
Příklady na procvičení z Lineární algebry 1 39

7. Vektorové prostory a podprostory, lineární obal

Vektorové prostory a podprostory

Cv. 7.1 Rozhodněte, zda tvoří vektorový prostor:

(a) Zn
p nad Zp,

(b) Rn nad Q,

(c) Qn nad R,

(d) Rn nad R s operacemi x⊕ y = x+ y, α⊙ x = −α · x,

(e) Rn nad R s operacemi x⊕ y = x+ y, α⊙ x = |α| · x,

(f) U × V nad T, kde U, V jsou vektorové prostory nad T, sčítání a násobení
je definováno standardně po složkách.

(g) množina všech zobrazení f : M → V nad tělesem T, kde M je daná množina
a V vektorový prostor nad T.

Řešení:

(a) Jedná se o vektorový prostor, protože

• (Zn
p ,+ mod p) je Abelova grupa,

• modulární násobení je asociativní,
• roli neutrálního prvku pro modulární násobení zastává 1 ∈ Zn

p ,
• modulární aritmetika je distributivní.

(b) Jedná se o vektorový prostor, protože Rn nad Q má pro operace sčítání a
násobení skalárem stejná vlastnosti jako vektorový prostor Rn nad R. Po-
tenciálně jediný problém by mohl být použití jiného tělesa, protože bychom
mohli při násobení skalárem dostat vektory mimo Rn. Protože Q ⊆ R, tento
problém nenastane.

(c) Narozdíl od předchozího případu zde už problém nastane. Nejedná se o vek-
torový prostor, protože při násobení vektoru skalárem se nejedná o operaci
R×Qn → Qn; můžeme dostat ve vektoru reálné složky. Není splněna uza-
vřenost množiny na danou operaci.

(d) Není vektorový prostor, protože neplatí asociativita násobení:

α⊙ (β ⊙ v) = α⊙ (−βv) = αβv 6= −αβv = (αβ)⊙ v.

Jako konkrétní protipříklad stačí vzít α = β = 1 a v = (1, 1)T .

(e) Není vektorový prostor, protože neplatí distributivita. Pro jakékoli β =
−α 6= 0 dostáváme

(α + β)⊙ v = |0|v = 0 6= 2|α|v = |α|v + |−α|v = α⊙ v + β ⊙ v.

Konkrétně například stačí vzít α = 1, β = −1, v = (1, 1)T .
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(f) Prvky množiny U × V jsou uspořádané dvojice (u, v), kde u ∈ U , v ∈ V .
Pro (u, v), (u′, v′) ∈ U × V je součet definován takto: (u, v) + (u′, v′) =
(u + u′, v + v′). Násobek je definován analogicky α(u, v) = (αu′, αv), kde
α ∈ T a (u, v) ∈ U × V .
Vlastnosti operací U × V nad T plynou z vlastností operací pro jednotlivé
prostory U a V , takže se jedná vektorový prostor.

(g) Pokud není uvedeno jinak, uvažujeme přirozené definice operací sčítání a
násobení funkcí, tedy

(f + g)(x) = f(x) + g(x), (αf)(x) = f(x).

Následně o dvou funkcích řekneme, že se rovnají, pokud se rovnají jejich
funkční hodnoty na všech x ∈ M . Daná struktura je vektorový prostor,
protože platí

i. asociativita sčítání

((f + g) + h)(x) = (f + g)(x) + h(x) = f(x) + g(x) + h(x),

(f + (g + h))(x) = f(x) + (g + h)(x) = f(x) + g(x) + h(x),

ii. neutrální prvek pro sčítání je funkce e(x) = o, kde o je nulový vektor
prostoru V ,

iii. inverzní prvek f−1 k funkci f je f−1(x) = −1 · f(x),
iv. komutativita sčítání

(f + g)(x) = f(x) + g(x) = g(x) + f(x) = (g + f)(x),

v. asociativita násobení skalárem

(α(βf))(x) = α(βf)(x) = αβf(x) = (αβ)f(x) = ((αβ)f)(x),

vi. neutrální prvek pro násobení skalárem je 1 ∈ T,
vii. distributivita

((α + β)f)(x) = (α + β)f(x) = αf(x) + βf(x) = (αf)(x) + (βf)(x),

viii. distributivita

(α(f + g))(x) = α(f + g)(x) = α(f(x) + g(x)) =

= αf(x) + αg(x) = (αf)(x) + (αg)(x).

Cv. 7.2 Najděte netriviální podmnožinu R2, která je:

(a) uzavřená na sčítání a odčítání, ale ne na násobky,

(b) uzavřená na násobky, ale ne na sčítání.

Řešení:

(a) Např. množina {(i, i)T | i ∈ Z}.

(b) Např. sjednocení dvojice různoběžných přímek procházejících počátkem.
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Cv. 7.3 Rozhodněte, zda následující množiny vektorů tvoří podprostor R2:

(a) {(s, 5s)T ; s ∈ R},

(b) {(s+ t, 1)T ; s, t ∈ R},

(c) {(s, s2)T ; s ∈ R},

(d) {(s− t, 2t)T ; s, t ∈ R}.

