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11. Linearni zobrazeni, matice vzhledem ke kanonické
bazi

Definice linearniho zobrazeni

Cv. 11.1 Rozhodnéte, zda nasledujici zobrazeni f: R? — R? jsou linearni:

(a) flz,y) = (z,y+3)7,
(b) f(z,y) = (v +2y,y)7,
(c) f(z,y) = (0,0,

(d) f(z,y) = (2%y)"
Resgeni

(a) Zobrazeni f(x,y) = (z,y + 3)T neni linearni, protoZe nulovy vektor nezob-
razuje na nulovy vektor.

(b) Zobrazeni f(z,y) = (x + 2y,y)? je linedrni. Ovéifme ob& podminky z defi-
nice.

Soucet. Uvazujme dva vektory (x,y) a (2/,y’). Jejich soucet se zobrazi na
vektor

f@y)+ @) =fla+ay+y)=((=+2)+2+y), w+y)" =
= (z+2y,9)" + (@ +24,¢)" = f(z,y)+ (&, Y).

Ndsobek. Uvazujme vektor (z,y) a skalar a. Pak vektor a(z,y) = (azx, ay)
se zobrazi na vektor

flaz, ay) = (ax +2(ay), ay)" = a(z +2y,9)" = of (z,y).

(c) Zobrazeni f(x,y) = (0,0)T je linearni. Vlastnosti z definice linearntho zob-
razeni se snadno oveér.

(d) Zobrazeni f(x,y) = (2% y)* neni linearni. Naptiklad pro vektor (x,y) =
(1,0) a skalar v = 2 dostéavame

fla(z,y)) = flaz, ay) = f(2,0) = (4,0)",

ale
af(z,y)=2f(1,0)=2(1,0)" = (2,0)".
Cili obeené f(a(z,y)) # af(z,y).

Cv. 11.2 Rozhodnéte, zda nasledujici zobrazeni z prostoru R"*" jsou linearni:

(a) f(A) = AT,
(b) f(A) =1L,
(c) f(A) =A%
(d) f(A) = au,
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(e) f(A) = RREF(A),

Resent:

(a) Zobrazeni f(A) = AT je linearni, coZ plyne z vlastnosti maticové transpo-
zice:

(A+ B = A"+ B, (ad)' =aAT.

(b) Zobrazeni f(A) = I,, neni linearni, protoze nezobrazuje nulovou matici na
nulovou.

(c) Zobrazeni f(A) = A? nenf linearni. Napiiklad pro A = I, a « = 3 mame
flaA) =91, # 31, = af(A).

(d) Zobrazeni f(A) = aq; je linearni. Podminky z definice se snadno ovéfi.

(e) Zobrazeni f(A) = RREF(A) neni linearni. Naptiklad pro A = B = I,
mame

F(A+B) =1, # L, + I, = f(A) + f(B).

Matice linedrniho zobrazeni vzhledem ke kanonické bazi

Cv. 11.3 Pro linearni zobrazeni f: R? — R? dané prepisem f(z,y) = (z +y, v — y)T
vypoctéte matici linearniho zobrazeni vici kanonické béazi.

Reseni:
Navrhneme dva zptisoby vypoc¢tu matice zobrazenti:

(a) Vyjdeme z definice, Ze linearni zobrazeni je popséno obrazem baze. V nasem
pripadé potfebujeme vypocitat obraz kanonické baze, cili

Tyto vektory tvoii sloupce hledané matice

il = (1 1)

(b) Vyjdeme z ptedpisu f(z,y) = (x +vy, x — y)T, ktery chceme vyjadiit jako
f(x,y) = A(z,y)T pro uréitou matici A = (33! 312). Tedy

T4y — A r\ _ (an a2 zy _ ax + ay
r—y Y A21 (22 Y a1 + axny )’

Neni tézké nahlédnout porovnénim koeficientti u z,y, Ze rovnost spliuje

matice
1 1
kan[f]kan = A = <1 _1) :



62 11. Linedrni zobrazent, matice vzhledem ke kanonické bdzi

Cv. 11.4 Najdéte obraz vektoru v = (—1,1,2)7 pfi linedrnim zobrazeni f: R?® — R2
definovaném:

£(1,0,0) = (1,1)", f(0,1,0) = (=1,2)", £(0,0,1) = (0,0)".
Reseni:
Predvedeme dva mozné zptisoby, jak postupovat.

(a) Prvni zpusob vyuziva matici zobrazeni. Sestavime proto nejprve matici zob-
razeni vzhledem ke kanonické bazi. Protoze méame zadany obrazy kanonické
bézi, staci tyto obrazy poskladat do sloupcti matice. Tedy

kan[f]kan = (1 _21 8) '

Hledany obraz pak dostaneme vynéasobenim s matici zobrazent:

-1

f) = enlflan * Wkan = anflian -0 = G _21 8) ; = (_12) .

(b) Druhy zpiisob vychazi piimo z definice linearniho zobrazeni. Protoze
v=(-1,1,2)" = —1-e; +1-ey+2-es,
plati

f)=f(-1-ex+1-ea+2-e35) =—1-fler) +1- fle2) +2 f(es) =
= —1(1, )" + 1(=1,2)" +2(0,0)" = (=2, 1)".

