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7. Vektorové prostory a podprostory, linearni obal

Vektorové prostory a podprostory

Cv. 7.1 Rozhodnéte, zda tvoii vektorovy prostor:

(a) Zy nad Zj,
(b) R™ nad Q,
(c) Q" nad R,
(d) R" nad R s operacemi x @y =z 4y, a®©r = —a-x,
(e) R" nad R s operacemi x Dy =z +y, a®z = |af - x,
(1

U x V nad T, kde U,V jsou vektorové prostory nad T, s¢itdni a nasobeni
je definovano standardné po slozkéch.

(g) mnozina vSech zobrazeni f: M — V nad télesem T, kde M je dan& mnozina
a V vektorovy prostor nad T.

Resent:

(a) Jedna se o vektorovy prostor, protoze
® (Zy,+ modp) je Abelova grupa,
e modulérni nasobeni je asociativni,
e roli neutrdlniho prvku pro modulérni nésobeni zastava 1 € Zy,
e modulérni aritmetika je distributivni.

(b) Jedna se o vektorovy prostor, protoze R™ nad Q ma pro operace s¢itani a
nasobeni skaldrem stejné vlastnosti jako vektorovy prostor R™ nad R. Po-
tencialné jediny problém by mohl byt pouziti jiného télesa, protoze bychom
mohli pii ndsobeni skalarem dostat vektory mimo R”. Protoze Q C R, tento

problém nenastane.

(c¢) Narozdil od predchoziho piipadu zde uz problém nastane. Nejedné se o vek-
torovy prostor, protoze pii nasobeni vektoru skaldrem se nejedna o operaci
R x Q" — Q™; muzeme dostat ve vektoru realné slozky. Neni splnéna uza-
vienost mnoziny na danou operaci.

(d) Neni vektorovy prostor, protoZe neplati asociativita nésobeni:

a®(foOv)=a0 (=Fv)=afv #—afv = (af) .

Jako konkrétni protipiiklad stadf vzit a = 8 =1av = (1,1)T.

(e) Neni vektorovy prostor, protoze neplati distributivita. Pro jakékoli f =
—a # 0 dostavame

(a+B)0v =|0lv =0#2]alv =|ajv +|—ajv =adv +50O0.

Konkrétné napiiklad staci vzit a =1, 8 = —1, v = (1,1)L.
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(f) Prvky mnoziny U x V jsou uspofadané dvojice (u,v), kde u € U, v € V.
Pro (u,v),(u',v") € U x V je soucet definovan takto: (u,v) + (u',v") =
(u+ v, v +v'). Nasobek je definovan analogicky a(u,v) = (au’, av), kde
aeTa (u,v)eUxV.

Vlastnosti operaci U x V nad T plynou z vlastnosti operaci pro jednotlivé
prostory U a V', takze se jedné vektorovy prostor.

(g) Pokud neni uvedeno jinak, uvazujeme piirozené definice operaci s¢itani a
nasobeni funkci, tedy

(f +9)(x) = f(z) + g(x), (af)(z)=[f(2).

Nésledné o dvou funkcich fekneme, Ze se rovnaji, pokud se rovnaji jejich
funk¢éni hodnoty na vsSech z € M. Dana struktura je vektorovy prostor,
protoze plati

1. asociativita sc¢itani
((f +9)+h)(x)=(f+9)(x) +h(z) = f(z)+g(z) + h(z),
(f+(g+h)(x)=f(z)+ (9+h)(z) = f(x)+g(z) + h(z),

ii. neutralni prvek pro séitani je funkce e(z) = o, kde o je nulovy vektor
prostoru V,

iii. inverzni prvek f~!k funkci f je f~1(z) = —1- f(x),
iv. komutativita s¢itani

(f +9)(x) = f(2) + g(x) = g(x) + f(2) = (g + [)(2),

v. asociativita nasobeni skaldrem

(a(Bf))(x) = a(Bf)(x) = aff(z) = (af)f(z) = ((af)f)(x),

vi. neutralni prvek pro nasobeni skalarem je 1 € T,

vii. distributivita
((a+B)f)(x) = (a+ B)f(x) = af(z) + Bf(z) = (af)(x) + (Bf)(z),
viii. distributivita

(a(f +9))(@) = a(f + 9)() = a(f(x) + g(x)) =
— af(2) + aglz) = (af)(x) + (ag) ().

Cv. 7.2 Najdéte netrivialni podmnozinu R?, ktera je:

(a) uzaviena na s¢itani a od¢itani, ale ne na néasobky,

(b) uzaviena na nésobky, ale ne na séitani.

Resent:

(a) Nap¥. mnozina {(i,4)” | i € Z}.

