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8. Lineární závislost a nezávislost

Cv. 8.1 Diskutujte, kdy je systém jednoho resp. dvou resp. tří vektorů lineárně závislý.

Řešení:

1 vektor: Aby množina s jedním vektorem byla lineárně závislá, tak ten vektor
musí být nulový.

2 vektory: Aby množina dvou vektorů byla lineárně závislá, jeden vektor musí
být násobek druhého.

3 vektory: V tomto případě jeden vektor je lineární kombinací ostatních, ale
nemusí být nutně jeden vektor násobek nějakého jiného.

Cv. 8.2 Zjistěte zda jsou vektory z R3 lineárně nezávislé:

(a) (2, 3,−5)T , (1,−1, 1)T , (3, 2,−2)T .

(b) (2, 0, 3)T , (1,−1, 1)T , (0, 2, 1)T .

Řešení:

Vektory x1, . . . , xk jsou lineárně nezávislé, pokud jediná lineární kombinace

k
∑

i=1

αixi = 0

má všechny koeficienty α1 = . . . = αk = 0. Problém nalezení koeficientů této
lineárně kombinace převedeme na hledání řešení soustavy lineárních rovnic.

(a) Hledáme koeficienty α1, α2, α3 ∈ R takové, že

α1 ·
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+ α2 ·


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1



+ α3 ·
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
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0
0
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 .

Převedením na řešení soustav lineárních rovnic dostáváme




2 1 3 0
3 −1 2 0

−5 1 −2 0



 .

Jediným řešením této soustavy je vektor (0, 0, 0)T , vektory jsou proto line-
árně nezávislé.

(b) Opět sestavíme soustavu rovnic




2 1 0 0
0 −1 2 0
3 1 1 0



 ,

kterou převedeme na odstupňovaný tvar




2 1 0 0
0 −1 2 0
0 0 0 0



 .
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Soustava má tedy i netriviální řešení a vektory jsou proto lineárně závislé.
Pro úplnost doplníme, že množina řešení soustavy je {(−x3, 2x3, x3)

T ; x3 ∈
R}. Tedy například pro x3 = 1 máme
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Cv. 8.3 Nechť u, v, w jsou lineárně nezávislé vektory z vektorového prostoru V nad R.
Rozhodněte, zda-li jsou následující množiny lineárně nezávislé.

(a) {u, v, o},

(b) {w, v, u},

(c) {u, u+ v, u+ w},

(d) {u− v, u− w, v − w}.

Řešení:

(a) Lineárně závislé, neboť

0 · u+ 0 · v + 1 · o = o.

(b) Lineárně nezávislé, neboť jsou to ty samé vektory, jenom v jiném pořadí.
Změnou pořadí se lineární (ne)závislost vektorů nemění (proč?).

(c) Zde už to očividné není, tak postupujeme obdobně jako v předchozím cvi-
čení 8.2. Hledáme koeficienty α1, α2, α3 ∈ R takové, aby

0 = α1u+ α2(u+ v) + α3(u+ w) = (α1 + α2 + α3)u+ α2v + α3w.

Protože u, v, w jsou lineárně nezávislé, musí být α1 +α2+α3 = 0, α2 = 0 a
α3 = 0 a tedy i α1 = 0. Proto je množina vektorů {u, u+ v, u+w} lineárně
nezávislá.

(d) Obdobně jako v předchozím případě hledáme α1, α2, α3 ∈ R takové, že

0 = α1(u−v)+α2(u−w)+α3(v−w) = (α1+α2)u+(−α1+α3)v+(−α2−α3)w.

Z lineární nezávislosti u, v, w dostáváme soustavu

α1 + α2 = 0,

−α1 + α3 = 0,

−α2 − α3 = 0.

Řešením této soustavy je množina {(α3,−α3, α3)
T ; α3 ∈ R}. Množina {u−

v, u− w, v − w} je tedy lineárně závislá, např. pro α3 = 1 máme

1 · (u− v)− 1 · (u− w) + 1 · (v − w) = o.