Cv. 11.5 Najdéte matici nasledujicich linearnich zobrazeni v roviné R? vzhledem ke kano-
nické bézi:
(a) Otoceni o 90° proti sméru hodinovych rucicek.

)
(b) Projekce na osu x.
(c)
)

(d) Projekce na osu x a pak otoceni o 90° proti sméru hodinovych rucicek.

Otoceni o 90° proti sméru hodinovych rucicek a pak projekce na osu z.

Reseni:
Stadf zobrazit jednotkové vektory e; = (1,0)%, e; = (0,1)7 a jejich obrazy tvori
sloupce hledané matice.

(a) Vektor (1,0)7 se oto¢ina (0,1)7 a vektor (0,1)7 se otoéi na (—1,0)%. Matice

zobrazeni tedy je
0 -1
A=)

(b) Vektor (1,0)T se projektuje na (1,0)T a vektor (0,1)7 se projektuje na
(0,0)T. Matice zobrazeni tedy je

5o (1Y),
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(c)

Vektor (1,0)7 se oto¢i na (0,1)7, ktery se pak projektuje na (0,0). Vek-
tor (0,1)7 se oto¢i na (—1,0)7 a nasledné projektuje na (—1,0)%. Matice

zobrazeni tedy je
0 -1
¢= (O 0 ) '

Alternativné dostaneme matici zobrazeni slozenim predchozich dvou zobra-
zeni. Matice je pak rovna soucinu prislusnych dvou matic, tedy

1 0\ /0 -1 0 —1
a0 -6 7)
Vektor (1,0)7 se projektuje na (1,0)7, ktery se pak otoéi na (0, 1)T. Vektor
(0, 1)T se projektuje na (0,0)7 a nasledné otoéi na (0,0)7. Matice zobrazenf

tedy je
00
D= (1 0) |

Alternativné dostaneme matici zobrazeni slozenim predchozich dvou zobra-
zeni. Matice je pak rovna soucinu prislusnych dvou matic, tedy

poan- (0 ) ()0 )

Tento piiklad opét ilustruje, ze skladani zobrazeni neni komutativni ope-
race, stejné jako a soucin matic.



64 12. Matice prechodu a matice linedrniho zobrazent

12. Matice prechodu a matice linearniho zobrazeni

Matice prechodu

Cv. 12.1 V prostoru R? uvazujme dvé baze
By ={1,1,1)", (0,1, -1, (2,0,1)"}, B,={(3,2,2)",(1,0,1)7,(1,2,2)"}.

Sestrojte matici prfechodu od baze B; do kanonické.
Sestrojte matici prechodu od kanonické baze do baze Bj.

)
)

(c) Urcete souradnice vektoru (1,2,0)7 vzhledem k bazi B;.
)

(d) Sestrojte matici prechodu od béze By do baze Bj.
Reseni:
Obecné mé matice prechodu od baze By = {by,...,b,} do baze By = {c1,...,¢n}
predpis

(a) Chceme matici prechodu |, [id] , - Podle predpisu vyse tedy musime zkon-
struovat matici
| | |

[bl]kan [b2]kan [bn]kan
| | |

Staci tedy pouze vzit bazické vektory B; a dat je do sloupeckt matice,

0
1

— O N

1
kan[id]Bl = 1
1 -1

(b) Chceme matici prechodu 4 [id],,, . Ulohu miZeme vy¥esit dvéma zptsoby.
Prvni moznosti je postupovat podle predpisu vyse, tedy zkonstruovat matici

To odpovida hledani koeficientt vektoru e; pfi bazi B;, tedy problému,
ktery umime pfevést na hledéni feseni soustavy linearnich rovnic pro tii
vektory pravych stran zaroven, konkrétné

1 0
1 1
1

_ O N
o O =
o = O
_ o O

—1
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2,1,-1)7

Jednotlivymi feSenimi této soustavy jsou vektory é(—l, 1,2)7, é

a +(2,—2,—1)T. Dostavame tedy matici

1 -1 2 2
B, i), = 3 1 1 =2
2 -1 -1

. S .. . -1 _ . o o .
Druhy zptisob by bylo vyuzit vztahu ( 5 [id] )™' = p,[id]5, . VSimnéme si
ovSem, ze vypocet inverze vede v nasem pripadé na feSeni stejné soustavy
rovnic, jako pii prvnim zpusobu vypoctu.

