
60 11. Lineární zobrazení, matice vzhledem ke kanonické bázi

11. Lineární zobrazení, matice vzhledem ke kanonické

bázi

Definice lineárního zobrazení

Cv. 11.1 Rozhodněte, zda následující zobrazení f : R2 → R2 jsou lineární:

(a) f(x, y) = (x, y + 3)T ,

(b) f(x, y) = (x+ 2y, y)T ,

(c) f(x, y) = (0, 0)T ,

(d) f(x, y) = (x2, y)T .

Řešení:

(a) Zobrazení f(x, y) = (x, y + 3)T není lineární, protože nulový vektor nezob-
razuje na nulový vektor.

(b) Zobrazení f(x, y) = (x+ 2y, y)T je lineární. Ověříme obě podmínky z defi-
nice.
Součet. Uvažujme dva vektory (x, y) a (x′, y′). Jejich součet se zobrazí na
vektor

f((x, y) + (x′, y′)) = f(x+ x′, y + y′) = ((x+ x′) + 2(y + y′), (y + y′))T =

= (x+ 2y, y)T + (x′ + 2y′, y′)T = f(x, y) + f(x′, y′).

Násobek. Uvažujme vektor (x, y) a skalár α. Pak vektor α(x, y) = (αx, αy)
se zobrazí na vektor

f(αx, αy) = (αx+ 2(αy), αy)T = α(x+ 2y, y)T = αf(x, y).

(c) Zobrazení f(x, y) = (0, 0)T je lineární. Vlastnosti z definice lineárního zob-
razení se snadno ověří.

(d) Zobrazení f(x, y) = (x2, y)T není lineární. Například pro vektor (x, y) =
(1, 0) a skalár α = 2 dostáváme

f(α(x, y)) = f(αx, αy) = f(2, 0) = (4, 0)T ,

ale
αf(x, y) = 2f(1, 0) = 2(1, 0)T = (2, 0)T .

Čili obecně f(α(x, y)) 6= αf(x, y).

Cv. 11.2 Rozhodněte, zda následující zobrazení z prostoru Rn×n jsou lineární:

(a) f(A) = AT ,

(b) f(A) = In,

(c) f(A) = A2,

(d) f(A) = a11,
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(e) f(A) = RREF(A),

Řešení:

(a) Zobrazení f(A) = AT je lineární, což plyne z vlastností maticové transpo-
zice:

(A+B)T = AT +BT , (αA)T = αAT .

(b) Zobrazení f(A) = In není lineární, protože nezobrazuje nulovou matici na
nulovou.

(c) Zobrazení f(A) = A2 není lineární. Například pro A = In a α = 3 máme

f(αA) = 9In 6= 3In = αf(A).

(d) Zobrazení f(A) = a11 je lineární. Podmínky z definice se snadno ověří.

(e) Zobrazení f(A) = RREF(A) není lineární. Například pro A = B = In
máme

f(A+B) = In 6= In + In = f(A) + f(B).

Matice lineárního zobrazení vzhledem ke kanonické bázi

Cv. 11.3 Pro lineární zobrazení f : R2 → R2 dané přepisem f(x, y) = (x + y, x − y)T

vypočtěte matici lineárního zobrazení vůči kanonické bázi.

Řešení:

Navrhneme dva způsoby výpočtu matice zobrazení:

(a) Vyjdeme z definice, že lineární zobrazení je popsáno obrazem báze. V našem
případě potřebujeme vypočítat obraz kanonické báze, čili

f(e1) = f(1, 0) = (1, 1)T ,

f(e2) = f(0, 1) = (1,−1)T .

Tyto vektory tvoří sloupce hledané matice

kan[f ]kan =

(

1 1
1 −1

)

.