(b) Napf. sjednoceni dvojice riznobéznych primek prochézejicich pocatkem.
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Cv. 7.3 Rozhodnéte, zda nasledujici mnoZiny vektori tvoii podprostor R%:

(a) {(s,58)7; s € R},

(b) {(s+t,1)T; s,t € R},
(c) {(s,8°)7; s € R},

(d) {(s—t,2t)T; s,t € R}.
Reseni:

Aby mnoZina tvofila podprostor R?, je t¥eba, aby obsahovala (0,0)7 a byla uza-
viena na operace s¢itani a nasobeni skalarem.

(a) Nulovy vektor v mnoziné pro s = 0 lezi. Uzavienost na soucty a souciny
také plati:
o (5,58)T + (t,5t)T = (s +t,5(s +1))7,
e a(s,5s)T = (as,bas)T.
Jedna se tedy o vektorovy podprostor prostoru R2.
(b) Neni podprostorem, nebot (0,0)7 neni souc¢asti mnoZiny.

(c) Neni podprostorem, nebot mnozina neni uzaviena ani na nasobky, ani na
soucty. Napiiklad vektor (1,1)7 lezi v mnozing, ale jeji nasobek (2,2)T
nikoli.

(d) Nulovy vektor v mnozina pro t = 0, s = 0 lezi. Uzavienost na soulty a
souc¢iny také plati:

o (a—b,20)T + (c—d,2d)" = ((a+c)— (b+d),2(b+d))T,

o aft —s,28)" = (at — as, 2as)?.

Cv. 7.4 Bud A € R™*". Dokazte, ze {x € R"; Az = 0} tvoii vektorovy podprostor R".

Resent:
Aby mnozina tvorila podprostor, musi obsahovat nulovy vektor a byt uzaviena
na operace s¢itani a nasobeni skalarem.

Pokud dosadime do soustavy rovnic vektor z = (0,...,0)?, dostavame na levé
strané¢ soustavy nuly, tedy nulovy vektor je feSenim libovolné soustavy rovnic
s nulovou pravou stranou.

Uzavienost na nasobky. Pokud x € R™ spliuje Az = 0, po dosazeni ax, kde
a € R je libovolné, dostavame

A(ax) = a(Az) = a0 = 0.

Obdobné pro soucty. Pro libovolné x,y € R"™ spliujici soustavu rovnic plati
Ax = Ay = 0. Tudiz

Alz+y)=Ar+Ay=0+0=0.
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Cv. 7.5 Naleznéte vlastni priklady podprostort prostoru matic R™*” nad R.

Resent:

e Trividlni piiklady jsou cely prostor R"*" nad R, nebo mnozina {0, }-

e Netrividlnim piikladem jsou poté horni (nebo dolni) trojihelnikové matice,
nebot nésobeni skaldrem, ani soucet dvou matic nezméni nulovost prvku
pod diagonélou.

e 7/ podobného divodu tvoii podprostor diagonalni matice.

e Obecnéji bychom mohli vzit libovolnou podmnozinu matic, kde urcité cleny
zafixujeme rovny 0 a zbytek c¢lenti bude nabyvat libovolnych hodnot.

e Jinym piikladem jsou magické ¢tverce (tj. matice u nichz soucet libovolného
radku, sloupce i obou diagonal da stejné ¢islo).

Cv. 7.6 Rozhodnéte, zda nésledujici tvofi podprostor prostoru realnych posloupnosti
R>® = {(z1,29,...); z; € R, 1 € N}:
(a) posloupnosti s nekonené mnoha nulami,
(b) posloupnosti s kone¢né mnoha nenulami,
(¢) monoténni posloupnosti (neklesajici a nerostouci posloupnosti ¢isel),
)

(d) fibonacciovské posloupnosti (spliujici z;11 = z; + x;_1, kde x1, 22 € R jsou

libovolné).
Reseni:
(a) Ne, nejsou uzaviené na soucet.
Napiiklad (0,1,0,1,...) + (1,0,1,0,...) = (1,1,1,1,...)
(b) Ano, snadno nahlédneme.
(c) Ne, nejsou uzaviené na soucty.
Napiiklad (1,0,0,0,...)+(0,0,1,1,...) = (1,0,1,...).

(d) Ano, snadno nahlédneme.

Linearni obal, linedrni kombinace
Cv. 7.7 Bud V vektorovy prostor a M, N C V mnoziny vektori. Rozhodnéte, zda plati

(a) span(span(M)) = span(M),

(b) M C N = span(M) & span(N),
(¢) M C N <« span(M) € span(N),
(d) span(M N N) = span(M) N span(V),

Reseni:
Ukazeme dva mozné zpisoby feSeni, podle toho, jakou charakterizaci linearniho
obalu pouzijeme.

Pruni zpisob. Podle prvni definice je linearni obal span(M) mnoziny M tvoreny
prinikem vSech podprostorii, obsahujicich mnozinu M. Jinymi slovy, span(M)
je (co do inkluze) nejmensi podprostor obsahujici M.
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(a) Ano. Mnozina span(M) je jiz podprostor, tudiz jeho linearni obal je on sam.