(c) Opét muzeme problém fesit dvéma zpisoby. Prvni by byl pfimo z definice
hledat koeficienty zadaného vektoru vici bazi, ktery vede na feseni soustavy

1 0 2|1

1 1 02

1 -1 110

V nasem piipadé bude jednodussi vyuzit vztahu [z]p = 5 [id],,, - [T]n =

5, 1] - @, tedy

~1 2 2 1 3 1
% 1 1 -2 ol =L [3] = (1
2 -1 -1 0 0 0

(d) Chceme matici g [id]p, . UkdZeme dva postupy.
Prvni zpusob je z definice matice zobrazeni. Z predpisu vySe musime zkon-
struovat matici | |

|
lc]s, eals, -+ [ealB
| | |

Podobné jako v poduloze (b) vede tento problém na hledani feSeni soustavy
linearnich rovnic pro ti¥i vektory pravych stran zaroven, konkrétné

1 0 2|3 11
1 1 0}2 0 2
1 -1 1{2 1 2

Jednotlivymi FeSenimi jsou vektory $(5,1,2)", £(1,—1,1)" a 3(7, -1, -2)".
Dostavame tedy matici

5> 1 7
3 1 -1 -1
2 1 =2

Druhy zptsob vyuziva toho, Ze uz zname konkrétni hodnoty matice 5 lid),.., -
Miizeme pak snadno spocitat

B1 [id]Bg = B [id]kan ) kan[id]Bg

1 -1 2 2 311 5 1 7
=3 1 1 =2 2 0 2] = 3 1 -1 -1
2 -1 -1 21 2 2 1 =2



66

12. Matice prechodu a matice linedrniho zobrazent

Cv. 12.2

Cv. 12.3

Najdéte matici pfechodu od baze by, bs, b3, by k bazi by, by, by, bs.

Reseni:

Matici prechodu bychom mohli nalézt stejnym zptisobem, jako v predchozi iloze.
Alternativné nam staci si uvédomit, Ze jediné, co se na bézi méni je poradi
vektort, tedy v dusledku toho i pofadi souradnic vektoru. Zatimco tedy ptvodné
byly soutradnice vektori by, by, b3, by vici prvni bazi vektory

(1,0,0,0),(0,1,0,0)",(0,0,1,0)%,(0,0,0,1)7,
vici druhé bazi dostavame vektory
(0,0,1,0)",(1,0,0,0)",(0,0,0,1)7,(0,1,0,0)".
Matice prechodu bude mit proto predpis
01

S = O
_ o O O
o O = O

0
0
0

Uréete matici pfechodu od baze B, do baze B, prostoru P?, je-li

By ={2*+1,2> -3z + 1,22 +2+3}, By={2*+22+1,22° +1,2% — 2}

Reseni:
Postup je tiplné stejny jako v pfedchozich ulohach. Hledame soutadnice bazickych
vektoril B; viéi bazi Bs. Pro vektor 2% + 1 fesime
2+ 1=oq(2? + 22+ 1) + ay(22® + 1) + as(z® — 2).

Dva polynomy se rovnaji, pokud se rovnaji koeficienty u jednotlivych mocnin =z,
rovnice je tedy ekvivalentni soustavé

()41+2042—|—043 = 1,

20[1 — (g3 = O,

Oz1+0z2:1.

Ta méa feSeni (—1,2,—2)7. Obdobné lze spoditat soutadnice [2? — 3z + 1]p, =
(—4,5,—5)T a [22 + x + 3], = (—4,7, —9)T. Dostavame matici

1 —4 —4
A=|2 5 7
—2 -5 -9

V8echna tii feSeni miizeme opét spocitat nardz pomoci jedné soustavy se tfemi
pravymi stranami. Pokud tedy rozsifenou matici

12 1|1 1 1
20 —-1/0 =3 1
11 01 1 3

prevedeme na RREF tvar (I3 | A), potom v pravé ¢asti vyéteme hledanou ma-
tici A.
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Matice obecného linearniho zobrazeni

Cv. 12.4 Uvazujme linearni zobrazeni f: R? — R?® zadané obrazy kanonické baze:

f(el) = (17 -1, 1)T7 f(eQ) = (07 L, l)T'

Uvazujme dvé baze

By ={1,-1)", (1, 1)"}, By ={1,-1,1)7,(1,0,1),(0,1,1)"}.

Spocitejte:

(a) matici zobrazeni vzhledem ke kanonickym bazim, tj. . [fl.., -

(b) matici zobrazeni od B; ke kanonické bazi, tj. ,.[f]5, -

(c) matici zobrazeni od kanonické bazi k By, tj. g, [f]ian -

(d) matici zobrazeni od By k By, tj. p [flp, -
Reseni:
Obecné ma maticova reprezentace zobrazeni f: U — V od baze By = {u1, ..., u,}

do baze By = {v1,...,v,} predpis

(a) Chceme matici gan[f]ran, podle predpisu vyse tedy musime zkonstruovat

| |
[f(el)]kan [f(GQ)]kan
| |

Sloupce [f(€;)]kan = f(e;) dostavame piimo ze zadani. Vysledna matice méa

proto tvar
1 0
kan [f]kan - -1 1
1 1

(b) Chceme matici , [f]p, , podle pfedpisu vyse tedy musime zkonstruovat

(L FQ)L)

7 vlastnosti linearntho zobrazeni dostavame

1 1 0 1
f (_1) =fle))—flea)=|—-1]—=11|=1|-2],
1 1 0
1 1 0 1
f <1> =fler))+ flea)=|-1]+ (1] =10
1 1 )
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Vysledna matice mé tedy tvar

11
kanlflg, = (=2 0
0 2

Alternativné muzeme hledanou matici dostat rozdélenim na jednodussi ¢asti
s vyuzitim matice slozeného zobrazeni:

1 0 11 1 1
kan[f]Bl = kan[f]kan . kan[id]Bl == -1 1 (_1 1) = -2 0
1 1 0 2

Chceme matici g [flian » Podle piedpisu vyse tedy musime zkonstruovat

Soutadnice [(1, —1,1)7]g,, [(0,1,1)7]5, miZeme ziskat jako feSenf soustavy

1 101 O
-1 0 1]-11
1 1 11 1

V tomto pripadé si také staci uvédomit, ze f(e;) odpovida prvnimu bé-
zickému vektoru By a f(es) odpovida tfetimu bazickému vektoru Bs, jejich
soufadnice budou proto (1, 0,0)%, resp. (0,0, 1)7. Vysledna matice ma proto
tvar

_ o O

1
B [f]kan = O
0

Opét je uzitecné ukazat i alternativni zptsob pomoci skladani jednodussich
zobrazeni:
~1

1 10 1 0 10
Bg[f]kan = Bg[id]kan ’ kan[f]kan = -1 0 1 -1 1 = 00
1 11 1 1 0 1

Zde ale musime invertovat matici p [id],,, = (juulid]p, )", takZze pokud

inverzi nemame piedem spocitanou, tak tento postup efektivnéjsi nebude.

Chceme matici g [f] B, » bodle predpisu vySe tedy musime zkonstruovat

(L, L)

Z podtlohy (b) jiz zname obrazy f(1,—1)T = (1,-2,0)T, f(1,1)T = (1,0,2)7.
Ty tedy stac¢i vyjadrit v souradnicich baze B,. Soufadnice nalezeneme jako
feSeni soustavy

1 1 071 1
-1 0 1}-2 0
1 1 110 2
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Jednotliva Fegeni jsou vektory (1,0,—1)T, (1,0,1)T, vyslednd matice ma
proto tvar

S vyuzitim predchozich bodu hledanou matici muzeme také spocitat takto:
10 11 1 1
BQ[JC]B1 - Bg[f]kan ' kan[id]Bl ={0 0 <_1 1) =100
01 -1 1
Cv. 12.5 Uvazujme dvé linearni zobrazeni f,g: R® — R? zadani maticemi

B[f]kan =

DN — W

1
0
1

N — W

1 11
) B[g]kan = 1 2 1 )
1 1 3
kde B = {(1,0,—1)",(1,1,0), (1, -2,1)"}. Urcete . [9° fliun -
Reseni:
K feseni mizeme vyuzit vztahu g [go flz = z,19]5, - 5,[f]p, , v naSem piipadé
ve tvaru

kan[g © f]kan = kan[g]B ’ B[f]kan .
Matici |, [g]p mizZeme nejsnadnéji zkonstruovat pomoci matic prechodu jako

kan[g]B = kan[id]B : B[g]kan : kan[id]B'

Dostavame tedy

1 1 1 1 11 1 1 1 -2 7 0
wnldlp =1 0 1 =2 121 1 —2|l =4 -1 —6
-1 0 1 11 3 -1 0 1 -2 0 2
Vysledna matice proto je
-2 7 0 3 1 3 1 -2 1
kan[g o f]kan = 4 -1 -7]- 1 0 1 = -1 =2 -1
-2 0 2 21 2 -2 0 =2

Cv. 12.6 Mgjme linedrn{ zobrazeni f: U — V dané maticovym pfedpisem A = 5 [f]p .
Ukazte, ze matice RREF (A) reprezentuje stejné zobrazeni, ale vzhledem k jinym
béazim.

Reseni:
Vztah mezi A a RREF(A) lze vyjadrit jako

RREF(A)=E-A =E,...Fy - A,
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Cv. 12.7

Cv. 12.8

kde matice E; reprezentuji jednotlivé elementarni fadkové tpravy. Pro nas je
klicové, ze tyto matice jsou regularni a kazdou regularni matici muzeme chapat
jako matici prechodu

Ei = B [id] ,

mezi ur¢itymi bazemi. Podobné mtuzeme vyjadfit souhrnné matici £
E= B, [ld]BV

pro vhodnou bazi Bj, prostoru V. Pro¢? Protoze

By, [Zd]BV = By, [id]kan ) kan[id]BV = (kan[id]B(/ )71 ’ kan[id]BV )

dostavame
kan[ld]BQ/ = kan[id]Bv ’ E_l’

a tudiz bazi Bj, (pfesné fefeno jeji soufadnice vzhledem ke kanonické bazi) vy-
v o . . 71
¢teme ze sloupcii matice |, [id]z - E~".

Odstupnovany tvar matice A tedy mizeme chapat jako

RREF(A) = E-A= y [idlg, - ,[flz, = 5,15,

tedy maticovou reprezentaci stejného zobrazeni, ktera se lisi pouze ve vystupni
bézi.

Zname matici z[f]|5 linearniho zobrazeni f: U — U. Jak muZzeme urcit matici
g flg vaél bazi B'?

Reseni:
Mame dvé moznosti, jak dojit k feSeni:

(a) Matici muzeme sestavit piimo z definice analogicky postupu sestaveni ma-

tice p[flg-
(b) Muzeme vyuzit jiz spocitanych vysledki a skladani linearnich zobrazeni:
plflp = plidg - plflp - plidpy -

Intuitivné: zobrazovany vektor vué¢i bézi B’ se zobrazi matici prechodu

glid] 5 V& bazi B, nasledné se transformuje matici g[f]5 a vyjadii se
y L : i vs s T

zpét matici prechodu g, [id] 5 vaci bazi B'.