(b) Vyjdeme z předpisu f(x, y) = (x + y, x − y)T , který chceme vyjádřit jako
f(x, y) = A(x, y)T pro určitou matici A = ( a11 a12

a21 a22 ). Tedy
(

x+ y
x− y

)

= A

(

x
y

)

=

(

a11 a12
a21 a22

)(

x
y

)

=

(

a11x+ a12y
a21x+ a22y

)

.

Není těžké nahlédnout porovnáním koeficientů u x, y, že rovnost splňuje
matice

kan[f ]kan = A =

(

1 1
1 −1

)

.



62 11. Lineární zobrazení, matice vzhledem ke kanonické bázi

Cv. 11.4 Najděte obraz vektoru v = (−1, 1, 2)T při lineárním zobrazení f : R3 → R2

definovaném:

f(1, 0, 0) = (1, 1)T , f(0, 1, 0) = (−1, 2)T , f(0, 0, 1) = (0, 0)T .

Řešení:

Předvedeme dva možné způsoby, jak postupovat.

(a) První způsob využívá matici zobrazení. Sestavíme proto nejprve matici zob-
razení vzhledem ke kanonické bázi. Protože máme zadány obrazy kanonické
bázi, stačí tyto obrazy poskládat do sloupců matice. Tedy

kan[f ]kan =

(

1 −1 0
1 2 0

)

.

Hledaný obraz pak dostaneme vynásobením s maticí zobrazení:

f(v) = kan[f ]kan · [v]kan = kan[f ]kan · v =

(

1 −1 0
1 2 0

)





−1
1
2



 =

(

−2
1

)

.

(b) Druhý způsob vychází přímo z definice lineárního zobrazení. Protože

v = (−1, 1, 2)T = −1 · e1 + 1 · e2 + 2 · e3,

platí

f(v) = f(−1 · e1 + 1 · e2 + 2 · e3) = −1 · f(e1) + 1 · f(e2) + 2 · f(e3) =

= −1(1, 1)T + 1(−1, 2)T + 2(0, 0)T = (−2, 1)T .

Cv. 11.5 Najděte matici následujících lineárních zobrazení v rovině R2 vzhledem ke kano-
nické bázi:

(a) Otočení o 90◦ proti směru hodinových ručiček.

(b) Projekce na osu x.

(c) Otočení o 90◦ proti směru hodinových ručiček a pak projekce na osu x.

(d) Projekce na osu x a pak otočení o 90◦ proti směru hodinových ručiček.

Řešení:

Stačí zobrazit jednotkové vektory e1 = (1, 0)T , e2 = (0, 1)T a jejich obrazy tvoří
sloupce hledané matice.

(a) Vektor (1, 0)T se otočí na (0, 1)T a vektor (0, 1)T se otočí na (−1, 0)T . Matice
zobrazení tedy je

A =

(

0 −1
1 0

)

.

(b) Vektor (1, 0)T se projektuje na (1, 0)T a vektor (0, 1)T se projektuje na
(0, 0)T . Matice zobrazení tedy je

B =

(

1 0
0 0

)

.
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(c) Vektor (1, 0)T se otočí na (0, 1)T , který se pak projektuje na (0, 0)T . Vek-
tor (0, 1)T se otočí na (−1, 0)T a následně projektuje na (−1, 0)T . Matice
zobrazení tedy je

C =

(

0 −1
0 0

)

.

Alternativně dostaneme matici zobrazení složením předchozích dvou zobra-
zení. Matice je pak rovna součinu příslušných dvou matic, tedy

C = BA =

(

1 0
0 0

)(

0 −1
1 0

)

=

(

0 −1
0 0

)

.

(d) Vektor (1, 0)T se projektuje na (1, 0)T , který se pak otočí na (0, 1)T . Vektor
(0, 1)T se projektuje na (0, 0)T a následně otočí na (0, 0)T . Matice zobrazení
tedy je

D =

(

0 0
1 0

)

.

Alternativně dostaneme matici zobrazení složením předchozích dvou zobra-
zení. Matice je pak rovna součinu příslušných dvou matic, tedy

D = AB =

(

0 −1
1 0

)(

1 0
0 0

)

=

(

0 0
1 0

)

.

