there are Q+

ω and h+ : Q+
ω → T × B2

with h+(T ) = T × {0}.

Let W1, . . . ,Wt ⊂ B2 be disjoint wedges as in Fig. 9.5, and let wj consist of the
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Figure 9.4: A free region around the triangle T ; illustration in R3 instead of R4.
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Figure 9.5: The wedges.

two radii bounding Wj . We set

Qωj := h−1((Σ×Wj) ∪ (T ε × wj)), Q+
ωj := (h+)−1((Σ×Wj) ∪ (T × wj)).

As Fig. 9.6 tries to illustrate, Q+
ωj is homeomorphic to a 3-dimensional neighborhood

of T (by a homeomorphism sending T to T ), and Qωj is similarly homeomorphic to
a 3-dimensional neighborhood of Σ. Thus, the sets Qωj and Q

+
ωj can indeed play the

roles of N(f(Σb), δ) and N(Ta, δ), respectively, in Lemma 9.5(ii).
It remains to construct the “connecting ribbons”: For every conflict gadget Xωψ,

we want to connect a vertex of f(∂ω) to a vertex of f(∂ψ) by a narrow 3-dimensional
“ribbon” (it need not be straight since we are looking only for PL homeomorphic

×(Σ Wj) ∪ (T × wj)

∼=

×

∪ =

×

Figure 9.6: Folding a 3-dimensional neighborhood in R4.
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v0 v1 v2 v3 v4 v5 v6

p

F0 = 3-skeleton on {v0, . . . , v6}

Cp = all triangles pvivj

Figure 9.7: A schematic illustration of F (3, 1).

copies of N).
We observe that each of the sets Qωj and Q+

ωj can be deformation-retracted to
the corresponding loop f(∂ω) or to the corresponding triangle, respectively. It follows
that the complement of the union U of all the Qωj , Q

+
ωj , and f(Gi) is path-connected

(formally, this follows from Alexander duality, since this union is homotopy equivalent
to a 2-dimensional space). Since all the considered embeddings are piecewise linear,
any two points on the boundary of U can be connected by a PL path within R4 \ U .

Thus, the 3-dimensional “ribbon” connecting f(∂ω) to f(∂ψ) can first go within
the appropriate Qωj to a point on the boundary, then continue along a path connecting
this boundary point to a boundary point of Qψj′, and then reach f(∂ψ) within Qψj′ .

In this way, we have allocated the desired “private” sets Pωψ for all conflict gadgets
Xωψ, and hence K can be PL embedded in R4 as claimed. This finishes the proof of
the special case k = 2, d = 4 of Theorem 4.3. 2

9.4 NP-hardness for higher dimensions

In this section we prove all the remaining cases of Theorem 4.3. The proof is generally
very similar to the case k = 2, d = 4 treated above: We will again reduce 3-SAT using
clause gadgets and conflict gadgets, but the construction of the gadgets and of their
embeddings require additional work.

By the monotonicity of Embedk→d in k mentioned in Chapter 4, it suffices to
consider d ≥ 5 and k = ⌈(2d− 2)/3⌉. In the construction we will often use the integer
ℓ := d− k − 1.

9.4.1 The clause gadget

The clause gadget G = G(k, ℓ) is very similar to a construction of Segal and Spież [SS92].
We use the parameters k, ℓ, d as above. For the purposes of the present section we need
that 1 ≤ ℓ < k and d − ℓ = k + 1 ≥ 3 (which are easy to verify using the definitions
of k and ℓ and the assumption d ≥ 5).

For the parameters k, ℓ, d as above, we first define a simplicial complex F = F(k, ℓ)
on the vertex set V := {v0, v1, . . . , vd+1, p} as the union F := F0 ∪ Cp of the following
two sets of simplices:

• F0 is the k-skeleton of the (d+ 1)-simplex with vertex set {v0, . . . , vd+1};

• Cp consists of all the (ℓ+ 1)-dimensional simplices on V that contain p.

