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8. Linedrni zavislost a nezduvislost

Cv. 8.1

Cv. 8.2

8. Linearni zavislost a nezavislost

Diskutujte, kdy je systém jednoho resp. dvou resp. tif vektort linedrné zavisly.

Reseni:
1 vektor: Aby mnozina s jednim vektorem byla linedrné zavisla, tak ten vektor
musi byt nulovy.

2 vektory: Aby mnozina dvou vektoru byla linearné zavisla, jeden vektor musi
byt nasobek druhého.

3 vektory: V tomto piipadé jeden vektor je linedrni kombinaci ostatnich, ale
nemusi byt nutné jeden vektor nasobek néjakého jiného.

Zjistéte zda jsou vektory z R? linedrné nezavislé:

(a) (2,3,-5)7, (1,—-1,1)7, (3,2, —2)7.
(b) (2,0,3)7, (1,—1,1)7, (0,2,1)7.

Reseni:
Vektory x1, ...,z jsou linedrné nezavislé, pokud jediné linearni kombinace
k
E T, = 0
i=1
méa v8echny koeficienty ay = ... = a = 0. Problém nalezeni koeficienti této

linearné kombinace prevedeme na hledani feSeni soustavy linedrnich rovnic.

(a) Hledame koeficienty aq, ag, ag € R takoveé, ze

2 1 3 0
aq - 3 + Qs - —1 + asg - 2 = 0
-5 1 -2 0

Prevedenim na feSeni soustav lineadrnich rovnic dostavame

2 1 3|0
3 -1 2|0
-5 1 =210

Jedinym Fegenim této soustavy je vektor (0,0,0)7, vektory jsou proto line-
arné nezavislé.

(b) Opét sestavime soustavu rovnic

2 10|10

0 -1 2|0},

3 1 110
kterou prevedeme na odstupnovany tvar

2 100

0 -1 2|0

0O 0 0(0
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Soustava méa tedy i netrividlni feSeni a vektory jsou proto linearné zavislé.
Pro tplnost doplnime, Ze mnoZina feSeni soustavy je {(—xs, 223, x3)7; 23 €
R}. Tedy naptiklad pro x3 = 1 méame

2 1 0 0
—1-{o)+2-[=1)+1-[2]=]0
3 1 1 0

Cv. 8.3 Necht u,v,w jsou linearné nezavislé vektory z vektorového prostoru V nad R.
Rozhodnéte, zda-li jsou nasledujici mnoziny linearné nezavislé.
(a) {u,v,o0},
(b) {w,v,u},

(c) {u, u+wv, u+w},

(d) {v—v, u—w, v—w}.

Resent:
(a) Linearné zavislé, nebot

O-u+0-v+1-0=o0.

(b) Linearné nezavislé, nebot jsou to ty samé vektory, jenom v jiném poradi.
Zménou poradi se linearni (ne)zavislost vektort neméni (proc?).

(¢) Zde uz to oc¢ividné neni, tak postupujeme obdobné jako v predchozim cvi-
¢eni B2l Hledame koeficienty a1, as, ag € R takové, aby

0=ou+ as(u+v)+as(u+w) = (o + az + asz)u + v + azw.

Protoze u, v, w jsou linearné nezavislé, musi byt a; +as+ a3 =0, as =0 a
az = 0 a tedy i a; = 0. Proto je mnozina vektort {u, u+ v, u+ w} linearné
nezavisla.

(d) Obdobné jako v pfedchozim pripadé hledame aq, as, a3 € R takové, zZe
0 = a1 (u—v)+as(u—w)+az(v—w) = (v +ag)u+(—ag+az)v+(—as—az)w
7 linearni nezéavislosti u, v, w dostavame soustavu

(I1+042:O,
—Oél—l-Oég:O,

—Qy — (g = 0.

ReSenim této soustavy je mnozina {(as, —as, az)?; az € R}. Mnozina {u —
v, u —w,v —w} je tedy linearné zavisla, napt. pro ag = 1 méame

l-(u—v)—1-(u—w)+1-(v—w)=o.

Cv. 8.4 Necht V je vektorovy prostor nad télesem T a mé&me dvé mnoziny vektoru
X CY C V. Rozhodnéte, ktera z nasledujicich tvrzeni jsou pravdiva:
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(a) Je-li X nezavisla, pak je Y zavisla.
(b

)

) Je-li X nezavisla, pak je Y nezavisla.
c) Je-li X zavisla, pak je Y zavisla.
)
)

(
(d

(e) Je-li Y zavisla, pak je X zavisla.

Je-1i Y nezavisla, pak je X nezavisla.

Reseni:

Obecné dle definice se dé odvodit, Ze nezavislost se prenasi ,,dolu* a zavislost
,nahoru®. Konkrétneé:

(a) Neplati: X = {(1,0)T} a Y = {(1,0)7, (0,1)T} jsou obé nezavislé¢ v R,

(b) Neplati: X = {(1,0)T} je nezavisla, ale Y = {(1,0)7, (2,0)T} je uz zavisla

v RZ.
(c) Plati. Mé&jme X = {vy,...,v} aY = {vy,...,vp,wy ..., wy}. Podle pred-
pokladu je mnozina X zavisla, tedy existuji aq,...,a, € T takové, ze

(og,...,a0) #(0,...,0) a
¢
ZO&ZI‘Z:O
i=1

Vezméme Sy, ..., B, = (0,...,0). Pak stéale plati, ze (ay, ..., a0, 1, ..., Br) #
(0,...,0) a

L k
ZOZZ‘UZ‘ + Zﬁjwj =0
1=1 j=1

je netrivialni linedrni kombinace vektort z Y, ktera se rovnéa 0. Mnozina Y
je tedy také linearni zéavisla.

