Standard probabilistic method:

• We want to find an object X with a property P.

Standard probabilistic method:

- We want to find an object X with a property P.
- We generate X in random. X admits P if none of the bad events A_1, \ldots, A_n occurs.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Standard probabilistic method:

- We want to find an object X with a property P.
- We generate X in random. X admits P if none of the bad events A_1, \ldots, A_n occurs.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• That is, we want $P[\bigcup A_i] < 1$.

Standard probabilistic method:

- We want to find an object X with a property P.
- We generate X in random. X admits P if none of the bad events A_1, \ldots, A_n occurs.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- That is, we want $P[\bigcup A_i] < 1$.
- Usually we use union bound: $P[\bigcup A_i] \leq \sum P[A_i]$.

Standard probabilistic method:

- We want to find an object X with a property P.
- We generate X in random. X admits P if none of the bad events A_1, \ldots, A_n occurs.
- That is, we want $P[\bigcup A_i] < 1$.
- Usually we use union bound: $P[\bigcup A_i] \leq \sum P[A_i]$.

Can we say something if $\sum P[A_i]$ is big?

• First imagine that A_i are independent with $P[A_i] < 1$.

Standard probabilistic method:

- We want to find an object X with a property P.
- We generate X in random. X admits P if none of the bad events A_1, \ldots, A_n occurs.
- That is, we want $P[\bigcup A_i] < 1$.
- Usually we use union bound: $P[\bigcup A_i] \leq \sum P[A_i]$.

Can we say something if $\sum P[A_i]$ is big?

• First imagine that A_i are independent with $P[A_i] < 1$.

• \bar{A}_i are also independent.

Standard probabilistic method:

- We want to find an object X with a property P.
- We generate X in random. X admits P if none of the bad events A_1, \ldots, A_n occurs.
- That is, we want $P[\bigcup A_i] < 1$.
- Usually we use union bound: $P[\bigcup A_i] \leq \sum P[A_i]$.

Can we say something if $\sum P[A_i]$ is big?

- First imagine that A_i are independent with $P[A_i] < 1$.
- \bar{A}_i are also independent.
- Then

$$P[\bigcup A_n] = 1 - P[\bar{A}_1 \cap \cdots \cap \bar{A}_n] = 1 - P[\bar{A}_1] \cdots P[\bar{A}_n] < 1.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Standard probabilistic method:

- We want to find an object X with a property P.
- We generate X in random. X admits P if none of the bad events A_1, \ldots, A_n occurs.
- That is, we want $P[\bigcup A_i] < 1$.
- Usually we use union bound: $P[\bigcup A_i] \leq \sum P[A_i]$.

Can we say something if $\sum P[A_i]$ is big?

- First imagine that A_i are independent with $P[A_i] < 1$.
- \bar{A}_i are also independent.
- Then

 $P[\bigcup A_n] = 1 - P[\bar{A}_1 \cap \cdots \cap \bar{A}_n] = 1 - P[\bar{A}_1] \cdots P[\bar{A}_n] < 1.$

 Lovász Local Lemma: Generalization when A_i are only partially dependent.

Definition

We say that an event A is independent of events B_1, \ldots, B_k if for every $J \subseteq [k], J \neq \emptyset$ we get:

$$P[A \cap \bigcap_{j \in J} B_j] = P[A] \cdot P[\bigcap_{j \in J} B_j].$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Definition

We say that an event A is independent of events B_1, \ldots, B_k if for every $J \subseteq [k], J \neq \emptyset$ we get:

$$P[A \cap \bigcap_{j \in J} B_j] = P[A] \cdot P[\bigcap_{j \in J} B_j].$$

Let A_1, \ldots, A_n be events. A directed graph D = (V, E) with $V = \{1, \ldots, n\}$ is a dependency (di)graph for A_1, \ldots, A_n if for every A_i is independent of the events A_j with $(i, j) \notin E$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Definition

We say that an event A is independent of events B_1, \ldots, B_k if for every $J \subseteq [k], J \neq \emptyset$ we get:

$$P[A \cap \bigcap_{j \in J} B_j] = P[A] \cdot P[\bigcap_{j \in J} B_j].$$

Let A_1, \ldots, A_n be events. A directed graph D = (V, E) with $V = \{1, \ldots, n\}$ is a dependency (di)graph for A_1, \ldots, A_n if for every A_i is independent of the events A_j with $(i, j) \notin E$.