See Fig. 9.7 for a schematic illustration; let us also note that for d = 4, k = 2, ℓ = 1
we would get exactly the F as in Section 9.3.1.
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Let us consider some σ ∈ Cp. By removing from F all simplices intersecting σ
(including σ), we obtain the k-skeleton of a (k + 1)-simplex, i.e., an Sk, which we call
the complementary sphere Sσ.

Next, we fix three (ℓ+1)-dimensional simplices σ1, σ2, σ3 ∈ Cp, say σ1 := pv0v2v3 · · · vℓ+1,
σ2 := pv0v1v3 · · · vℓ+1, and σ3 := pv0v1v2v4 · · · vℓ+1. As in Section 9.3.1, we make a hole
in the interior of each σi, i.e., we subdivide each σi, i = 1, 2, 3, and we remove a small
(ℓ+ 1)-simplex ωi in the middle. This yields the simplicial complex G = G(k, ℓ).

The ωi are again called the openings of G, and we set OG := {ω1, ω2, ω3}. The com-
plementary sphere Sωi

is defined, with some abuse of notation, as the complementary
sphere of the simplex σi ∈ Cp that contains ωi.

Lemma 9.7 (Higher-dimensional version of Lemma 9.5).

(i) For every generic PL embedding f of G into Rd there is at least one opening
ω ∈ OG such that the images of the boundary ∂ω and of the complementary
sphere Sω have odd linking number.

(ii) For every opening ω ∈ OG there exists a generic linear embedding of G into Rd

in which the boundaries of the two openings different from ω are unlinked with
their complementary spheres.

Proof. Part (ii) is established in the proof of Lemma 1.1 in Segal and Spież [SS92] (gen-
eralizing Van Kampen’s embedding mapping mentioned in the proof of Lemma 9.5(ii)).
They construct a PL embedding of F(k, ℓ) (which they call P (k, ℓ), while their n is our
d− 1), but inspecting the first two paragraphs of their proof reveals that their embed-
ding is actually linear (in the subsequent paragraphs, they modify the embedding on
the interior of one of the (ℓ + 1)-simplices from Cp, but this serves only to show the
claim about linking number).

For part (i), it clearly suffices to prove the following:

Claim. For any generic PL mapping g of F in Rd whose restriction
to F0 is an embedding, there is an (ℓ+1)-dimensional simplex σ ∈ Cp such
that |g(σ) ∩ g(Sσ)| is odd.

This claim follows easily from the proof of Lemma 1.4 in Segal and Spież [SS92].
Indeed, they give a procedure that, given a generic PL map g1 of F into Rd such
that |g1(σ) ∩ g1(Sσ)| is even for some σ, constructs a new generic PL map g2 with
g2(σ) ∩ g2(Sσ) = ∅ and such that there are no new intersections between images of
disjoint simplices (compared to g1).

4

Assuming that there is a g contradicting the claim, after finitely many applications
of the procedure we arrive at a generic PL mapping g̃ such that g̃(σ) ∩ g̃(Sσ) = ∅ for
every σ ∈ Cp. We claim that then

g̃(τ) ∩ g̃(τ ′) = ∅ for every τ, τ ′ ∈ F with τ ∩ τ ′ = ∅. (9.1)

Indeed, if (9.1) fails for some τ, τ ′, one of τ, τ ′ (say τ ′) must belong to Cp, since g
restricted to F0 is an embedding. But then we get τ ∈ Sτ ′—a contradiction. Hence
(9.1) holds. But no generic PL mapping g̃ satisfying (9.1) exists according to [SS92]

4The procedure requires d − ℓ ≥ 3, which is satisfied in our case. In [SS92] this inequality is
reversed by mistake.
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Figure 9.8: A higher-dimensional version of E.

(end of the proof of Lemma 1.4). This proves the claim and thus also part (i) of
Lemma 9.7.

Let us remark that a perhaps more conceptual proof of part (i) can be obtained
using the results of Shapiro [Sha57] on the “generalized Van Kampen obstruction”,
but we would need many preliminaries for presenting it.