Tento příklad opět ilustruje, že skládání zobrazení není komutativní ope-
race, stejně jako a součin matic.
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12. Matice přechodu a matice lineárního zobrazení

Matice přechodu

Cv. 12.1 V prostoru R3 uvažujme dvě báze

B1 = {(1, 1, 1)T , (0, 1,−1)T , (2, 0, 1)T}, B2 = {(3, 2, 2)T , (1, 0, 1)T , (1, 2, 2)T}.

(a) Sestrojte matici přechodu od báze B1 do kanonické.

(b) Sestrojte matici přechodu od kanonické báze do báze B1.

(c) Určete souřadnice vektoru (1, 2, 0)T vzhledem k bázi B1.

(d) Sestrojte matici přechodu od báze B2 do báze B1.

Řešení:

Obecně má matice přechodu od báze B1 = {b1, . . . , bn} do báze B2 = {c1, . . . , cn}
předpis

B2
[id]B1

=





| | |

[b1]B2
[b2]B2

. . . [bn]B2

| | |



 .

(a) Chceme matici přechodu kan[id]B1
. Podle předpisu výše tedy musíme zkon-

struovat matici




| | |

[b1]kan [b2]kan . . . [bn]kan
| | |



 .

Stačí tedy pouze vzít bázické vektory B1 a dát je do sloupečků matice,

kan[id]B1
=





1 0 2
1 1 0
1 −1 1



 .

(b) Chceme matici přechodu B1
[id]kan . Úlohu můžeme vyřešit dvěma způsoby.

První možností je postupovat podle předpisu výše, tedy zkonstruovat matici





| | |

[e1]B1
[e2]B1

. . . [en]B1

| | |



 .

To odpovídá hledání koeficientů vektorů ei při bázi B1, tedy problému,
který umíme převést na hledání řešení soustavy lineárních rovnic pro tři
vektory pravých stran zároveň, konkrétně





1 0 2 1 0 0
1 1 0 0 1 0
1 −1 1 0 0 1



 .
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Jednotlivými řešeními této soustavy jsou vektory 1
3
(−1, 1, 2)T , 1

3
(2, 1,−1)T

a 1
3
(2,−2,−1)T . Dostáváme tedy matici

B1
[id]kan =

1

3





−1 2 2
1 1 −2
2 −1 −1



 .

Druhý způsob by bylo využít vztahu ( B1
[id]B2

)−1 = B2
[id]B1

. Všimněme si
ovšem, že výpočet inverze vede v našem případě na řešení stejné soustavy
rovnic, jako při prvním způsobu výpočtu.

(c) Opět můžeme problém řešit dvěma způsoby. První by byl přímo z definice
hledat koeficienty zadaného vektoru vůči bázi, který vede na řešení soustavy





1 0 2 1
1 1 0 2
1 −1 1 0



 .

V našem případě bude jednodušší využít vztahu [x]B1
= B1

[id]kan · [x]kan =

B1
[id]kan · x, tedy

1

3





−1 2 2
1 1 −2
2 −1 −1



 ·





1
2
0



 =
1

3





3
3
0



 =





1
1
0



 .

(d) Chceme matici B1
[id]B2

. Ukážeme dva postupy.
První způsob je z definice matice zobrazení. Z předpisu výše musíme zkon-
struovat matici





| | |

[c1]B1
[c2]B1

. . . [cn]B1

| | |



 .

Podobně jako v podúloze (b) vede tento problém na hledání řešení soustavy
lineárních rovnic pro tři vektory pravých stran zároveň, konkrétně





1 0 2 3 1 1
1 1 0 2 0 2
1 −1 1 2 1 2



 .

Jednotlivými řešeními jsou vektory 1
3
(5, 1, 2)T , 1

3
(1,−1, 1)T a 1

3
(7,−1,−2)T .