- 日本 本語 本 本 田 本 王 本 田 本

Definition

We say that an event A is independent of events B_1, \ldots, B_k if for every $J \subseteq [k], J \neq \emptyset$ we get:

$$P[A \cap \bigcap_{j \in J} B_j] = P[A] \cdot P[\bigcap_{j \in J} B_j].$$

Let A_1, \ldots, A_n be events. A directed graph D = (V, E) with $V = \{1, \ldots, n\}$ is a dependency (di)graph for A_1, \ldots, A_n if for every A_i is independent of the events A_j with $(i, j) \notin E$.

Dependency graph is not unique in general.

Symmetric Lovász local lemma

Theorem (Symmetric Lovász local lemma)

Let A_1, \ldots, A_n be events such that $\forall i \colon P[A_i] \leq p$ where $p \in (0, 1)$. Assume also that the outdegrees in a dependency graph are at most d. (That is, $\forall i \colon A_i$ is independent on all but at most d events.) If $ep(d + 1) \leq 1$, then

$$P\bigl[\bigcap_{i=1}^n \bar{A}_i\bigr] > 0.$$

Symmetric Lovász local lemma

Theorem (Symmetric Lovász local lemma)

Let A_1, \ldots, A_n be events such that $\forall i \colon P[A_i] \leq p$ where $p \in (0, 1)$. Assume also that the outdegrees in a dependency graph are at most d. (That is, $\forall i \colon A_i$ is independent on all but at most d events.) If $ep(d + 1) \leq 1$, then

$$P\big[\bigcap_{i=1}^n \bar{A}_i\big] > 0.$$

Standard probabilistic technique

General Lovász local lemma

Theorem (General Lovász local lemma)

Let A_1, \ldots, A_n be events and D = (V, E) be their dependency graph. Let $x_i \in [0, 1)$ be such that $P[A_i] \le x_i \prod_{(i,j)\in E} (1 - x_j)$. Then $P[\bigcap_{i=1}^n \overline{A}_i] \ge \prod_{i=1}^n (1 - x_i) > 0$.

General Lovász local lemma

Theorem (General Lovász local lemma)

Let A_1, \ldots, A_n be events and D = (V, E) be their dependency graph. Let $x_i \in [0, 1)$ be such that $P[A_i] \le x_i \prod_{(i,j)\in E} (1 - x_j)$. Then $P[\bigcap_{i=1}^n \overline{A}_i] \ge \prod_{i=1}^n (1 - x_i) > 0$.

• In concrete applications, it is often useful to set $x_i \sim c \cdot P[A_i]$.

Theorem (Symmetric Lovász local lemma)

Let A_1, \ldots, A_n be events such that $\forall i : P[A_i] \leq p$ where $p \in (0, 1)$. Assume also that the outdegrees in a dependency graph are at most d. If $ep(d + 1) \leq 1$, then $P[\bigcap_{i=1}^n \overline{A_i}] > 0$.

Theorem (General Lovász local lemma)

Let A_1, \ldots, A_n be events and D = (V, E) be their dependency graph. Let $x_i \in [0, 1)$ be such that $P[A_i] \le x_i \prod_{(i,j)\in E} (1 - x_j)$. Then $P[\bigcap_{i=1}^n \overline{A}_i] \ge \prod_{i=1}^n (1 - x_i) > 0$.

Theorem (Symmetric Lovász local lemma)

Let A_1, \ldots, A_n be events such that $\forall i : P[A_i] \leq p$ where $p \in (0, 1)$. Assume also that the outdegrees in a dependency graph are at most d. If $ep(d + 1) \leq 1$, then $P[\bigcap_{i=1}^n \bar{A}_i] > 0$.

Theorem (General Lovász local lemma)

Let A_1, \ldots, A_n be events and D = (V, E) be their dependency graph. Let $x_i \in [0, 1)$ be such that $P[A_i] \le x_i \prod_{(i,j)\in E} (1 - x_j)$. Then $P[\bigcap_{i=1}^n \overline{A}_i] \ge \prod_{i=1}^n (1 - x_i) > 0$.