9.4.2 The conflict gadget

Here we construct the conflict gadget X = X(ℓ), which depends only on the parameter
ℓ, and whose dimension is 2ℓ. The conflict gadget X in Section 9.3.2 is essentially
the same as the following construction for ℓ = 1, up to minor formal differences. In
addition to the inequalities among the parameters mentioned earlier, here we also need
2ℓ ≤ k (which again holds in our setting).

In the ℓ = 1 case we attached a 2-dimensional disk by its boundary to the 1-
dimensional complex E. The ℓ-dimensional version of E consists of two disjoint copies
Σℓa and Σℓb of the boundary of the (ℓ+1)-simplex connected by an edge c (see Fig. 9.8).
To this E we are going to attach the (2ℓ)-dimensional ball B2ℓ by its boundary. For
ℓ = 1 the result was topologically a “squeezed” version of the 2-dimensional torus
S1 × S1; for larger ℓ it is going to be the higher-dimensional “torus” Sℓ × Sℓ, again
suitably squeezed.

Attaching a ball to Sℓ
∨ Sℓ. Before defining X itself, we define a certain mapping

g : S2ℓ−1 → Sℓ∨Sℓ, where Sℓ∨Sℓ is a wedge of two spheres, to be defined below. This
construction is based on the Whitehead product in homotopy theory. As we will see,
attaching the boundary of B2ℓ to Sℓ∨Sℓ via g results topologically in Sℓ×Sℓ (without
any squeezing).

The wedge Sℓ ∨ Sℓ consists of two copies of the sphere Sℓ glued together at one
point. For our purposes, we represent Sℓ ∨ Sℓ concretely as follows. We consider
Sℓ geometrically as the unit sphere in Rℓ+1, we choose a distinguished point s0 =
(1, 0, 0, . . . , 0) ∈ Sℓ, and we let Sℓ ∨ Sℓ be the subspace (Sℓ × {s0}) ∪ ({s0} × Sℓ) of
Rℓ+1 × Rℓ+1 = R2ℓ+2. For ℓ = 1, we thus get two unit circles lying in perpendicular
2-flats in R4 and meeting at the point (s0, s0).

For defining the map g, we need to represent the ball B2ℓ not as the standard
Euclidean unit ball, but rather as the product Bℓ×Bℓ (which is clearly homeomorphic
to B2ℓ). Then we have

S2ℓ−1 ∼= ∂(Bℓ ×Bℓ) = (Bℓ × Sℓ−1) ∪ (Sℓ−1 ×Bℓ); (9.2)

see the left part of Fig. 9.9 for the (rather trivial) case ℓ = 1. (Indeed, for arbitrary
sets A ⊆ Rm and B ⊆ Rn we have ∂(A × B) = (A × ∂B) ∪ (∂A × B), as is easy to
check.)
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Figure 9.9: Representing S1 as (B1 × S0) ∪ (S0 × B1) (left); mapping it to S1 ∨ S1

(middle); squeezing the S1’s to “lollipops” (right). We note that S1 ∨ S1 and L1 ∨ L1

actually live in R4.
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Figure 9.10: The map λ squeezing Sℓ to the lollipop Lℓ.

As is well known, if we shrink the boundary of an n-ball to a single point, the
result is an n-sphere. Let us fix a mapping γ : Bℓ → Sℓ that sends all of ∂Bℓ to the
distinguished point s0 and is a homeomorphism on the interior of Bℓ. Now we are
ready to define the map g. Namely, we define g : B2ℓ → Sℓ × Sℓ by

g(x, y) = (γ(x), γ(y)),

where we still consider B2ℓ as Bℓ × Bℓ and x comes from the first Bℓ and y from the
second. Then g is the restriction of g to S2ℓ−1 = ∂B2ℓ.

For the image of g we have, using (9.2),

g(S2ℓ−1) = g(Bℓ × Sℓ−1) ∪ g(Sℓ−1 × Bℓ) = (Sℓ × {s0}) ∪ ({s0} × Sℓ) = Sℓ ∨ Sℓ.

It remains to observe that g restricted to intB2ℓ is a homeomorphism onto (Sℓ×Sℓ) \
(Sℓ∨Sℓ). Hence, the result of attaching the boundary of B2ℓ to Sℓ∨Sℓ via g is indeed
homeomorphic to Sℓ × Sℓ as claimed.