Cv. 8.4 Nechť V je vektorový prostor nad tělesem T a mějme dvě množiny vektorů
X ⊆ Y ⊆ V . Rozhodněte, která z následujících tvrzení jsou pravdivá:
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(a) Je-li X nezávislá, pak je Y závislá.

(b) Je-li X nezávislá, pak je Y nezávislá.

(c) Je-li X závislá, pak je Y závislá.

(d) Je-li Y nezávislá, pak je X nezávislá.

(e) Je-li Y závislá, pak je X závislá.

Řešení:

Obecně dle definice se dá odvodit, že nezávislost se přenáší „dolů“ a závislost
„nahoru“ . Konkrétně:

(a) Neplatí: X = {(1, 0)T} a Y = {(1, 0)T , (0, 1)T} jsou obě nezávislé v R2.

(b) Neplatí: X = {(1, 0)T} je nezávislá, ale Y = {(1, 0)T , (2, 0)T} je už závislá
v R2.

(c) Platí. Mějme X = {v1, . . . , vℓ} a Y = {v1, . . . , vℓ, w1 . . . , wk}. Podle před-
pokladu je množina X závislá, tedy existují α1, . . . , αℓ ∈ T takové, že
(α1, . . . , αℓ) 6= (0, . . . , 0) a

ℓ
∑

i=1

αixi = 0.

Vezměme β1, . . . , βk = (0, . . . , 0). Pak stále platí, že (α1, . . . , αℓ, β1, . . . , βk) 6=
(0, . . . , 0) a

ℓ
∑

i=1

αivi +

k
∑

j=1

βjwj = 0

je netriviální lineární kombinace vektorů z Y , která se rovná 0. Množina Y
je tedy také lineární závislá.

(d) Platí. Jde o obměnu bodu (c).

(e) Neplatí: Y = {(1, 0)T , (2, 0)T} je závislá, ale X = {(1, 0)T} je nezávislá
v R2.

Cv. 8.5 Rozhodněte, zda vektory (0, 1, 1, 1)T , (1, 0, 1, 1)T , (1, 1, 0, 1)T , (1, 1, 1, 0)T jsou
lineárně závislé v R4 resp. v Z4

3.

Řešení:

Úlohu řešíme stejně jako ve cvičení 8.2, jen jednou počítáme nad tělesem R a
podruhé nad Z3. Zjistíme, že nad R jsou vektory lineárně nezávislé. Nad Z3 jsou
ale lineárně závislé, například

1 · (0, 1, 1, 1)T + 1 · (1, 0, 1, 1)T + 1 · (1, 1, 0, 1)T + 1 · (1, 1, 1, 0)T = o.

Vidíme tedy, že lineární závislost/nezávislost závisí na volbě tělesa vektorového
prostoru.

Cv. 8.6 Buďte U, V podprostory prostoru W . Dokažte, že U∩V = {o} právě tehdy, když
každý vektor x ∈ U + V se dá jednoznačně zapsat jako x = u + v, kde u ∈ U ,
v ∈ V .



Příklady na procvičení z Lineární algebry 1 49

Řešení:

Ekvivalenci dokážeme tak, že ukážeme zvlášť obě implikace.

„⇒“ Z definice spojení prostorů se každý vektor x ∈ U + V dá zapsat jako
x = u + v, kde u ∈ U , v ∈ V . Musíme tedy ukázat jednoznačnost tohoto
vyjádření. Pro spor mějme dvě vyjádření vektoru x,

u1 + v1 = x = u2 + v2

pro u1, u2 ∈ U a v1, v2 ∈ V . Rovnost upravíme na

u1 − u2 = v2 − v1.

Vektor u1−u2 leží v U a vektor v2−v1 leží ve V . Z předpokladu je U ∩V = {0},
čili u1 − u2 = v2 − v1 = 0. Z toho ale vyplývá, že u1 = u2 a v1 = v2 a vyjádření
x je tedy jednoznačné. Spor.