Proof that General \Rightarrow Symmetric.

•
$$d > 0$$
 otherwise easy. Set $x_i = \frac{1}{d+1} < 1$. Then

Theorem (Symmetric Lovász local lemma)

Let A_1, \ldots, A_n be events such that $\forall i : P[A_i] \leq p$ where $p \in (0, 1)$. Assume also that the outdegrees in a dependency graph are at most d. If $ep(d + 1) \leq 1$, then $P[\bigcap_{i=1}^n \bar{A}_i] > 0$.

Theorem (General Lovász local lemma)

Let A_1, \ldots, A_n be events and D = (V, E) be their dependency graph. Let $x_i \in [0, 1)$ be such that $P[A_i] \le x_i \prod_{(i,j)\in E} (1 - x_j)$. Then $P[\bigcap_{i=1}^n \overline{A}_i] \ge \prod_{i=1}^n (1 - x_i) > 0$.

Proof that General \Rightarrow Symmetric.

•
$$d > 0$$
 otherwise easy. Set $x_i = \frac{1}{d+1} < 1$. Then

•
$$x_i \prod_{(i,j)\in E} (1-x_j) = \frac{1}{d+1} (1-\frac{1}{d+1})^d = \frac{1}{d+1} \frac{1}{(1+\frac{1}{d})^d} \ge$$

Theorem (Symmetric Lovász local lemma)

Let A_1, \ldots, A_n be events such that $\forall i : P[A_i] \leq p$ where $p \in (0, 1)$. Assume also that the outdegrees in a dependency graph are at most d. If $ep(d + 1) \leq 1$, then $P[\bigcap_{i=1}^n \overline{A_i}] > 0$.

Theorem (General Lovász local lemma)

Let A_1, \ldots, A_n be events and D = (V, E) be their dependency graph. Let $x_i \in [0, 1)$ be such that $P[A_i] \le x_i \prod_{(i,j)\in E} (1 - x_j)$. Then $P[\bigcap_{i=1}^n \overline{A}_i] \ge \prod_{i=1}^n (1 - x_i) > 0$.

Proof that General \Rightarrow Symmetric.

•
$$d > 0$$
 otherwise easy. Set $x_i = \frac{1}{d+1} < 1$. Then

•
$$x_i \prod_{(i,j)\in E} (1-x_j) = \frac{1}{d+1} (1-\frac{1}{d+1})^d = \frac{1}{d+1} \frac{1}{(1+\frac{1}{d})^d} \ge \frac{1}{e(d+1)} \ge p \ge P[A_i].$$

Proposition

Let H = (V, E) be a hypergraph in which each hyperedge contains at least k vertices and it meets at most d other hyperedges. If $e(d+1) \le 2^{k-1}$, then H is 2-colorable. (No edge monochromatic.)

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○ ○

Proposition

Let H = (V, E) be a hypergraph in which each hyperedge contains at least k vertices and it meets at most d other hyperedges. If $e(d+1) \le 2^{k-1}$, then H is 2-colorable. (No edge monochromatic.)

Proof.

• Pick color of each vertex uniformly at random (independently).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Proposition

Let H = (V, E) be a hypergraph in which each hyperedge contains at least k vertices and it meets at most d other hyperedges. If $e(d+1) \le 2^{k-1}$, then H is 2-colorable. (No edge monochromatic.)

Proof.

• Pick color of each vertex uniformly at random (independently).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• A_f : event expressing that f is monochromatic.

Proposition

Let H = (V, E) be a hypergraph in which each hyperedge contains at least k vertices and it meets at most d other hyperedges. If $e(d+1) \le 2^{k-1}$, then H is 2-colorable. (No edge monochromatic.)

Proof.

• Pick color of each vertex uniformly at random (independently).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• A_f : event expressing that f is monochromatic.

•
$$P[A_f] \le p := \frac{1}{2^{k-1}}$$

Proposition

Let H = (V, E) be a hypergraph in which each hyperedge contains at least k vertices and it meets at most d other hyperedges. If $e(d+1) \le 2^{k-1}$, then H is 2-colorable. (No edge monochromatic.)

