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Lovasz Local Lemma—motivation

Standard probabilistic method:
@ We want to find an object X with a property P.

o We generate X in random. X admits P if none of the bad
events A, ..., A, occurs.

e That is, we want P[|JAj] < 1.
e Usually we use union bound: P[|JAi] <> P[Ai].
Can we say something if > P[A;] is big?

o First imagine that A; are independent with P[A;] < 1.

e A; are also independent.

@ Then _ _ _ _
PlUA=1-P[AiN---NA)] =1-P[A]--- P[A] < 1.

@ Lovdsz Local Lemma: Generalization when A; are only
partially dependent.
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We say that an event A is independent of events By, ..., By if for
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Let Ay, ..., A, be events. A directed graph D = (V, E) with

V ={1,...,n} is a dependency (di)graph for Ay, ..., A, if for
every A; is independent of the events A; with (i,j) ¢ E.

< 4, independent of A;’s for these j
)

@ Dependency graph is not unique in general.
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Theorem (Symmetric Lovész local lemma)

Let Ay, ..., A, be events such that Vi: P[A;] < p where p € (0,1).
Assume also that the outdegrees in a dependency graph are at
most d. If ep(d + 1) < 1, then P[7_; Ai] > 0.

Theorem (General Lovasz local lemma)

Let A1,..., A, be events and D = (V, E) be their dependency
graph. Let x; € [0,1) be such that P[A;] < x; [T (; jee(1 — %))
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@ d > 0 otherwise easy. Set x; = d%rl < 1. Then
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Applications: Coloring hypergraphs

Proposition

Let H= (V, E) be a hypergraph in which each hyperedge contains
at least k vertices and it meets at most d other hyperedges. If
e(d +1) < 2k=1, then H is 2-colorable. (No edge monochromatic.)

Proof.

Pick color of each vertex uniformly at random (independently).

Ar: event expressing that f is monochromatic.

P[Af] < p = 2,(—1,1

Ar independent of all A with f N/ = (.

That is, the degree in a dependency graph is at most d.

By assumption ep(d + 1) < 1.

By Lovész local lemma, P[ Af] > 0. O

Comparison to union bound: P[As] > 0if 3. P[Af] < 1,
that is, if |[E| < 2¥~1. (Depends on the number of edges.)
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Applications: Edge disjoint paths

Given a graph G and

pairs {x;, yi} € V(G).

Target: connect each x;

with y; with mutually

edge disjoint paths.

In addition, we will assume that the path between x; and y;
can be selected from a set Q;.

T

Yi

If Q; are large enough and the paths from Q; do not share
edges with too many paths from Q;, then the xj—y;
connections can be simultaneously established.
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Let G be a graph, n € N, {x;,yi} C V forie{l,...,n}. Let Q
be a set of at least m paths from x; to y;. Assume that for every

i # j every path from Q; shares an edge with at most k paths from
Q. Ifk < m then it is possible to pick a path from each Q;
so that the picked paths are mutually edge-disjoint.

Proof.
@ For each i, pick a path g; € Q; uniformly at random (indep.).

@ Let A;; be the event expressing that g; and g; share an edge.
Let p := k/m. P[A;j] < p.

A j is independent of events Ay i for {i,j} N{/’,j'} = 0.
Thus, the degree in the dependency graph is < d := 2(n — 2).
ep(d +1) <ek(2n-3)<1.
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Theorem

Let D = (V,E) be a directed graph with minimum outdegree §
and maximum indegree A. Then for every positive integer k
satisfying k < m there is a directed cycle in D of length
divisible by k.

Proof.

e Without loss of generality: outdeg = 0 (remove extra edges).

@ Color vertices 1, ..., k uniformly at random (independently).
o Let NT(v)={we V: (v,w)}.

@ A,: event expressing that no vertex in N (v) is colored with

f(v)+1 (mod k). ”
o P[A)] =p:=(1—-1/k). 4w
@ A, is independent of all events A, .
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Proof-continued.

@ A,: event expressing that no vertex in N (v) is colored with
f(v)+1 (mod k). ]

o P[A)] =p:=(1—-1/k). 4w
@ A, is independent of all events A, .
with NT(v) N (NT(w) U {w}) = 0. L
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Proof-continued.

@ A,: event expressing that no vertex in N (v) is colored with
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@ Sketch of explanation: Such A,, affect coloring only of
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Proof-continued.

A, : event expressing that no vertex in N*(v) is colored with

f(v)+1 (mod k). ]

P[A] = p:= (1 —1/k)°. 4w
A, is independent of all events A, .
with N*(v) N (NT(w) U {w}) = 0. L

Sketch of explanation: Such A, affect coloring only of
vertices which are not in N*(v). Precoloring vertices of
V \ N*(v) does not affect P[A,].

The degree in the dependency graph is at most
d:=0+dA—-1)=05A.
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Proof-continued.

A, : event expressing that no vertex in N*(v) is colored with

f(v)+1 (mod k). ]

P[A] = p:= (1 —1/k)°. 4w
A, is independent of all events A, .
with N*(v) N (NT(w) U {w}) = 0. L

Sketch of explanation: Such A, affect coloring only of
vertices which are not in N*(v). Precoloring vertices of
V \ N*(v) does not affect P[A,].

The degree in the dependency graph is at most
d:=0+dA—-1)=05A.
Then ep(d +1) < e(1 — 1/k)’(5A +1) < e %(6A +1) < 1.

By Lovasz local lemma, there is a coloring such that
Vv3aw € N*(v) colored with f(v)+ 1.

Start with vy and gradually build the cycle. Ol



