
Lovász Local Lemma—motivation

Standard probabilistic method:

We want to find an object X with a property P.

We generate X in random. X admits P if none of the bad
events A1, . . . ,An occurs.

That is, we want P[
⋃
Ai ] < 1.

Usually we use union bound: P[
⋃
Ai ] ≤

∑
P[Ai ].

Can we say something if
∑

P[Ai ] is big?

First imagine that Ai are independent with P[Ai ] < 1.

Āi are also independent.

Then
P[
⋃

An] = 1− P[Ā1 ∩ · · · ∩ Ān] = 1− P[Ā1] · · ·P[Ān] < 1.

Lovász Local Lemma: Generalization when Ai are only
partially dependent.
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Lovász Local Lemma: Generalization when Ai are only
partially dependent.



Lovász Local Lemma—motivation

Standard probabilistic method:

We want to find an object X with a property P.

We generate X in random. X admits P if none of the bad
events A1, . . . ,An occurs.

That is, we want P[
⋃
Ai ] < 1.

Usually we use union bound: P[
⋃
Ai ] ≤

∑
P[Ai ].

Can we say something if
∑

P[Ai ] is big?

First imagine that Ai are independent with P[Ai ] < 1.
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Dependency (di)graph

Definition

We say that an event A is independent of events B1, . . . ,Bk if for
every J ⊆ [k], J 6= ∅ we get:

P
[
A ∩

⋂
j∈J

Bj

]
= P[A] · P[

⋂
j∈J

Bj ].

Let A1, . . . ,An be events. A directed graph D = (V ,E ) with
V = {1, . . . , n} is a dependency (di)graph for A1, . . . ,An if for
every Ai is independent of the events Aj with (i , j) /∈ E .

i

Ai independent of Aj ’s for these j

Dependency graph is not unique in general.
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Symmetric Lovász local lemma

Theorem (Symmetric Lovász local lemma)

Let A1, . . . ,An be events such that ∀i : P[Ai ] ≤ p where p ∈ (0, 1).
Assume also that the outdegrees in a dependency graph are at
most d. (That is, ∀i : Ai is independent on all but at most d
events.) If ep(d + 1) ≤ 1, then

P
[ n⋂
i=1

Āi

]
> 0.

Standard probabilistic technique Lovász local lemma
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Āi

]
> 0.

Standard probabilistic technique Lovász local lemma



General Lovász local lemma

Theorem (General Lovász local lemma)

Let A1, . . . ,An be events and D = (V ,E ) be their dependency
graph. Let xi ∈ [0, 1) be such that P[Ai ] ≤ xi

∏
(i ,j)∈E (1− xj).

Then P
[⋂n

i=1 Āi

]
≥
∏n

i=1(1− xi ) > 0.

In concrete applications, it is often useful to set xi ∼ c · P[Ai ].
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General implies symmetric

Theorem (Symmetric Lovász local lemma)

Let A1, . . . ,An be events such that ∀i : P[Ai ] ≤ p where p ∈ (0, 1).
Assume also that the outdegrees in a dependency graph are at
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(i ,j)∈E (1− xj).

Then P
[⋂n

i=1 Āi

]
≥
∏n

i=1(1− xi ) > 0.

Proof that General ⇒ Symmetric.

d > 0 otherwise easy. Set xi = 1
d+1 < 1. Then

xi
∏

(i ,j)∈E (1− xj) = 1
d+1 (1− 1

d+1 )d = 1
d+1

1
(1+ 1

d
)d
≥

≥ 1
e(d+1) ≥ p ≥ P[Ai ].
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Applications: Coloring hypergraphs

Proposition

Let H = (V ,E ) be a hypergraph in which each hyperedge contains
at least k vertices and it meets at most d other hyperedges. If
e(d + 1) ≤ 2k−1, then H is 2-colorable. (No edge monochromatic.)

Proof.

Pick color of each vertex uniformly at random (independently).

Af : event expressing that f is monochromatic.

P[Af ] ≤ p := 1
2k−1 .

Af independent of all Af ′ with f ∩ f ′ = ∅.
That is, the degree in a dependency graph is at most d .

By assumption ep(d + 1) ≤ 1.

By Lovász local lemma, P[
⋂
Āf ] > 0.