Proof.

• Pick color of each vertex uniformly at random (independently).

A D N A 目 N A E N A E N A B N A C N

• A_f : event expressing that f is monochromatic.

•
$$P[A_f] \le p := \frac{1}{2^{k-1}}$$

• A_f independent of all $A_{f'}$ with $f \cap f' = \emptyset$.

Proposition

Let H = (V, E) be a hypergraph in which each hyperedge contains at least k vertices and it meets at most d other hyperedges. If $e(d+1) \le 2^{k-1}$, then H is 2-colorable. (No edge monochromatic.)

Proof.

• Pick color of each vertex uniformly at random (independently).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• A_f : event expressing that f is monochromatic.

•
$$P[A_f] \le p := \frac{1}{2^{k-1}}$$

- A_f independent of all $A_{f'}$ with $f \cap f' = \emptyset$.
- That is, the degree in a dependency graph is at most *d*.

Proposition

Let H = (V, E) be a hypergraph in which each hyperedge contains at least k vertices and it meets at most d other hyperedges. If $e(d+1) \le 2^{k-1}$, then H is 2-colorable. (No edge monochromatic.)

Proof.

• Pick color of each vertex uniformly at random (independently).

• A_f : event expressing that f is monochromatic.

•
$$P[A_f] \le p := \frac{1}{2^{k-1}}$$

- A_f independent of all $A_{f'}$ with $f \cap f' = \emptyset$.
- That is, the degree in a dependency graph is at most *d*.
- By assumption $ep(d+1) \leq 1$.

Proposition

Let H = (V, E) be a hypergraph in which each hyperedge contains at least k vertices and it meets at most d other hyperedges. If $e(d+1) \le 2^{k-1}$, then H is 2-colorable. (No edge monochromatic.)

Proof.

• Pick color of each vertex uniformly at random (independently).

- A_f : event expressing that f is monochromatic.
- $P[A_f] \le p := \frac{1}{2^{k-1}}$.
- A_f independent of all $A_{f'}$ with $f \cap f' = \emptyset$.
- That is, the degree in a dependency graph is at most *d*.
- By assumption $ep(d+1) \leq 1$.
- By Lovász local lemma, $P[\bigcap \bar{A}_f] > 0$.

Proposition

Let H = (V, E) be a hypergraph in which each hyperedge contains at least k vertices and it meets at most d other hyperedges. If $e(d+1) \le 2^{k-1}$, then H is 2-colorable. (No edge monochromatic.)

- Pick color of each vertex uniformly at random (independently).
- A_f : event expressing that f is monochromatic.
- $P[A_f] \le p := \frac{1}{2^{k-1}}$.
- A_f independent of all $A_{f'}$ with $f \cap f' = \emptyset$.
- That is, the degree in a dependency graph is at most *d*.
- By assumption $ep(d+1) \leq 1$.
- By Lovász local lemma, $P[\bigcap \bar{A}_f] > 0$.
- Comparison to union bound: $P[\bigcap \bar{A}_f] > 0$ if $\sum P[A_f] < 1$, that is, if $|E| < 2^{k-1}$. (Depends on the number of edges.)

- Given a graph G and pairs $\{x_i, y_i\} \subseteq V(G)$.
- Target: connect each x_i with y_i with mutually edge disjoint paths.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Given a graph G and pairs $\{x_i, y_i\} \subseteq V(G)$.
- Target: connect each x_i with y_i with mutually edge disjoint paths.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Given a graph G and pairs {x_i, y_i} ⊆ V(G).
- Target: connect each x_i with y_i with mutually edge disjoint paths.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

In addition, we will assume that the path between x_i and y_i can be selected from a set Q_i.

- Given a graph G and pairs {x_i, y_i} ⊆ V(G).
- Target: connect each x_i with y_i with mutually edge disjoint paths.

In addition, we will assume that the path between x_i and y_i can be selected from a set Q_i.

 If Q_i are large enough and the paths from Q_i do not share edges with too many paths from Q_j, then the x_i-y_i connections can be simultaneously established.