Squeezing. Now we define a “squeezing map” from Sℓ∨Sℓ to E. We let the ℓ-lollipop
Lℓ be an ℓ-dimensional sphere of radius 1

2
with attached segment (“stick”) of length 1;

see Fig. 9.10. Formally, Lℓ := ∂B(−1
2
s0,

1
2
) ∪ [0, s0], where B(x, r) stands for the ball

of radius r centered at x. We let λ : Sℓ → Lℓ be the projection that moves each point
of Sℓ in direction perpendicular to the axis [−s0, s0].

Now, with Lℓ ∨Lℓ := (Lℓ×{s0})∪ ({s0}×Lℓ), we have the map λ∨ λ : Sℓ ∨Sℓ →
Lℓ ∨ Lℓ (given by (x, y) 7→ (λ(x), λ(y))). Finally, Lℓ ∨ Lℓ can be identified with the
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Sℓ Sℓ

Hℓ
∨Hℓ

Figure 9.11: Contracting the wedge of two hemispheres.

complex E as above by a suitable homeomorphism, and we arrive at the map

r = (λ ∨ λ) ◦ g : S2ℓ−1 → E

(where the homeomorphism of Lℓ ∨ Lℓ with E is not explicitly shown).
The clause gadget X is obtained by attaching the boundary of B2ℓ to E via the

map r. Of course, we want X to be a simplicial complex, and so in reality we use a
suitable PL version of the attaching map r (we have not presented it this way since
the description above seems more accessible).

For the forthcoming proof of an analogue of Lemma 9.6, we need the following
observation.

Observation 9.8. Let κ : Lℓ ∨ Lℓ → Sℓ ∨ Sℓ be the quotient map corresponding to
contracting the “stick” c of the double-lollipop to a single point. Then the composition
κ ◦ (λ ∨ λ) : Sℓ ∨ Sℓ → Sℓ ∨ Sℓ is homotopic to the identity on Sℓ ∨ Sℓ.

Proof. Let Hℓ := {x ∈ Sℓ : 〈s0, x〉 ≥ 0} be the closed hemisphere centered at s0. The
assertion follows by observing that κ ◦ (λ ∨ λ) is the quotient map corresponding to
contracting the subset Hℓ ∨Hℓ of Sℓ ∨ Sℓ to a single point; see Fig. 9.11.

Lemma 9.9 (Higher dimensional version of Lemma 9.6).

(i) (Based on [SSS98, Lemma 2.2]). Let Σℓa and Σℓb denote the two ℓ-spheres (bound-
aries of (ℓ+1)-simplices) contained in E ⊂ X. Let Ska and Skb be PL k-spheres.
Then there is no PL embedding f of the disjoint union Ska ⊔S

k
b ⊔X into Sd such

that

• the ℓ-sphere f(Σℓa) and the k-sphere f(Ska) have odd linking number, and so
do f(Σℓb) and f(S

k
b );

• f(Σℓa) and f(S
k
b ) are unlinked, and so are f(Σℓb) and f(S

k
a ).

(ii) Let f be a generic linear embedding of E in5 R2ℓ+2, and let δ > 0. Then there
is a PL embedding f of X in R2ℓ+2 extending f whose image is contained in the
neighborhood N = N(f, δ) := N(Ta, δ) ∪ N(f(Σℓb), δ) ∪ N(f(c), δ), where Ta is
the (ℓ+ 1)-dimensional simplex bounded by f(Σℓa).

5It follows from our assumptions on d and k that d ≥ 2ℓ + 3. Therefore, when, in the course of
the reduction, we construct an embedding of a complex associated with a satisfiable formula, we can
afford to embed each conflict gadget in its own “private” (2ℓ+2)-dimensional set. Since two ℓ-spheres
in dimension 2ℓ+ 2 are never linked, we do not need to make an explicit unlinking assumption as in
Lemma 9.6.
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Proof of (i). Part (i) follows from the proof of [SSS98, Proof of Lemma 2.2] with
only minor modifications. First, before giving a formal proof, we describe the basic
approach of [SSS98], which also applies to the proof of Lemma 9.6(i).