Comparison to union bound: P[
⋂
Āf ] > 0 if

∑
P[Af ] < 1,

that is, if |E | < 2k−1. (Depends on the number of edges.)
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Āf ] > 0.

Comparison to union bound: P[
⋂
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Āf ] > 0 if

∑
P[Af ] < 1,

that is, if |E | < 2k−1. (Depends on the number of edges.)



Applications: Coloring hypergraphs

Proposition

Let H = (V ,E ) be a hypergraph in which each hyperedge contains
at least k vertices and it meets at most d other hyperedges. If
e(d + 1) ≤ 2k−1, then H is 2-colorable. (No edge monochromatic.)

Proof.

Pick color of each vertex uniformly at random (independently).

Af : event expressing that f is monochromatic.

P[Af ] ≤ p := 1
2k−1 .

Af independent of all Af ′ with f ∩ f ′ = ∅.
That is, the degree in a dependency graph is at most d .

By assumption ep(d + 1) ≤ 1.

By Lovász local lemma, P[
⋂
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Āf ] > 0.

Comparison to union bound: P[
⋂
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Applications: Edge disjoint paths

Given a graph G and
pairs {xi , yi} ⊆ V (G ).

Target: connect each xi
with yi with mutually
edge disjoint paths.

x1

y1 x2

y2

x3

y3

In addition, we will assume that the path between xi and yi
can be selected from a set Qi .

xi

yi

If Qi are large enough and the paths from Qi do not share
edges with too many paths from Qj , then the xi–yi
connections can be simultaneously established.
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Edge disjoint paths–continued

Proposition

Let G be a graph, n ∈ N, {xi , yi} ⊆ V for i ∈ {1, . . . , n}. Let Qi

be a set of at least m paths from xi to yi . Assume that for every
i 6= j every path from Qi shares an edge with at most k paths from
Qj . If k ≤ m

e(2n−3) , then it is possible to pick a path from each Qi

so that the picked paths are mutually edge-disjoint.

Proof.

For each i , pick a path qi ∈ Qi uniformly at random (indep.).

Let Ai ,j be the event expressing that qi and qj share an edge.

Let p := k/m. P[Ai ,j ] ≤ p.

Ai ,j is independent of events Ai ′,j ′ for {i , j} ∩ {i ′, j ′} = ∅.
Thus, the degree in the dependency graph is ≤ d := 2(n − 2).

ep(d + 1) ≤ e k
m (2n − 3) ≤ 1.

By symmetric Lovász local lemma, P[
⋂
Āi ,j ] > 0.
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Directed cycles via LLL

Theorem

Let D = (V ,E ) be a directed graph with minimum outdegree δ
and maximum indegree ∆. Then for every positive integer k
satisfying k ≤ δ

1+ln(1+δ∆) there is a directed cycle in D of length
divisible by k.

Proof.

Without loss of generality: outdeg = δ (remove extra edges).

Color vertices 1, . . . , k uniformly at random (independently).

Let N+(v) = {w ∈ V : (v ,w)}.
Av : event expressing that no vertex in N+(v) is colored with
f (v) + 1 (mod k).
P[Av ] = p := (1− 1/k)δ.

Av is independent of all events Aw

with N+(v)∩ (N+(w)∪ {w}) = ∅.
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Directed cycles via LLL–continued

Proof–continued.

Av : event expressing that no vertex in N+(v) is colored with
f (v) + 1 (mod k).
P[Av ] = p := (1− 1/k)δ.

Av is independent of all events Aw

with N+(v) ∩ (N+(w) ∪ {w}) = ∅.

6= w

6= w

6= w

6= w

Sketch of explanation: Such Aw affect coloring only of
vertices which are not in N+(v). Precoloring vertices of
V \ N+(v) does not affect P[Av ].

The degree in the dependency graph is at most
d := δ + δ(∆− 1) = δ∆.

Then ep(d + 1) ≤ e(1− 1/k)δ(δ∆ + 1) ≤ e1− δ
k (δ∆ + 1) ≤ 1.

By Lovász local lemma, there is a coloring such that
∀v∃w ∈ N+(v) colored with f (v) + 1.

Start with v0 and gradually build the cycle.
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