Řešení:

Aby množina tvořila podprostor R2, je třeba, aby obsahovala (0, 0)T a byla uza-
vřená na operace sčítání a násobení skalárem.

(a) Nulový vektor v množině pro s = 0 leží. Uzavřenost na součty a součiny
také platí:

• (s, 5s)T + (t, 5t)T = (s+ t, 5(s+ t))T ,
• α(s, 5s)T = (αs, 5αs)T .

Jedná se tedy o vektorový podprostor prostoru R2.

(b) Není podprostorem, neboť (0, 0)T není součástí množiny.

(c) Není podprostorem, neboť množina není uzavřena ani na násobky, ani na
součty. Například vektor (1, 1)T leží v množině, ale její násobek (2, 2)T už
nikoli.

(d) Nulový vektor v množina pro t = 0, s = 0 leží. Uzavřenost na součty a
součiny také platí:

• (a− b, 2b)T + (c− d, 2d)T = ((a+ c)− (b+ d), 2(b+ d))T ,
• α(t− s, 2s)T = (αt− αs, 2αs)T .

Cv. 7.4 Buď A ∈ Rm×n. Dokažte, že {x ∈ Rn; Ax = 0} tvoří vektorový podprostor Rn.

Řešení:

Aby množina tvořila podprostor, musí obsahovat nulový vektor a být uzavřená
na operace sčítání a násobení skalárem.

Pokud dosadíme do soustavy rovnic vektor x = (0, . . . , 0)T , dostáváme na levé
straně soustavy nuly, tedy nulový vektor je řešením libovolné soustavy rovnic
s nulovou pravou stranou.

Uzavřenost na násobky. Pokud x ∈ Rn splňuje Ax = 0, po dosazení αx, kde
α ∈ R je libovolné, dostáváme

A(αx) = α(Ax) = α0 = 0.

Obdobně pro součty. Pro libovolné x, y ∈ Rn splňující soustavu rovnic platí
Ax = Ay = 0. Tudíž

A(x+ y) = Ax+ Ay = 0 + 0 = 0.
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Cv. 7.5 Nalezněte vlastní příklady podprostorů prostoru matic Rn×n nad R.

Řešení:

• Triviální příklady jsou celý prostor Rn×n nad R, nebo množina {0n×n}.

• Netriviálním příkladem jsou poté horní (nebo dolní) trojúhelníkové matice,
neboť násobení skalárem, ani součet dvou matic nezmění nulovost prvků
pod diagonálou.

• Z podobného důvodu tvoří podprostor diagonální matice.

• Obecněji bychom mohli vzít libovolnou podmnožinu matic, kde určité členy
zafixujeme rovny 0 a zbytek členů bude nabývat libovolných hodnot.

• Jiným příkladem jsou magické čtverce (tj. matice u nichž součet libovolného
řádku, sloupce i obou diagonál dá stejné číslo).

Cv. 7.6 Rozhodněte, zda následující tvoří podprostor prostoru reálných posloupností
R∞ = {(x1, x2, . . . ); xi ∈ R, i ∈ N}:

(a) posloupnosti s nekonečně mnoha nulami,

(b) posloupnosti s konečně mnoha nenulami,

(c) monotónní posloupnosti (neklesající a nerostoucí posloupnosti čísel),

(d) fibonacciovské posloupnosti (splňující xi+1 = xi + xi−1, kde x1, x2 ∈ R jsou
libovolné).

Řešení:

(a) Ne, nejsou uzavřené na součet.
Například (0, 1, 0, 1, . . . ) + (1, 0, 1, 0, . . . ) = (1, 1, 1, 1, . . . )

(b) Ano, snadno nahlédneme.

(c) Ne, nejsou uzavřené na součty.
Například (1, 0, 0, 0, . . . ) + (0, 0, 1, 1, . . . ) = (1, 0, 1, . . . ).

(d) Ano, snadno nahlédneme.

Lineární obal, lineární kombinace

Cv. 7.7 Buď V vektorový prostor a M,N ⊆ V množiny vektorů. Rozhodněte, zda platí

(a) span(span(M)) = span(M),

(b) M ⊆ N ⇒ span(M) ⋐ span(N),

(c) M ⊆ N ⇐ span(M) ⋐ span(N),

(d) span(M ∩N) = span(M) ∩ span(N),

Řešení:

Ukážeme dva možné způsoby řešení, podle toho, jakou charakterizaci lineárního
obalu použijeme.

První způsob. Podle první definice je lineární obal span(M) množiny M tvořený
průnikem všech podprostorů, obsahujících množinu M . Jinými slovy, span(M)
je (co do inkluze) nejmenší podprostor obsahující M .
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(a) Ano. Množina span(M) je již podprostor, tudíž jeho lineární obal je on sám.