Suppose that a PL embedding f as in (i) above exists. Let C denote the comple-
ment Rd \ f(Ska ⊔S

k
b ), let r : S

2ℓ−1 → E be the attaching map used in the construction
of X, and let r : B2ℓ → X be the extension of r to B2ℓ (formally, r is the quotient map).

The basic strategy is as follows: On the one hand, using the assumptions about
linking numbers, one shows that f ◦ r defines a nontrivial element of the homotopy
group π2ℓ−1(C). On the other hand, f ◦r witnesses that f ◦r is homotopically trivial—a
contradiction.

As in [SSS98], one distinguishes two cases: ℓ = 1 and ℓ > 1. In the case ℓ = 1, we
are dealing with the fundamental group π1(C), and the proof is essentially identical to
that of [FKT94, Lemma 7], i.e., our Lemma 9.6, which we briefly summarize for the
reader’s convenience.

For showing that f ◦ r : S1 → C is homotopically nontrivial, one first observes that
π1(E) is the free group on two generators a and b, and the attaching map r : S1 → E

corresponds to the commutator aba−1b−1, which is a nontrivial element of π1(E). So
it suffices to show that the map f⋆ : π1(E) → π1(C) induced by the restriction f |E is
injective. To this end, one first considers the homomorphisms f∗1 and f∗2 induced by
f |E in the first and second homology.

By Alexander duality, the complement C has the same homology (with Z2-co-
efficients, say) as S1 ∨ S1, and thus H1(C;Z2) = Z2 ⊕ Z2 and H2(C;Z2) = 0. For E
we have H1(E;Z2) ∼= Z2 ⊕ Z2 with a basis represented by the two circles Σ1

a and Σ1
b .

The assumption on the linking numbers imply that f∗1 is an isomorphism, and f∗2 is
trivially surjective. Then the injectivity of the homomorphism f⋆ of the fundamental
groups follows from a theorem of Stallings [Sta65], which finishes the case ℓ = 1.

In the case ℓ > 1, the proof that f ◦ r defines a nontrivial element of π2ℓ−1(C)
requires somewhat more advanced machinery. Segal et al. [SSS98] prove essentially
the same assertion as in part (i) of the lemma, with the following differences:

1. X is replaced by X ′, which is obtained by attaching B2ℓ to Σℓa ∨Σℓb via the map
g (as described above) and hence homeomorphic to Sℓ × Sℓ.

2. The disjoint union Ska ⊔ S
k
b is replaced by the wedge6 Ska ∨ S

k
b .

They show that if there were an embedding f of (Σℓa∨Σℓb)⊔ (Ska ∨S
k
b ) with the linking

properties as in part (i) of the lemma, f ◦ g would be a nontrivial element of π2ℓ−1(C).

Now we begin with a formal proof of Lemma 9.9. Instead of modifying the proof
of [SSS98], we show how to reduce our assertion to theirs. Suppose there were a bad
embedding f of Ska ⊔ Skb ⊔ X as in the lemma. Since the codimension of the image
f(Ska ⊔ S

k
b ⊔ X) is at least 2, we can grow a k-dimensional finger from f(Ska) towards

f(Skb ) avoiding f(X) until the finger touches f(Skb ) in a single point. This results in
an embedding of (Ska ∨ S

k
b )⊔X. For simplicity, we denote this modified embedding by

f as well.
We observe that when pulling the finger, we can pull along a (k + 1)-dimensional

image of Bk+1 filling f(Ska), and so the images are still linked or unlinked as in the
assumption of the lemma.