Dostáváme tedy matici

1

3





5 1 7
1 −1 −1
2 1 −2



 .

Druhý způsob využívá toho, že už známe konkrétní hodnoty matice B1
[id]kan .

Můžeme pak snadno spočítat

B1
[id]B2

= B1
[id]kan · kan[id]B2

=
1

3





−1 2 2
1 1 −2
2 −1 −1









3 1 1
2 0 2
2 1 2



 =
1

3





5 1 7
1 −1 −1
2 1 −2



 .
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Cv. 12.2 Najděte matici přechodu od báze b1, b2, b3, b4 k bázi b2, b4, b1, b3.

Řešení:

Matici přechodu bychom mohli nalézt stejným způsobem, jako v předchozí úloze.
Alternativně nám stačí si uvědomit, že jediné, co se na bázi mění je pořadí
vektorů, tedy v důsledku toho i pořadí souřadnic vektorů. Zatímco tedy původně
byly souřadnice vektorů b1, b2, b3, b4 vůči první bázi vektory

(1, 0, 0, 0)T , (0, 1, 0, 0)T , (0, 0, 1, 0)T , (0, 0, 0, 1)T ,

vůči druhé bázi dostáváme vektory

(0, 0, 1, 0)T , (1, 0, 0, 0)T , (0, 0, 0, 1)T , (0, 1, 0, 0)T .

Matice přechodu bude mít proto předpis








0 1 0 0
0 0 0 1
1 0 0 0
0 0 1 0









.

Cv. 12.3 Určete matici přechodu od báze B1 do báze B2 prostoru P2, je-li

B1 = {x2 + 1, x2 − 3x+ 1, x2 + x+ 3}, B2 = {x2 + 2x+ 1, 2x2 + 1, x2 − x}.

Řešení:

Postup je úplně stejný jako v předchozích úlohách. Hledáme souřadnice bázických
vektorů B1 vůči bázi B2. Pro vektor x2 + 1 řešíme

x2 + 1 = α1(x
2 + 2x+ 1) + α2(2x

2 + 1) + α3(x
2 − x).

Dva polynomy se rovnají, pokud se rovnají koeficienty u jednotlivých mocnin x,
rovnice je tedy ekvivalentní soustavě

α1 + 2α2 + α3 = 1,

2α1 − α3 = 0,

α1 + α2 = 1.

Ta má řešení (−1, 2,−2)T . Obdobně lze spočítat souřadnice [x2 − 3x + 1]B2
=

(−4, 5,−5)T a [x2 + x+ 3]B2
= (−4, 7,−9)T . Dostáváme matici

A =





−1 −4 −4
2 5 7
−2 −5 −9



 .

Všechna tři řešení můžeme opět spočítat naráz pomocí jedné soustavy se třemi
pravými stranami. Pokud tedy rozšířenou matici





1 2 1 1 1 1
2 0 −1 0 −3 1
1 1 0 1 1 3



 .

převedeme na RREF tvar (I3 | A), potom v pravé části vyčteme hledanou ma-
tici A.
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Matice obecného lineárního zobrazení

Cv. 12.4 Uvažujme lineární zobrazení f : R2 → R3 zadané obrazy kanonické báze:

f(e1) = (1,−1, 1)T , f(e2) = (0, 1, 1)T .

Uvažujme dvě báze

B1 = {(1,−1)T , (1, 1)T}, B2 = {(1,−1, 1)T , (1, 0, 1)T , (0, 1, 1)T}.

Spočítejte:

(a) matici zobrazení vzhledem ke kanonickým bázím, tj. kan[f ]kan .

(b) matici zobrazení od B1 ke kanonické bázi, tj. kan[f ]B1
.

(c) matici zobrazení od kanonické bázi k B2, tj. B2
[f ]kan .

(d) matici zobrazení od B1 k B2, tj. B2
[f ]B1

.