(b) Ano. Pokud podprostor U obsahuje množinu N , pak obsahuje i množinu M .
Tudíž při konstrukci lineárního obalu span(M) děláme průnik z týchž pod-
prostorů, jako při konstrukci span(N), plus případně ještě z nějakých navíc.
Proto span(M) ⋐ span(N).

(c) Tento vztah obecně neplatí. Vezměme například množiny M = V a N =
M \ {o}. Platí, že span(M) = span(N), tím pádem i span(M) ⋐ span(N),
ale zároveň neplatí M ⊆ N .

(d) Vztah obecně neplatí. Například pro M = {(1, 0)T , (0, 1)T} a N = {(1, 1)T}.
Zatímco span(M ∩ N) = {o}, tak span(M) ∩ span(N) = span(N) =
{(c, c)T ; c ∈ R}.

Druhý způsob. Zde vycházíme z tvrzení, že x ∈ span(M) právě tehdy, pokud
existuje k ∈ N, vektory x1, . . . , xk ∈ M a koeficienty α1, . . . , αk takové, že

x =
k
∑

i=1

αixi.

(a) Ukážeme nejprve, že span(M) ⋐ span(span(M)), tedy že

x ∈ span(M) ⇒ x ∈ span(span(M)).

Protože x ∈ span(M), dá se vyjádřit jako x =
∑k

i=1 αixi pro xi ∈ M .
Protože ale xi ∈ span(M) a platí x =

∑k

i=1 αixi, dostáváme z tvrzení výše,
že x ∈ span(span(M)).
Naopak pokud x ∈ span(span(M)), poté existují x1, . . . , xk ∈ span(M) a
α1, . . . , αk takové, že x =

∑k

i=1 αixi. Každé xi ∈ span(M) můžeme vyjádřit
jako xi =

∑ℓi
j=1 βijyij pro jisté yij ∈ M . Po dosazení dostáváme

x =
k
∑

i=1

αixi =
k
∑

i=1

αi

(

ℓi
∑

j=1

βijyij

)

=
k
∑

i=1

ℓi
∑

j=1

(αiβij)yij.

Toto je lineární kombinace vektorů yij ∈ M s koeficienty αiβij, tedy x ∈
span(M).

(b) Každý vektor x ∈ span(M) můžeme vyjádřit jako x =
∑k

i=1 αixi pro určité
xi ∈ M a k ∈ N. Protože M ⊆ N , platí také, že xi ∈ N , tedy x ∈ span(N).

(c) Již jsme nahlédli protipříkladem v první části.

(d) Již jsme nahlédli protipříkladem v první části.

Cv. 7.8 Rozhodněte, zda vektory (1, 2)T a (3, 4)T generují R2.

Řešení:

Aby dané vektory generovaly R2, musí jít každý vektor (a, b)T ∈ R2 vyjádřit jako
jejich lineární kombinace, tj.

(

a
b

)

= α

(

1
2

)

+ β

(

3
4

)

.
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Pokud rovnost vektorů rozepíšeme po složkách, dostáváme soustavu

α + 3β = a

2α+ 4β = b,

kde α, β jsou neznámé. Maticově můžeme soustavu přepsat a vyřešit jako
(

1 3 a
2 4 b

)

.

Protože je matice soustavy regulární, má soustava jediné řešení pro jakékoli
hodnoty a, b ∈ R. Každý vektor lze tedy pomocí zadané dvojice jednoznačně
generovat. K tomuto závěru nepotřebujeme znát přesný tvar řešení soustavy. Na
druhou stranu, řešení soustavy nám dává dodatečnou informaci, a to koeficienty
příslušné lineární kombinace. V našem případě je řešení α = −(2a+ 3b

2
), β = 2a−b

2
.

Cv. 7.9 Rozhodněte, zda existuje lineární kombinace zadaných vektorů dávající vektor
x = (1, 2, 3)T a pokud ano, tak ji najděte:

(a) (1, 1, 1)T , (2, 1, 3)T , (3, 1, 5)T

(b) (2, 1, 3)T , (3, 1, 2)T , (1, 1, 1)T .

Řešení:

K řešení využijeme postupu z předchozí úlohy, tedy převedení problému hledání
koeficientů lineární kombinace na řešení soustavy lineárních rovnic.

(a) Dostáváme soustavu




1 2 3 1
1 1 1 2
1 3 5 3



 ,

která nemá řešení, protože ji můžeme převést Gaussovou eliminací například
na tvar





1 1 1 2
0 1 2 −1
0 0 0 3



 .

Hledaná lineární kombinace tudíž neexistuje.

(b) Dostáváme soustavu




2 3 1 1
1 1 1 2
3 2 1 3



 ,

která má jednoznačné řešení, protože ji můžeme převést Gaussovou elimi-
nací například na tvar





1 1 1 2
0 1 −1 −3
0 0 −3 −6



 .
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Řešením je vektor (1,−1, 2)T , tedy platí, že

1 ·





2
1
3



− 1 ·





3
1
2



+ 2 ·





1
1
1



 =





1
2
3



 .
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