6Wedges are used for technical reasons: By a theorem of Lickorish [Lic65], any embedding (PL or
even topological) of a wedge of spheres of codimension at least 3 is unknotted, i.e., ambient isotopic
to a standard embedding.
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Next, consider the image f(E) of the double lollipop in C. We modify f as follows.
We deformation retract the arc f(c) to its midpoint m, pulling along ℓ-dimensional
fingers from the two ℓ-spheres f(Σℓa) and f(Σ

ℓ
b), so that at the end of the deformation,

the fingers touch in the single point m. This describes a continuous deformation of
f |E that only changes f |E on the segment c and in two small neighborhoods Ua and
Ub of the endpoints of c in the ℓ-spheres (these neighborhoods provide the “material”
for the fingers). We have to take care to pull along the parts of B2ℓ attached to Ua
and Ub, respectively, i.e., we extend the deformation to a continuous deformation of
f on all of X that changes f only on a small neighborhood V in X of c ∪ Ua ∪ Ub.
The whole deformation can be carried out so that the image of V remains in a small
ε-neighborhood of the original image f(E) throughout the deformation. Let f ′ be the
final modified map from Ska ⊔S

k
b ⊔X into Sd (note that we made no changes on the two

k-spheres). The map f ′ maps the “bent stick” c of the double lollipop constantly to m
(in particular, it is not an embedding), and it induces a unique embedding f ′′ : X ′ → C
such that f ′′ agrees with f ′ on the interior of B2ℓ and f ′′ ◦ κ = f ′ on E, where κ is the
map from Observation 9.8. Moreover, the map f ◦ r = f ◦ (λ ∨ λ) ◦ g : S2ℓ−1 → C is
deformed into the map f ′′◦κ◦(λ∨λ)◦g : S2ℓ−1 → C. Thus, f ◦r and f ′′◦κ◦(λ∨λ)◦g
define the same element of π2ℓ−1(C). However, by the observation, the latter map is
homotopic to f ′′ ◦ g. Thus, f ◦ r and f ′′ ◦ g define the same element of π2ℓ−1(C).
But the former is trivial, as witnessed by f ◦ r, while the latter is not according to
[SSS98]—a contradiction. This completes the proof of (i).

Proof of (ii). For easier presentation, we describe an embedding f that is not
apriori PL; it is routine to replace it by a PL embedding.

Applying a suitable homeomorphism R2ℓ+2 → R2ℓ+2, we may assume that f(E)

is actually Lℓ ∨ Lℓ. Let L
ℓ
denote the ℓ-lollipop with its ℓ-sphere filled (i.e., L

ℓ
:=

B(−1
2
s0,

1
2
)∪ [0, s0]). It suffices to embed X in the δ-neighborhood of Lℓ∨L

ℓ
for δ > 0

arbitrarily small; actually, for notational convenience, we will eventually get 4δ instead
of δ.

Instead of specifying the embedding f : X → R2ℓ+2 directly, we define a mapping
f̃ : Sℓ× Sℓ → R2ℓ+2 that coincides with λ∨ λ on Sℓ ∨ Sℓ and maps the rest of Sℓ× Sℓ

homeomorphically. Then f can be given as (considering E identified with Lℓ ∨ Lℓ)

f(z) =

{
z for z ∈ E,

f̃(z) for z 6∈ E.

Writing a point of Sℓ×Sℓ as (x, y), we define f̃ using two auxiliary maps u, v : Sℓ×
[0,∞) → Rℓ+1:

f̃(x, y) :=
(

u(x, dist(y, s0)), v(y, dist(x, s0))
)

.

For defining u(x, t), we think of t as time. For t = 0, the image u(Sℓ, t) is the lollipop
Lℓ, while for all t > 0 it is topologically a sphere, which looks almost like the lollipop;
see Fig. 9.12. Concretely, we set

u(x, t) :=

{
tx+ (1− t)λ(x) for 0 ≤ t ≤ δ,
δx+ (1− δ)λ(x) for t ≥ δ.

As for v, we let it coincide with u for t ≤ δ (see Fig. 9.13). For t = 2δ, we set
v(x, 2δ) := (x1, δx2, δx3, . . . , δxℓ+1), and for all t ≥ 3δ we set v(x, t) := δ(x− s0) + s0
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t = 0

Lℓ

t = δ/2 t ≥ δ

Figure 9.12: The (images of the) mappings u(∗, t).

t = 0

L
ℓ

t = δ t = 2δ t = 3δ

s0

Figure 9.13: The (images of the) mappings v(∗, t).