Řešení:

Obecně má maticová reprezentace zobrazení f : U → V od báze BU = {u1, . . . , un}
do báze BV = {v1, . . . , vm} předpis

B2
[f ]B1

=





| | |

[f(u1)]BV
[f(u2)]BV

. . . [f(un)]BV

| | |



 .

(a) Chceme matici kan[f ]kan, podle předpisu výše tedy musíme zkonstruovat





| |

[f(e1)]kan [f(e2)]kan
| |



 .

Sloupce [f(ei)]kan = f(ei) dostáváme přímo ze zadání. Výsledná matice má
proto tvar

kan[f ]kan =





1 0
−1 1
1 1



 .

(b) Chceme matici kan[f ]B1
, podle předpisu výše tedy musíme zkonstruovat
([

f

(

1
−1

)]

kan

[

f

(

1
1

)]

kan

)

.

Z vlastností lineárního zobrazení dostáváme

f

(

1
−1

)

= f(e1)− f(e2) =





1
−1
1



−





0
1
1



 =





1
−2
0



 ,

f

(

1
1

)

= f(e1) + f(e2) =





1
−1
1



+





0
1
1



 =





1
0
2



 .
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Výsledná matice má tedy tvar

kan[f ]B1
=





1 1
−2 0
0 2



 .

Alternativně můžeme hledanou matici dostat rozdělením na jednodušší části
s využitím matice složeného zobrazení:

kan[f ]B1
= kan[f ]kan · kan[id]B1

=





1 0
−1 1
1 1





(

1 1
−1 1

)

=





1 1
−2 0
0 2



 .

(c) Chceme matici B2
[f ]kan , podle předpisu výše tedy musíme zkonstruovat





| |

[f(e1)]B2
[f(e2)]B2

| |



 .

Souřadnice [(1,−1, 1)T ]B2
, [(0, 1, 1)T ]B2

můžeme získat jako řešení soustavy




1 1 0 1 0
−1 0 1 −1 1
1 1 1 1 1



 .

V tomto případě si také stačí uvědomit, že f(e1) odpovídá prvnímu bá-
zickému vektoru B2 a f(e2) odpovídá třetímu bázickému vektoru B2, jejich
souřadnice budou proto (1, 0, 0)T , resp. (0, 0, 1)T . Výsledná matice má proto
tvar

B2
[f ]kan =





1 0
0 0
0 1



 .

Opět je užitečné ukázat i alternativní způsob pomocí skládání jednodušších
zobrazení:

B2
[f ]kan = B2

[id]kan · kan[f ]kan =





1 1 0
−1 0 1
1 1 1





−1



1 0
−1 1
1 1



 =





1 0
0 0
0 1



 .

Zde ale musíme invertovat matici B2
[id]kan = ( kan[id]B2

)−1, takže pokud
inverzi nemáme předem spočítanou, tak tento postup efektivnější nebude.

(d) Chceme matici B2
[f ]B1

, podle předpisu výše tedy musíme zkonstruovat
(
[

f

(

1
−1

)]

B2

[

f

(

1
−1

)]

B2

)

.

Z podúlohy (b) již známe obrazy f(1,−1)T = (1,−2, 0)T , f(1, 1)T = (1, 0, 2)T .
Ty tedy stačí vyjádřit v souřadnicích báze B2. Souřadnice nalezeneme jako
řešení soustavy





1 1 0 1 1
−1 0 1 −2 0
1 1 1 0 2



 .
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Jednotlivá řešení jsou vektory (1, 0,−1)T , (1, 0, 1)T , výsledná matice má
proto tvar

B2
[f ]B1

=





1 1
0 0
−1 1



 .

S využitím předchozích bodů hledanou matici můžeme také spočítat takto:

B2
[f ]B1

= B2
[f ]kan · kan[id]B1

=





1 0
0 0
0 1





(

1 1
−1 1

)

=





1 1
0 0
−1 1



 .