„⇐“ Opět postupujeme sporem. Předpokládejme, že existuje nenulový vektor
w ∈ U ∩ V . Pak tento vektor můžeme vyjádřit dvěma různými způsoby (první
sčítanec je z U , druhý sčítanec je z V ):

w = w + o = o+ w.

Cv. 8.7 Určete, zda následující množiny vektorů jsou lineárně nezávislé v prostoru reál-
ných funkcí R → R (nad tělesem R).

(a) {2x− 1, x− 2, 3x}.

(b) {x2 + 2x+ 3, x+ 1, x− 1}.

(c) {sin x, cosx}.

Řešení:

(a) Označme f(x) = 2x−1, g(x) = x−2 a h(x) = 3x. Pak hledáme α1, α2, α3 ∈
R takové, že α1 ·f(x)+α2 ·g(x)+α3 ·h(x) = 0 pro všechna x ∈ R. Dostáváme

α1 · (2x−1)+α2 · (x−2)+α3 · 3x = (2α1+α2+3α3) ·x+(−α1−2α2) = 0.

Rovnost je splněna pro všechna x právě tehdy, když je nulový absolutní
člen i koeficient u proměnné x:

2α1 + α2 + 3α3 = 0,

−α1 − 2α2 = 0.

Množina řešení této soustavy je {(−2x3, x3, x3)
T ; x3 ∈ R}. Množina {2x−

1, x− 2, 3x} je tedy lineárně závislá, např. pro x3 = 1 máme

−2 · (2x− 1) + 1 · (x− 2) + 1 · (3x) = 0.
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(b) Opět hledáme α1, α2, α3 ∈ R takové, že

α1 · (x
2 + 2x+ 3) + α2 · (x+ 1) + α3 · (x− 1) = 0,

neboli
α1 · x

2 + (2α1 + α2 + α3) · x+ (3α1 + α2 − α3) = 0.

Aby byl polynom nulový pro všechna x ∈ R, musí být všechny koeficienty
polynomu nulové. Z toho dostaneme homogenní soustavu





1 0 0 0
2 1 1 0
3 1 −1 0



 .

Tato soustava má jediné řešení (0, 0, 0)T , polynomy jsou tedy lineárně ne-
závislé.

(c) Hledáme řešení rovnice

α1 sin x+ α2 cos x = 0,

čili taková α1, α2 ∈ R, aby rovnice byla splněna pro každé x ∈ R. Protože
nemůžeme sestavit soustavu rovnic podobně jako v předchozích podúlohách,
snažíme se nalézt takové x ∈ R, pro které vynutíme z rovnosti konkrétní
hodnoty α1, α2. Pokud dosadíme x = 0, dostaneme α2 = 0, protože sin 0 = 0
a cos 0 = 1. Pokud dosadíme x = π

2
, pak nutně α1 = 0, protože sin π

2
= 1

a cos π
2
= 0. Aby byla rovnice splněna, nutně musí α1 = α2 = 0. Zároveň

vidíme, že α1 = α2 = 0 splňují tuto rovnici. Funkce jsou tedy lineárně
nezávislé.

Cv. 8.8 Najděte čtyři lineárně závislé vektory z R4 tak, aby:

(a) právě jeden vektor byl lineárně závislý na ostatních,

(b) právě dva vektory byly lineárně závislé na ostatních třech,

(c) právě tři vektory byly lineárně závislé na ostatních třech,

(d) každý z nich byl lineárně závislých na ostatních třech,

Řešení:

(a) Například e1, e2, e3, o (ten poslední).

(b) Například e1, e2, e3, 2e3 (ty poslední dva).

(c) Například e1, e2, e3, e2 + e3 (ty poslední tři).

(d) Například e1, e2, e3, e1 + e2 + e3.
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