Mé¢jme matici M linearniho zobrazeni. Diskutujte, kolik lineadrnich zobrazeni
popisuje matice M?

Reseni:

Jedné se o lehce zavadéjici otazku. Odpovéd zalezi na podmince, jestli méame
definované baze vic¢i nimz zobrazeni definujeme. V piipadé, Ze ano, pak matice
M reprezentuje jen jedno linearni zobrazeni a toto linearni zobrazeni je repre-
zentovano praveé jednou matici, jedna se o disledek véty o jednoznac¢nosti matice
linearniho zobrazeni. Pokud vSak neni uvedeno, viéi jaké bazi se zobrazeni vyja-
diuje pak ke kazdé bazi existuje jedno linearni zobrazeni a je jich tedy nekonecné
mnoho.
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13. Vlastnosti a druhy linearnich zobrazeni

Obraz a jadro

Cv. 13.1 Pro linearni zobrazeni f: R?*? — R?*2? dané piedpisem A — (A — AT) rozhod-
néte, které vektory patii do jadra a které do obrazu:

@) I
o (o o)
@ (1 1)
@ (4 o)

Matice A patii do jadra f, pokud f(A) = 0ax2. Naopak matice A patii do obrazu
zobrazeni f, pokud existuje matice B takova, ze f(B) = A.

(a) Patif do jadra, nebot Iy — IT = 0y,5. Naopak nepatii do obrazu, protoZe
by musela existovat B, Ze

bir b2\ (b b _ (10

a1 Do biz Do 0 1)°
To ale neni mozné, protoze pro prvek na pozici (1,1) by musel byt splnén
vztah

Ozbn—bnzl.

(b) Patii do jadra i do obrazu (je obrazem sama sebe).

(c) Patii do jadra, nebot

Ga)-G)=( o)

Naopak nepatii do obrazu, protoze na diagonale jsou nenulové prvky.

(d) Nepatii do jadra, nebot

() -0 )= (%0

Aby matice patfila do obrazu, musela by existovat B takova, ze

<b11 b12)_<b11 521):<0 1)
bor Doy bia Do -1 0/
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Rozepsanim po slozkich dostavame soustavu

b1 — b1 =0,
biz — by = 1,
bo1 — b1a = —1,
bay — beg = 0.

Prvni a posledni rovnice odpovidaji 0 = 0 a zbylé dvé rovnice jsou ekviva-
lentni. Soustava se tedy zjednodussi na jedinou rovnici

Hledanych matic je tedy nekone¢né mnoho a jsou tvaru

by by +1
(bn 22 ) , bi1,b21,b00 € R.
21 22

Prikladem jedné konkrétni matice B mize byt

01
0 0/
Zavér: Dané matice patii do obrazu.

Cv. 13.2 Uvazujme linearni zobrazeni f: R® — R™. Ozna¢me linearni zobrazeni f! = f,
fP=fof, fr=fo frl Ukaite, ze Ker(f"V) C Ker(f™).

Reseni:
Pokud v € Ker(f™"1), pak ze vztahu f"~!(v) = o plati

frw) = f(f"7(v)) = f(o) = 0.
Proto také v € Ker(f™).
Cv. 13.3 Bud f: R?® — R? linearn{ zobrazeni zadané
f(1,0,1) = (0, )", £(0,1,1) = (=1,0)", f(1,1,0) = (1,0)".
(a) Urcete dim f(R3) a dim Ker(f).
(b) Najdéte bazi f(R3) a Ker(f).

Resendt:

(a) Pro jednodussi manipulaci si vyjadiime zobrazeni pomoci maticové repre-
zentace . [f]5, kde B ={(1,0,1)*,(0,1,1)",(1,1,0)}. Dostévame

0 -1 1
1 0 0)°
Uvedend matice ma dimenzi fadkového (a tedy i sloupcového) prostoru

rovnou 2 a dimenzi jadra rovnou 1. Tyto dimenze odpovidaji dim f(R?) a
dim Ker(f).
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(b)

V predchozi tloze jsme ukézali, Ze dim f(R?) = 2. Protoze f(R?) C R?
dostavame dokonce f(R3) = R2. Libovolna baze prostoru R? je proto bézi
obrazu f(R?). Obecné bézi obrazu miizeme zkonstruovat z obrazii béze pu-
vodniho prostoru, tedy vektori (0,1)7,(—1,0)T,(1,0)T. V tomto piipadé
je druhy vektor zavisly na tfetim, jeho odstranénim dostaviame bazi pro-
storu R?.

Pro urceni baze jadra miizeme vyuzit maticové reprezentace a nalézt reseni

soustavy
0 -1 1
(1 0 O) xz=0.