Cv. 12.5 Uvažujme dvě lineární zobrazení f, g : R3 → R3 zadaná maticemi

B[f ]kan =





3 1 3
1 0 1
2 1 2



 , B[g]kan =





1 1 1
1 2 1
1 1 3



 ,

kde B = {(1, 0,−1)T , (1, 1, 0)T , (1,−2, 1)T}. Určete kan[g ◦ f ]kan .

Řešení:

K řešení můžeme využít vztahu B3
[g ◦ f ]B1

= B3
[g]B2

· B2
[f ]B1

, v našem případě
ve tvaru

kan[g ◦ f ]kan = kan[g]B · B[f ]kan .

Matici kan[g]B můžeme nejsnadněji zkonstruovat pomocí matic přechodu jako

kan[g]B = kan[id]B · B[g]kan · kan[id]B .

Dostáváme tedy

kan[g]B =





1 1 1
0 1 −2
−1 0 1



 ·





1 1 1
1 2 1
1 1 3



 ·





1 1 1
0 1 −2
−1 0 1



 =





−2 7 0
4 −1 −6
−2 0 2



 .

Výsledná matice proto je

kan[g ◦ f ]kan =





−2 7 0
4 −1 −7
−2 0 2



 ·





3 1 3
1 0 1
2 1 2



 =





1 −2 1
−1 −2 −1
−2 0 −2



 .

Cv. 12.6 Mějme lineární zobrazení f : U → V dané maticovým předpisem A = BV
[f ]BU

.
Ukažte, že matice RREF(A) reprezentuje stejné zobrazení, ale vzhledem k jiným
bázím.

Řešení:

Vztah mezi A a RREF(A) lze vyjádřit jako

RREF(A) = E · A = Ek . . . E1 · A,
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kde matice Ei reprezentují jednotlivé elementární řádkové úpravy. Pro nás je
klíčové, že tyto matice jsou regulární a každou regulární matici můžeme chápat
jako matici přechodu

Ei = B′

i

[id]Bi

mezi určitými bázemi. Podobně můžeme vyjádřit souhrnně matici E

E = B′

V

[id]BV

pro vhodnou bázi B′

V prostoru V . Proč? Protože

B′

V

[id]BV
= B′

V

[id]kan · kan[id]BV
= ( kan[id]B′

V

)−1 · kan[id]BV
,

dostáváme

kan[id]B′

V

= kan[id]BV
· E−1,

a tudíž bázi B′

V (přesně řečeno její souřadnice vzhledem ke kanonické bázi) vy-
čteme ze sloupců matice kan[id]BV

·E−1.

Odstupňovaný tvar matice A tedy můžeme chápat jako

RREF(A) = E ·A = B′

V

[id]BV
· BV

[f ]BU
= B′

V

[f ]BU
,

tedy maticovou reprezentaci stejného zobrazení, která se liší pouze ve výstupní
bázi.

Cv. 12.7 Známe matici B[f ]B lineárního zobrazení f : U → U . Jak můžeme určit matici

B′ [f ]B′ vůči bázi B′?

Řešení:

Máme dvě možnosti, jak dojít k řešení:

(a) Matici můžeme sestavit přímo z definice analogicky postupu sestavení ma-
tice B[f ]B .

(b) Můžeme využít již spočítaných výsledků a skládání lineárních zobrazení:

B′ [f ]B′ = B′ [id]B · B[f ]B · B[id]B′ .
Intuitivně: zobrazovaný vektor vůči bázi B′ se zobrazí maticí přechodu

B[id]B′ vůči bázi B, následně se transformuje maticí B[f ]B a vyjádří se
zpět maticí přechodu B′ [id]B vůči bázi B′.

Cv. 12.8 Mějme matici M lineárního zobrazení. Diskutujte, kolik lineárních zobrazení
popisuje matice M?