Proposition

Let G be a graph, $n \in \mathbb{N}$, $\{x_i, y_i\} \subseteq V$ for $i \in \{1, ..., n\}$. Let Q_i be a set of at least m paths from x_i to y_i . Assume that for every $i \neq j$ every path from Q_i shares an edge with at most k paths from Q_j . If $k \leq \frac{m}{e(2n-3)}$, then it is possible to pick a path from each Q_i so that the picked paths are mutually edge-disjoint.

Proposition

Let G be a graph, $n \in \mathbb{N}$, $\{x_i, y_i\} \subseteq V$ for $i \in \{1, ..., n\}$. Let Q_i be a set of at least m paths from x_i to y_i . Assume that for every $i \neq j$ every path from Q_i shares an edge with at most k paths from Q_j . If $k \leq \frac{m}{e(2n-3)}$, then it is possible to pick a path from each Q_i so that the picked paths are mutually edge-disjoint.

Proof.

• For each *i*, pick a path $q_i \in Q_i$ uniformly at random (indep.).

Proposition

Let G be a graph, $n \in \mathbb{N}$, $\{x_i, y_i\} \subseteq V$ for $i \in \{1, ..., n\}$. Let Q_i be a set of at least m paths from x_i to y_i . Assume that for every $i \neq j$ every path from Q_i shares an edge with at most k paths from Q_j . If $k \leq \frac{m}{e(2n-3)}$, then it is possible to pick a path from each Q_i so that the picked paths are mutually edge-disjoint.

Proof.

- For each *i*, pick a path $q_i \in Q_i$ uniformly at random (indep.).
- Let $A_{i,j}$ be the event expressing that q_i and q_j share an edge.

ヘロン 人間と 人造と 人造と 一道

Proposition

Let G be a graph, $n \in \mathbb{N}$, $\{x_i, y_i\} \subseteq V$ for $i \in \{1, ..., n\}$. Let Q_i be a set of at least m paths from x_i to y_i . Assume that for every $i \neq j$ every path from Q_i shares an edge with at most k paths from Q_j . If $k \leq \frac{m}{e(2n-3)}$, then it is possible to pick a path from each Q_i so that the picked paths are mutually edge-disjoint.

Proof.

- For each *i*, pick a path $q_i \in Q_i$ uniformly at random (indep.).
- Let $A_{i,j}$ be the event expressing that q_i and q_j share an edge.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ・ うへつ

• Let p := k/m. $P[A_{i,j}] \le p$.

Proposition

Let G be a graph, $n \in \mathbb{N}$, $\{x_i, y_i\} \subseteq V$ for $i \in \{1, ..., n\}$. Let Q_i be a set of at least m paths from x_i to y_i . Assume that for every $i \neq j$ every path from Q_i shares an edge with at most k paths from Q_j . If $k \leq \frac{m}{e(2n-3)}$, then it is possible to pick a path from each Q_i so that the picked paths are mutually edge-disjoint.

Proof.

- For each *i*, pick a path $q_i \in Q_i$ uniformly at random (indep.).
- Let $A_{i,j}$ be the event expressing that q_i and q_j share an edge.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ・ うへつ

- Let p := k/m. $P[A_{i,j}] \le p$.
- $A_{i,j}$ is independent of events $A_{i',j'}$ for $\{i,j\} \cap \{i',j'\} = \emptyset$.

Proposition

Let G be a graph, $n \in \mathbb{N}$, $\{x_i, y_i\} \subseteq V$ for $i \in \{1, ..., n\}$. Let Q_i be a set of at least m paths from x_i to y_i . Assume that for every $i \neq j$ every path from Q_i shares an edge with at most k paths from Q_j . If $k \leq \frac{m}{e(2n-3)}$, then it is possible to pick a path from each Q_i so that the picked paths are mutually edge-disjoint.

- For each *i*, pick a path $q_i \in Q_i$ uniformly at random (indep.).
- Let $A_{i,j}$ be the event expressing that q_i and q_j share an edge.
- Let p := k/m. $P[A_{i,j}] \le p$.
- $A_{i,j}$ is independent of events $A_{i',j'}$ for $\{i,j\} \cap \{i',j'\} = \emptyset$.
- Thus, the degree in the dependency graph is $\leq d := 2(n-2)$.