(d) Plati. Jde o obménu bodu (c).

(e) Neplati: Y = {(1,0)7,(2,0)7} je zavisla, ale X = {(1,0)"} je nezévisla
v R%

Cv. 8.5 Rozhodnéte, zda vektory (0,1,1,1)T, (1,0,1,1)7, (1,1,0,1)T, (1,1,1,0)T jsou
linearne zéavislé v R* resp. v Z3.

Reseni:

Ulohu fesime stejné jako ve cviceni B2 jen jednou pocitame nad télesem R a
podruhé nad Zs. Zjistime, Ze nad R jsou vektory linearné nezavislé. Nad Zs jsou
ale linearné zavislé, naptiklad

1-(0,1,1, )T+ 1-(1,0,1, )T +1-(1,1,0, )" +1-(1,1,1,0)T = 0.

Vidime tedy, Ze linearni zavislost /nezévislost zavisi na volbé télesa vektorového
prostoru.

Cv. 8.6 Budte U,V podprostory prostoru W. Dokazte, ze UNV = {o} pravé tehdy, kdyz
kazdy vektor x € U + V se déa jednoznacné zapsat jako x = u + v, kde u € U,
veV.
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Cv. 8.7

Reseni:
Ekvivalenci dokdzeme tak, ze ukazeme zvlast obé implikace.

,= Z definice spojeni prostoru se kazdy vektor x € U + V da zapsat jako
r =u+wv, kde u € U, v € V. Musime tedy ukazat jednoznacnost tohoto
vyjadieni. Pro spor méjme dvé vyjadieni vektoru wx,

U+ =T = Uy + Vg
pro uy,us € U a vy, v € V. Rovnost upravime na
Up — Uy = Vg — V1.

Vektor uy —ug lezi v U a vektor vy — vy lezi ve V. Z predpokladu je UNV = {0},
¢ili uy — us = v9 — vy = 0. Z toho ale vyplyva, Ze u; = uy a v = vy a vyjadieni
x je tedy jednoznacné. Spor.

,<=" Opét postupujeme sporem. Predpokladejme, Ze existuje nenulovy vektor
w € UNYV. Pak tento vektor miuzeme vyjadfit dvéma riznymi zpusoby (prvni
s¢itanec je z U, druhy s¢itanec je z V):

w=w-+o0=o0+w.

Urcete, zda nasledujici mnoziny vektora jsou linearné nezavislé v prostoru reél-
nych funkeci R — R (nad télesem R).

(a) {22 -1, x — 2, 3z}.
(b) {z*+2zx+3,z+1,z—1}.

(c) {sinzx, cosx}.

Resendt:

(a) Oznatme f(x) =2x—1, g(z) = x—2 a h(z) = 3z. Pak hledame a1, as, a3 €
R takové, ze oy - f(x)+aq-g(z)+as-h(xz) = 0 pro vSechna x € R. Dostavame

a;-(2r—1)+ay- (v —2)+a3-32 = (200 + a2 +3a3) - v+ (—ag —2a2) = 0.

Rovnost je splnéna pro vsSechna z pravé tehdy, kdyz je nulovy absolutni
¢len i koeficient u proménné x:

2&1 +a2 +3(I3 = O,

—Q] — 20&2 =0.

MnoZina feSeni této soustavy je {(—2ws3, z3,23)T; 23 € R}. Mnozina {2z —
1, x — 2, 3z} je tedy linearné zéavisla, napt. pro r3 = 1 mame

—2-2r—-1)+1-(z—2)+1-(3z)=0.
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(b)

Opét hledame aq, as, a3 € R takové, ze
ay - (P 4+224+3)tay- (v +1)+ag-(z—1)=0,

neboli
aq -x2+(2a1+a2+a3) 2+ 3oy + as —az) =0.

Aby byl polynom nulovy pro vSechna x € R, musi byt vSechny koeficienty
polynomu nulové. Z toho dostaneme homogenni soustavu

1
2
3

)

0
1
1

o O O

Tato soustava mé jediné Feeni (0,0,0)7, polynomy jsou tedy line4rné ne-
zavislé.

Hledame feSeni rovnice
apsinz + ascosz = 0,

¢ili takova aq, s € R, aby rovnice byla splnéna pro kazdé x € R. Protoze
nemuzeme sestavit soustavu rovnic podobné jako v predchozich podulohéch,
snazime se nalézt takové z € R, pro které vynutime z rovnosti konkrétni
hodnoty aq, as. Pokud dosadime = 0, dostaneme o, = 0, protoze sin0 = 0
a cos0 = 1. Pokud dosadime x = 7, pak nutné a; = 0, protoze sin § = 1
a cos 7 = 0. Aby byla rovnice splnéna, nutné musi a; = ay = 0. Zaroven
vidime, Ze a; = @y = 0 spliuji tuto rovnici. Funkce jsou tedy linearné
nezavislé.

Cv. 8.8 Najdéte ¢tyfi linearné zavislé vektory z R* tak, aby:

(a)
(b)
(c)
(d)
Reseni

(a)

(b)
(c)
(d)

pravé jeden vektor byl linearné zavisly na ostatnich,
pravé dva vektory byly linearné zavislé na ostatnich tfech,
prave tii vektory byly linearné zavislé na ostatnich trech,

kazdy z nich byl linedrné zavislych na ostatnich tfech,

Naprtiklad e, es, €3, 0 (ten posledni).
Naprtiklad e, eq, €3, 2e3 (ty posledni dva).
Naprtiklad e, eq, €3, €5 + e3 (ty posledni tii).

Napriklad eq, es, e3, 1 + e + e3.
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