Algorithmic game theory – Tutorial 6*

1 ε -Nash and correlated equilibria

Let G = (P, A, u) be a normal-form game of n players and let $\varepsilon > 0$. A strategy profile $s = (s_1, \ldots, s_n)$ is an ε -Nash equilibrium if, for every player $i \in P$ and for every strategy $s_i' \in S_i$, we have $u_i(s_i; s_{-i}) \ge u_i(s_i'; s_{-i}) - \varepsilon$.

Let p be a probability distribution on A, that is, $p(a) \ge 0$ for every $a \in A$ and $\sum_{a \in A} p(a) = 1$. The distribution p is a *correlated equilibrium* in G if

$$\sum_{a_{-i} \in A_{-i}} u_i(a_i; a_{-i}) p(a_i; a_{-i}) \ge \sum_{a_{-i} \in A_{-i}} u_i(a_i'; a_{-i}) p(a_i; a_{-i})$$

for every player $i \in P$ and all pure strategies $a_i, a'_i \in A_i$.

Exercise 1. Show that, in every normal-form game G = (P, A, u), every convex combination of correlated equilibria is a correlated equilibrium.

Exercise 2. Prove that, in every normal-form game G = (P, A, u) of n players, for every Nash equilibrium there exists a corresponding correlated equilibrium.

Exercise 3. Let $G = (P = \{1, 2\}, A, u)$ be a normal-form game of two players with $A_1 = \{U, D\}$ and $A_2 = \{L, R\}$ with payoff function u depicted in Table 1.

$$\begin{array}{c|cccc} & L & R \\ \hline U & (1,1) & (0,0) \\ D & (1+\frac{\varepsilon}{2},\,1) & (500,500) \\ \end{array}$$

Table 1: The game from Exercise 3.

Show that there is an ε -Nash equilibrium s of G such that $u_i(s') > 10u_i(s)$ for every $i \in P$ and every Nash equilibrium s' of G. In other words, there might be games where some ε -Nash equilibria are far away from any Nash equilibrium.

Exercise 4. Compute all correlated equilibria in Prisoner's dilemma.

$$\begin{array}{c|ccc} & T & S \\ \hline T & (-2,-2) & (0,-3) \\ S & (-3,0) & (-1,-1) \\ \end{array}$$

Table 2: The game from Exercise 4

Exercise 5. Let $G = (P = \{1, 2\}, A, u)$ be a normal-form game of two players with $A_1 = \{U, D\}$ and $A_2 = \{L, R\}$ with payoff function u depicted in Table 3.

	L	R
U	(6,6)	(2,7)
D	(7,2)	(0,0)

Table 3: A game from Exercise 5.

- (a) Compute all Nash equilibria of G and draw the convex hull of Nash equilibrium payoffs.
- (b) Is there any correlated equilibrium of G (for some ditribution p) that yields payoffs outside this convex hull?

^{*}Information about the course can be found at http://kam.mff.cuni.cz/~sychrovsky/