MnoZina feSenf mé tvar {(0, 3, 23)T; r3 € R}. Pozor, tato mnoZina odpo-
vidd mnoziné soutadnic bazi vzhledem k bazi B, protoze

0= [f(x)]kan = kan[f]B ’ [x]B

Zvolime-li z jadra matice napiiklad vektor [z]p = (0,1,1)7, odpovidajici
vektor x € Ker(f) dopocitame jako

—_
@)
—_
—_

x:o- 0 _|_1.
1

—_

+1-|1] =

—_
o
—_

Cv. 13.4 Co je obrazem prostoru span{sin x, cos x} p¥i zobrazeni s matici (99) vzhledem
k bazim {cosz — sinz, sinz} a {cosz + sinz, cosx}?

Cv. 13.5

Resendt:

7. definice konstrukce maticové reprezentace linedrniho zobrazeni vici danym
bézim lze z maticové reprezentace vycist predpis dané funkce

f(cosz —sinz) =0 (cosx +sinz) + 1 - cosx = cos z,
f(sinz) =0- (cosz +sinz) +0-cosz = 0.

Dostavame tedy, ze obraz bude

span{cosz, 0} = span{cosx}.

Jadro pak ma tvar span{sinz}.

Bud

vzor

f: U — V linearni zobrazeni a W podprostor f(U). Dokazte, Ze tzv. tplny

W) ={z €U; f(x) e W}

je podprostor prostoru U.

Resent:

Staci ukazat, ze o € f~1(W) a Ze je tato mnoZina uzaviena na operace. Protoze je
W vektorovy podprostor, obsahuje o. Z vlastnosti linearniho zobrazeni je jednim
z vektort x spliwjicich f(z) = o i nulovy vektor o. Tedy o € f~1(W).
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Mgjme déle x,y € f~Y(W). Z definice f~Y(W) existuji a,b € W takoveé, ze
f(x) = a a f(y) = b. Protoze W je vektorovy podprostor, také a + b € W.
Upravami dostéavame

a+b=f(x)+ fy) = flz+y).

Dle definice vektor x +y € f~1(W), mnoZina je proto uzaviena na scitan.

Obdobné méjme x € f~1(W) a skalar «. Plati, Ze existuje y € W, Ze f(z) =y
a také plati ay € W. Pomoci uprav

ay = af(z) = flaz)

a definice f~!1(W) vektor az € f~'(W), mnoZina je proto uzavieni na nasobent.

Zobrazeni prosté a ,,na*

Cv. 13.6 Najdéte piiklady linearnich zobrazeni (vyjadienych napiiklad maticové f(x) =
Az) takovych, aby zobrazeni
(a) bylo prosté a ,na“,
(b) bylo prosté, ale nebylo ,na“,
(c) nebylo prosté, ale bylo ,na“,
)

(d) nebylo ani prosté, ani ,na‘“.

Reseni:
Toto je kreativni priklad. Detailnéjsi podminky na matici A, aby prislusné line-
arni zobrazeni bylo / nebylo prosté ¢i ,na“ rozebereme pozdéji ve Cv. I3.8

(a) Napriklad A = I5. Zobrazeni je tudiz identita a zfejmé je prosté i ,na‘.

(b) Napriklad A = (é?) Zobrazeni neni ,na‘“, protoZze sloupce matice A

vygeneruji pouze dvoudimenzionalni podprostor v prostoru R3. Na dru-
hou stranu, zobrazeni je prosté, protoze vztah Ar = Ay vede na rovnici
A(x —y) = 0, kterda ma pouze trivialni feeni x = y.

(c) Naptiklad A = ({91). Zobrazeni pak neni prosté, protoze A(1,1,1)T =
(2,2)T = A(0,0,2)T. Zobrazeni je ale ,na“, protoze ve sloupcich matice A
je kanonicka baze prostoru R?, tudiz vygenerujeme jakykoli vektor v R2.

(d) Napriklad A = 0.

Cv. 13.7 Mégjme linearni zobrazeni f: R — R zadané obrazem baze B:

Zjist&te, jestli je zobrazeni prosté (pokud nenf, najdéte vektory u, v € R? takové,
zeu#vA f(u) = f(v)) ajestli je ,na“ (pokud ne, najdéte vektor, ktery nema
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piedobraz, tedy u € R? takové ze Vv € R®: f(v) # u). Urcete dimenzi a béazi
obrazu a jadra tohoto linearniho zobrazeni.

Reseni:

Prostota: Napted ur¢ime, jestli je zobrazeni prosté (injektivni). Pokud by ne-
bylo, pak by nutné existovaly dva rtzné vektory u,v € R? (z defini¢niho oboru)
takové, ze f(u) = f(v). Upravme si tuto situaci:

kde ,[f]g zna¢i matici linearniho zobrazeni a [u] g, [v]p znaéi vektory souradnic
vektort u, v vici bazi B, tedy [f(u)]la = 4[f]s - [ulp. V nasem piipadé je baze
A kanonicka baze. Tedy pokud je zobrazeni prosté, pak jeho matice ma ve svém
jadre jediny vektor o.