(i.e., the sphere is shrunk by the factor of δ so that it still touches s0). On the intervals
[δ, 2δ] and [2δ, 3δ] we interpolate v(x, t) linearly in t.

The f defined in this way is clearly continuous and coincides with λ∨λ on Sℓ∨Sℓ.
Next, we want to show f(x, y) 6= f(x′, y′) whenever (x, y) 6= (x′, y′) and none of
x, x′, y, y′ equals s0. First we note that u(x, t) 6= u(x′, t′) whenever x 6= x′ and t, t′ > 0,
and thus we may assume x = x′, y 6= y′. Then we just use injectivity of v(∗, t) for
every t > 0.

It remains to check that the image of f lies close to L
ℓ
∨ Lℓ. The image u(Sℓ, t) is

δ-close to Lℓ for all t, and the image v(Sℓ, t) is 2δ-close to s0 whenever t ≥ 3δ. Thus,
whenever dist(x, s0) ≥ 3δ, we have f(x, y) lying 3δ-close to Lℓ × {s0}.

Next, let us assume dist(x, s0) ≤ 3δ. Then u(x, t) is 3δ-close to s0 for all t, and

observing that v(y, t) always lies δ-close to the filled lollipop L
ℓ
, we conclude that

f(x, y) is 4δ-close to {s0} × L
ℓ
. 2

9.4.3 The reduction

Having introduced the clause gadget and the conflict gadget, the rest of the reduction is
almost the same as in Section 9.3.3, and so we mainly point out the (minor) differences.

Given a 3-CNF formula ϕ, the simplicial complex is pasted together from the
gadgets exactly as in Section 9.3.3; we have dimK = max(k, 2ℓ) = k. For ϕ unsat-
isfiable, nonembeddability of K is shown using Lemmas 9.7(i) and 9.9(i) instead of
Lemmas 9.5(i) and 9.6(i), but otherwise in the same way as in Section 9.3.3.

Given a satisfiable formula ϕ, we again begin with embedding the clause gadgets,
this time using Lemma 9.7(ii). For an opening ω of a clause gadget Gi, we can again
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obtain a set Qω ⊂ Rd with Qω ∩ Gi = Σ, where Σ = f(∂ω), this time homeomorphic
to T ε × Bk (where T is the (ℓ + 1)-dimensional simplex bounded by Σ and T ε is the
part of it ε-close to Σ). Similarly we can build, for a non-witness opening ω, the set
Q+
ω homeomorphic to T × Bk.
Now we need to define the “private pieces” Qωj and Q

+
ωj , j = 1, 2, . . . , t, within each

Qω and Q+
ω , respectively. This time first we choose pairwise disjoint sets B1, . . . , Bt ⊂

∂Bk, each homeomorphic to Bℓ+1 (for this we need k ≥ ℓ + 2, which holds in our
setting), we let Wj be the cone with base Bj and apex in the center of Bk, and
we let wj be the boundary of Wj (not including the interior of the base Bj). We
have Wj homeomorphic to Bℓ+2 and wj to B

ℓ+1, and this allows us to construct Qωj

homeomorphic to a (2ℓ + 2)-dimensional neighborhood of Σ, and Q+
ωj homeomorphic

to a (2ℓ+ 2)-dimensional neighborhood of T .
The rest of the embedding construction can be copied from Section 9.3.3 almost

verbatim. This concludes the proof of Theorem 4.3. 2
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[Mat03] J. Matoušek. Using the Borsuk-Ulam Theorem. Springer, Berlin etc.,
2003.



88 BIBLIOGRAPHY

[Mel09] S. A. Melikhov. The van Kampen obstruction and its relatives. Tr. Mat.
Inst. Steklova, 266(Geometriya, Topologiya i Matematicheskaya Fizika.
II):149–183, 2009.

[MF08] R. Malgouyres and A. R. Francés. Determining whether a simplicial 3-
complex collapses to a 1-complex is NP-complete. DGCI, pages 177–188,
2008.
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