Proposition

Let G be a graph, $n \in \mathbb{N}$, $\{x_i, y_i\} \subseteq V$ for $i \in \{1, ..., n\}$. Let Q_i be a set of at least m paths from x_i to y_i . Assume that for every $i \neq j$ every path from Q_i shares an edge with at most k paths from Q_j . If $k \leq \frac{m}{e(2n-3)}$, then it is possible to pick a path from each Q_i so that the picked paths are mutually edge-disjoint.

- For each *i*, pick a path $q_i \in Q_i$ uniformly at random (indep.).
- Let $A_{i,j}$ be the event expressing that q_i and q_j share an edge.
- Let p := k/m. $P[A_{i,j}] \le p$.
- $A_{i,j}$ is independent of events $A_{i',j'}$ for $\{i,j\} \cap \{i',j'\} = \emptyset$.
- Thus, the degree in the dependency graph is ≤ d := 2(n-2).
 ep(d+1) ≤ e^k/_m(2n-3) ≤ 1.

Proposition

Let G be a graph, $n \in \mathbb{N}$, $\{x_i, y_i\} \subseteq V$ for $i \in \{1, ..., n\}$. Let Q_i be a set of at least m paths from x_i to y_i . Assume that for every $i \neq j$ every path from Q_i shares an edge with at most k paths from Q_j . If $k \leq \frac{m}{e(2n-3)}$, then it is possible to pick a path from each Q_i so that the picked paths are mutually edge-disjoint.

Proof.

- For each *i*, pick a path $q_i \in Q_i$ uniformly at random (indep.).
- Let $A_{i,j}$ be the event expressing that q_i and q_j share an edge.
- Let p := k/m. $P[A_{i,j}] \le p$.
- $A_{i,j}$ is independent of events $A_{i',j'}$ for $\{i,j\} \cap \{i',j'\} = \emptyset$.
- Thus, the degree in the dependency graph is $\leq d := 2(n-2)$.

ヘロア 人間 アメヨアメヨア

- $ep(d+1) \le e\frac{k}{m}(2n-3) \le 1.$
- By symmetric Lovász local lemma, $P[\bigcap \bar{A}_{i,j}] > 0$.

Theorem

Let D = (V, E) be a directed graph with minimum outdegree δ and maximum indegree Δ . Then for every positive integer ksatisfying $k \leq \frac{\delta}{1+\ln(1+\delta\Delta)}$ there is a directed cycle in D of length divisible by k.

Theorem

Let D = (V, E) be a directed graph with minimum outdegree δ and maximum indegree Δ . Then for every positive integer ksatisfying $k \leq \frac{\delta}{1+\ln(1+\delta\Delta)}$ there is a directed cycle in D of length divisible by k.

Proof.

• Without loss of generality: outdeg = δ (remove extra edges).

Theorem

Let D = (V, E) be a directed graph with minimum outdegree δ and maximum indegree Δ . Then for every positive integer ksatisfying $k \leq \frac{\delta}{1+\ln(1+\delta\Delta)}$ there is a directed cycle in D of length divisible by k.

- Without loss of generality: outdeg = δ (remove extra edges).
- Color vertices 1,..., k uniformly at random (independently).

Theorem

Let D = (V, E) be a directed graph with minimum outdegree δ and maximum indegree Δ . Then for every positive integer ksatisfying $k \leq \frac{\delta}{1+\ln(1+\delta\Delta)}$ there is a directed cycle in D of length divisible by k.

Proof.

- Without loss of generality: outdeg = δ (remove extra edges).
- Color vertices 1,..., k uniformly at random (independently).

・ コ ト ・ 雪 ト ・ ヨ ト ・ ヨ ト ・ ヨ

• Let
$$N^+(v) = \{ w \in V : (v, w) \}.$$

Theorem

Let D = (V, E) be a directed graph with minimum outdegree δ and maximum indegree Δ . Then for every positive integer ksatisfying $k \leq \frac{\delta}{1+\ln(1+\delta\Delta)}$ there is a directed cycle in D of length divisible by k.

- Without loss of generality: outdeg = δ (remove extra edges).
- Color vertices 1,..., k uniformly at random (independently).
- Let $N^+(v) = \{w \in V : (v, w)\}.$
- A_v : event expressing that no vertex in $N^+(v)$ is colored with $f(v) + 1 \pmod{k}$.