Sestrojime tedy matici (bude brat vektory soufadnic v bazi B a vracet vektory
soufadnic v kanonické bazi):

kan[f]B =

W N
_ N W
— o=

Pomoci Gaussovy eliminace najdeme jeji jadro:

1 31 1 3 1 1 31
221l ~10 4 -1|~1(0 41
3 11 0 -8 =2 000

Vidime, ze jddro mé dimenzi jedna a vSechna teSeni této homogenni soustavy
maji tvar: {(—1t, —1t,1)7; t € R}. MtZeme volit vektor [u]p = (1,1, —4)7, tedy

w=1-(2,1,1)T+1-(1,3,5)7 —4-(7,1,4)T = (—25,0, -10)7T,
ktery se zobrazi na nulu (stejné jako nulovy vektor)
£(0,0,0) = (0,0,0)" = f(—25,0,—10).

Vsimnéte si, Ze soufadnice vektoru z jadra matice byly viéi bazi B, my chtéli

souradnicemi.

Dimenze jadra: Vzhledem k tomu, Ze jadro linearniho zobrazeni ma dimenzi
jedna, tak jeho bazi muZe tvorit naptiklad vektor u = (—25,0,—10)T (vzpo-
meiite, jak jsme na néj prisli — plati, ze [(—25,0, —10)T]|p = (1,1, —4)).

Obraz a surjektivita (jestli je ,na*): Kazdy vektor z obrazu je linearni
kombinaci sloupcovych vektorti. Specidlné existuje vektor a € R? takovy, Ze
f(a) = (1,2,3)" (psano v kanonické bazi), to byl nas zadany vektor (2,1,1)7,
ktery mél v bazi B souradnice [(2,1,1)T]5 = (1,0,0)T.
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Cv. 13.8

Cv. 13.9

Z minulé Gaussovy eliminace vidime, Ze dimenze obrazu (coZ je dimenze sloup-
cového prostoru, coz dle véty z prednéasky je rovné dimenzi fadkového prostoru)
je rovna dvéma a jeji baze jsou napiiklad prvni dva sloupci matice |, [f] 5, tedy
vektory (1,2,3)T, (3,2,1)T (obraz je pak linearni obal téchto dvou vektort).
Dimenze obrazu je tedy dva a zobrazeni f neni ,na‘“.

Vektor mimo obraz: Doplnénim téchto dvou vektorii na béazi R? ziskdme vek-
tor, ktery nema predobraz ve zobrazeni f. Napiiklad to miZe byt vektor (0,0, 1)
(pokud bychom nedopliovali z kanonické baze, ale z jiné, mohl nam vyjit jiny
vektor).

Jak pozname ze zadané matice A € T™*" linedrniho zobrazeni f: U — V, Ze
zobrazeni f je prosté, resp. ,na“?

Reseni:
Linearni zobrazeni je prosté pravé tehdy, kdyz Ker(f) = {o}. Z toho plyne, zZe
je zobrazeni prosté prave tehdy, kdyz

Ker(A) = {o}.

Jinymi slovy, musi 0 = dim Ker(A) = n — rank(A), neboli rank(A) = n. To
znamena, ze matice A méa linearné nezavislé sloupce.

Linearni zobrazeni je ,na“ pravé tehdy, kdyz dimenze obrazu odpovidé dimenzi
prostoru V. Z toho plyne, ze linearni zobrazeni je ,na“ pravé tehdy, kdyz

rank(A) = m.
To znamena, ze matice A ma linearné nezavislé radky.

Rozhodnéte, zda je dané linearni zobrazeni prosté a zda je ,na“:

(a) f: R**? — R3 dané predpisem f<i Z) =(a+b+c,a+b, a)l,

(b) f:P?* — R*dané piedpisem f(az*+bzx+c) = (a+b, 2b—c, a—b+c, a+b)7T,
(c) f:P? — R3 dané piedpisem f(ax® +bxr +¢) = (a+0b, ¢, a+ b)7,
(d) f:P? — R3 dané piedpisem f(az® +bxr +c) = (a+b, 2b — ¢, a — b)7.

Reseni:
Ve v8ech piipadech mtizeme vychazet z toho, Ze linearni zobrazeni f: U — V je
prosté pravé tehdy, kdyz

Ker(f) = {o}

a je ,na“ pravé tehdy, kdyz
dim f(U) = dim V.
(a) Zobrazeni neni prosté, protoze
(a+b+c,a+ba)’ =(0,0,0)7

mé netrivialni feSeni, napiitklad a =b=c=0a d € R.
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Zobrazeni je ,na‘, protoze dimenze prostoru
{(a+b+c,a+bc);abceR}

je 3. To lze nahlédnout naptiklad tak, ze 1ze vygenerovat vhodnout volbou
koeficientti a,b, ¢ vektory (1,1,1)%,(1,1,0)%,(1,0,0)%, které jsou linearné
nezavislé.

(b) Zobrazeni neni prosté, protoze rovnice
(a+b,20—c,a—b+c, a+b’ =(0,00,007

mé4 mnozinu feseni {(a, —a, —2a)T; a € R}.
Zobrazeni neni ani ,na“, protoze P? méa dimenzi 3, zatimco R* ma di-
menzi 4. Pri linearnim zobrazeni se muze dimenze zachovat nebo se snizit.

(c) Zobrazeni neni prosté, protoze rovnice
(a+b, ¢, a+b)" =(0,0,0"

mé mnozinu reseni {(a, —a,0)”; a € R}.
Zobrazeni neni ani ,,na‘“, protoze hodnoty v prvni a posledni sloZzce jsou si
vzdy rovny. V obrazu tedy nelezi napifklad vektor (1,0,0)7.