(b) Ano. Pokud podprostor U obsahuje mnozinu N, pak obsahuje i mnozinu M.
Tudiz pfi konstrukei linedrniho obalu span(M) délame prunik z tychz pod-
prostorii, jako pii konstrukei span(V), plus piipadné jesté z néjakych navic.
Proto span(M) & span(N).

(c) Tento vztah obecné neplati. Vezméme napiiklad mnoziny M =V a N =
M \ {o}. Plati, ze span(M) = span(NV), tim padem i span(M) & span(N),
ale zaroven neplati M C N.

(d) Vztah obecné neplati. Napiiklad pro M = {(1,0)7, (0,1)T}a N = {(
Zatimco span(M N N) = {o}, tak span(M) N span(N) = span
{(c;c)"; c€ R}

1L, 1T}
(V) =

Druhy zpisob. Zde vychézime z tvrzeni, Ze x € span(M) pravé tehdy, pokud
existuje k € N, vektory xq,...,xr € M a koeficienty aq, ..., a; takové, ze

k
xr = E ;5.
i=1

(a) Ukazeme nejprve, ze span(M) € span(span(M)), tedy ze
x € span(M) =« € span(span(M)).

Protoze x € span(M), da se vyjadfit jako z = Ele a;x; pro x; € M.
Protoze ale z; € span(M) a plati z = Ele a;x;, dostavame z tvrzeni vyse,
ze x € span(span(M)).

Naopak pokud z € span(span(M)), poté existuji xy,...,x; € span(M) a
aq, ..., o takove, ze x = Zle a;z;. Kazdé x; € span(M) muzeme vyjadrit
jako z; = 25;1 Bi;jyij pro jisté y;; € M. Po dosazeni dostavame

k k £ k4
T = Zaixz‘ = Z Q; (Z 5@]?/23) Z (i Bij)ij-
. - =1 j:l

Toto je linedrni kombinace vektort y;; € M s koeficienty «;3;;, tedy x €
span(M).

(b) Kazdy vektor z € span(M) mizeme vyjadiit jako z = S°F | a;z; pro urcité
x; € M a k € N. Protoze M C N, plati také, ze x; € N, tedy x € span(N).

(c) Jiz jsme nahlédli protipiikladem v prvni ¢asti.

(d) Jiz jsme nahlédli protipfikladem v prvni ¢asti.
Cv. 7.8 Rozhodnéte, zda vektory (1,2)" a (3,4)” generuji R?.
Reseni:

Aby dané vektory generovaly R?, musf jit kazdy vektor (a,b)? € R? vyjadiit jako
jejich linearni kombinace, tj.

(3) =) 2 (1)
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Cv. 7.9

Pokud rovnost vektorii rozepiseme po slozkach, dostavame soustavu

a+38=a
20+ 48 = b,

kde a, 8 jsou nezndmé. Maticové muzeme soustavu prepsat a vyreSit jako

1 3]a
< 2 41b ) ’
Protoze je matice soustavy regularni, mé soustava jediné feSeni pro jakékoli
hodnoty a,b € R. Kazdy vektor 1ze tedy pomoci zadané dvojice jednoznacéné
generovat. K tomuto zavéru nepotfebujeme znat presny tvar reSeni soustavy. Na
druhou stranu, feseni soustavy nam dava dodate¢nou informaci, a to koeficienty
2a—b

P RV PPN . « vr v~ e 3b .
piislusné linearni kombinace. V nasem piipadé je feseni o = —(2a+3), 8 = =4=.

Rozhodnéte, zda existuje linearni kombinace zadanych vektort dévajici vektor
r = (1,2,3)T a pokud ano, tak ji najdéte:

(a) (1,L, )T, (2,1,3)7,(3,1,5)"

(b) (2,1,3)",(3,1,2)", (1,1, 1)".
Reseni:
K tesSeni vyuzijeme postupu z predchozi tlohy, tedy prevedeni problému hledani
koeficientt linearni kombinace na feseni soustavy linearnich rovnic.

(a) Dostavame soustavu

1 2 3|1
1 1 12 ],
1 3 5|3
ktera nema feSeni, protoze ji muzeme prevést Gaussovou eliminaci napiiklad
na tvar
1 1 1] 2
01 2]-1
0003

Hledana linedrni kombinace tudiz neexistuje.

(b) Dostavame soustavu

il )
N — W

1)1
12 ],
113

w

kterda ma jednoznac¢né feSeni, protoze ji muzeme prevést Gaussovou elimi-
naci napiiklad na tvar

11 11 2
01 —-1|-3
00 =3|-6
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Resenim je vektor (1,—1,2)T, tedy plati, Ze

2 3
1-{1]—-1-({1]+2-:
3 2
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