Theorem

Let D = (V, E) be a directed graph with minimum outdegree δ and maximum indegree Δ . Then for every positive integer ksatisfying $k \leq \frac{\delta}{1+\ln(1+\delta\Delta)}$ there is a directed cycle in D of length divisible by k.

- Without loss of generality: outdeg = δ (remove extra edges).
- Color vertices 1,..., k uniformly at random (independently).
- Let $N^+(v) = \{w \in V : (v, w)\}.$
- A_v : event expressing that no vertex in $N^+(v)$ is colored with $f(v) + 1 \pmod{k}$.

•
$$P[A_v] = p := (1 - 1/k)^{\delta}$$
.

Theorem

Let D = (V, E) be a directed graph with minimum outdegree δ and maximum indegree Δ . Then for every positive integer ksatisfying $k \leq \frac{\delta}{1+\ln(1+\delta\Delta)}$ there is a directed cycle in D of length divisible by k.

- Without loss of generality: outdeg = δ (remove extra edges).
- Color vertices 1,..., k uniformly at random (independently).
- Let $N^+(v) = \{ w \in V : (v, w) \}.$
- A_v : event expressing that no vertex in $N^+(v)$ is colored with $f(v) + 1 \pmod{k}$. $\neq w_{\bullet}$
- $P[A_v] = p := (1 1/k)^{\delta}$.
- A_v is independent of all events A_w with $N^+(v) \cap (N^+(w) \cup \{w\}) = \emptyset$.

Proof-continued.

- A_v : event expressing that no vertex in $N^+(v)$ is colored with $f(v) + 1 \pmod{k}$. $\neq w$
- $P[A_v] = p := (1 1/k)^{\delta}$.
- A_v is independent of all events A_w with $N^+(v) \cap (N^+(w) \cup \{w\}) = \emptyset$.

Proof-continued.

- A_v : event expressing that no vertex in $N^+(v)$ is colored with $f(v) + 1 \pmod{k}$. $\neq w$
- $P[A_v] = p := (1 1/k)^{\delta}$.
- A_v is independent of all events A_w with $N^+(v) \cap (N^+(w) \cup \{w\}) = \emptyset$.

Sketch of explanation: Such A_w affect coloring only of vertices which are not in N⁺(v). Precoloring vertices of V \ N⁺(v) does not affect P[A_v].

Proof-continued.

- A_v : event expressing that no vertex in $N^+(v)$ is colored with $f(v) + 1 \pmod{k}$. $\neq w$
- $P[A_v] = p := (1 1/k)^{\delta}$.
- A_v is independent of all events A_w with $N^+(v) \cap (N^+(w) \cup \{w\}) = \emptyset$.

- Sketch of explanation: Such A_w affect coloring only of vertices which are not in N⁺(v). Precoloring vertices of V \ N⁺(v) does not affect P[A_v].
- The degree in the dependency graph is at most
 d := δ + δ(Δ − 1) = δΔ.

• Then $ep(d+1) \leq e(1-1/k)^{\delta}(\delta\Delta+1) \leq e^{1-\frac{\delta}{k}}(\delta\Delta+1) \leq 1.$

Proof-continued.

- A_v : event expressing that no vertex in $N^+(v)$ is colored with $f(v) + 1 \pmod{k}$. $\neq w$
- $P[A_v] = p := (1 1/k)^{\delta}$.
- A_v is independent of all events A_w with $N^+(v) \cap (N^+(w) \cup \{w\}) = \emptyset$.

- Sketch of explanation: Such A_w affect coloring only of vertices which are not in N⁺(v). Precoloring vertices of V \ N⁺(v) does not affect P[A_v].
- The degree in the dependency graph is at most $d := \delta + \delta(\Delta 1) = \delta \Delta$.
- Then $ep(d+1) \leq e(1-1/k)^{\delta}(\delta\Delta+1) \leq e^{1-rac{\delta}{k}}(\delta\Delta+1) \leq 1.$
- By Lovász local lemma, there is a coloring such that $\forall v \exists w \in N^+(v)$ colored with f(v) + 1.
- Start with v_0 and gradually build the cycle.