(d) Zobrazeni je prosté, protoze rovnice
(a+b,2b—c, a—b" =(0,0,0)"
mé pouze trivialni reseni.
Zobrazeni je ,na“, protoZe mnoZina obrazt {(a + b,c,a — b)T; a,b,c € R}
se da vyjadrit jako
{a(1,0, )" +b(1,0,—1)" +¢(0,1,0)"; a,b,c € R}.

Vidime, Ze obrazem je linearni obal vektori (1,0,1)%, (1,0, —1)%, (0,1,0)7,
které jsou linearné nezavislé. Dimenze obrazu je proto 3, stejné jako dimenze
prostoru P2.

Isomorfismus

Cv. 13.10 Rozhodnéte, zda zobrazeni f: R?* — R? dané predpisem

f('rvyaz) = (l’—l-y—QZ, Yy—z x_y>T
je isomorfismem R? na sebe sama (takzvanym automorfismem).

Reseni:

Isomorfismus dvou vektorovych prostori je vzdjemné jednozna¢né linearni zob-
razeni (tedy linearni zobrazeni, které je bijekce). Budeme chtit zjistit dimenzi
jadra (pokud je zobrazeni prosté, tak ma byt nulovd) a dimenzi obrazu = di-
menzi sloupcového prostoru (pokud ma byt zobrazeni ,na“, tak musi byt stejna
jako dimenze prostoru, do kterého to zobrazeni jde).
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Sestavime matici zobrazeni vici kanonické bazi (jakdkoliv baze by poslouzila

stejné):
1 1 =2
kan[f]kan = 0 1 —1
1 -1 0

Abychom ur¢ili rank této matice, provedeme Gaussovu eliminaci:
1 1 =2 1 1 =2 11
0o 1 -1}J~{0 1 —-1]~(0 1 —1
1 -1 0 0 -2 2 0 0
Vidime, ze dimenze jadra matice je rovna jedné, takze zobrazeni neni prosté. To
miiZeme i snadno ovéfit: f(0,0,0) = (0,0,0)" = f(1,1,1).

Obdobné dimenze sloupcového prostoru je rovna dvéma (vzpomeite na vétu, ze
dimenze sloupcového a radkového prostoru se rovnaji). Tedy funkce neni ,na‘.
Opét bychom mohli ovéfit, ze napiiklad vektor (0,0,1)” nenf v obraze (stejné
Gaussova eliminace doplnéna o pravou stranu).

Zavér: zobrazeni f neni isomorfismem.

Cv. 13.11 Rozhodnéte, jestli jsou nasledujici dvojice vektorovych prostort isomorfni. Pokud
ano, najdéte vhodny isomorfismus.

(a) R2? a RY,

(b) R* a P3 (prostor realnych polynomi stupné nejvys tii),
(c) R™*™ a R™*™,

(d) R™ nad R a C" nad C,

(e) R? a {& = (z1, 22, w3, 24)7 € R* | 21 + 25 = 25 + 24 = 0},

(f) R* a prostor linearnich zobrazeni f: R* — R.

Reseni:

Dva vektorové prostory jsou isomorfni praveé tehdy, kdyz maji stejnou dimenzi a
funguji nad stejnym télesem.

(a) Ano, oba maji dimenzi 4. Neni tézké rozmyslet, Ze isomorfismem je napii-

klad zobrazeni
a b T
(c d) — (a,b,c,d)".

(b) Ano, oba maji dimenzi 4. Redlny polynom stupné nejvys tii
p(a) = po + p1x + pa® + psa’

miZeme reprezentovat jako uspofadanou ¢tvefici (pg, p1, p2, p3)?. Isomorfis-
mem zde je

(o, P1, P25 3)T > po + prv + paa? + paa’.

(¢) Ano, isomorfismem bude napfiklad transpozice

A — AT,



Priklady na procvicent z Linedrni algebry 1 79

(d) Ne, prostory nepracuji nad stejnym télesem.

(e) Ano, oba maji dimenzi 2. mtazeme volit napiiklad zobrazeni

<Z) — (a, —a, b, —b)T.

(f) Ano, vektoru u € R* ptifadime linearn{ zobrazeni f(x) = u’z. Naopak
kazdé linearni zobrazeni f: R* — R se d4 zapsat matici s jednim fadkem a
¢tyfmi sloupci (véta z prednasky).

Cv. 13.12 Bud f: U — V isomorfismus a x,...,x, € U. Dokazte, ze jsou-li xy,...,x,

linedrné nezavislé, pak i f(z1),..., f(z,) jsou linearné nezavislé.
Reseni:
Méjme, as, ..., o, takové, ze Y | a;f(x;) = o. Dostavame

n n

0= E a;if(x); = f E oz | .

i1 i=1
Pro isomorfismus plati, ze f(z) = o pravé tehdy, kdyz x = o. Proto také
Yor o;x; = o. Z linearni nezavislosti i, ...,, dostavame, Ze o; = 0 pro

v8echny i, tedy f(x1),..., f(z,) jsou linedrné nezavisle.
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