Řešení:

Jedná se o lehce zavádějící otázku. Odpověď záleží na podmínce, jestli máme
definované báze vůči nimž zobrazení definujeme. V případě, že ano, pak matice
M reprezentuje jen jedno lineární zobrazení a toto lineární zobrazení je repre-
zentováno právě jednou maticí, jedná se o důsledek věty o jednoznačnosti matice
lineárního zobrazení. Pokud však není uvedeno, vůči jaké bázi se zobrazení vyja-
dřuje pak ke každé bázi existuje jedno lineární zobrazení a je jich tedy nekonečně
mnoho.
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13. Vlastnosti a druhy lineárních zobrazení

Obraz a jádro

Cv. 13.1 Pro lineární zobrazení f : R2×2 → R2×2 dané předpisem A 7→ (A− AT ) rozhod-
něte, které vektory patří do jádra a které do obrazu:

(a) I2,

(b)
(

0 0
0 0

)

,

(c)
(

1 1
1 1

)

,

(d)
(

0 1
−1 0

)

.

Řešení:

Matice A patří do jádra f , pokud f(A) = 02×2. Naopak matice A patří do obrazu
zobrazení f , pokud existuje matice B taková, že f(B) = A.

(a) Patří do jádra, neboť I2 − IT2 = 02×2. Naopak nepatří do obrazu, protože
by musela existovat B, že

(

b11 b12
b21 b22

)

−

(

b11 b21
b12 b22

)

=

(

1 0
0 1

)

.

To ale není možné, protože pro prvek na pozici (1, 1) by musel být splněn
vztah

0 = b11 − b11 = 1.

(b) Patří do jádra i do obrazu (je obrazem sama sebe).

(c) Patří do jádra, neboť

(

1 1
1 1

)

−

(

1 1
1 1

)

=

(

0 0
0 0

)

.

Naopak nepatří do obrazu, protože na diagonále jsou nenulové prvky.

(d) Nepatří do jádra, neboť

(

0 1
−1 0

)

−

(

0 −1
1 0

)

=

(

0 2
−2 0

)

.

Aby matice patřila do obrazu, musela by existovat B taková, že

(

b11 b12
b21 b22

)

−

(

b11 b21
b12 b22

)

=

(

0 1
−1 0

)

.
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Rozepsáním po složkách dostáváme soustavu

b11 − b11 = 0,

b12 − b21 = 1,

b21 − b12 = −1,

b22 − b22 = 0.

První a poslední rovnice odpovídají 0 = 0 a zbylé dvě rovnice jsou ekviva-
lentní. Soustava se tedy zjednodušší na jedinou rovnici

b12 − b21 = 1.

Hledaných matic je tedy nekonečně mnoho a jsou tvaru
(

b11 b21 + 1
b21 b22

)

, b11, b21, b22 ∈ R.

Příkladem jedné konkrétní matice B může být
(

0 1
0 0

)

.

Závěr: Daná matice patří do obrazu.

Cv. 13.2 Uvažujme lineární zobrazení f : Rn → Rn. Označme lineární zobrazení f 1 = f ,
f 2 = f ◦ f , fn = f ◦ fn−1. Ukažte, že Ker(f (n−1)) ⊆ Ker(fn).

Řešení:

Pokud v ∈ Ker(fn−1), pak ze vztahu fn−1(v) = o platí

fn(v) = f(fn−1(v)) = f(o) = o.

Proto také v ∈ Ker(fn).

Cv. 13.3 Buď f : R3 → R2 lineární zobrazení zadané

f(1, 0, 1) = (0, 1)T , f(0, 1, 1) = (−1, 0)T , f(1, 1, 0) = (1, 0)T .

(a) Určete dim f(R3) a dimKer(f).

(b) Najděte bázi f(R3) a Ker(f).

Řešení:

(a) Pro jednodušší manipulaci si vyjádříme zobrazení pomocí maticové repre-
zentace kan[f ]B , kde B = {(1, 0, 1)T , (0, 1, 1)T , (1, 1, 0)T}. Dostáváme

(

0 −1 1
1 0 0

)

.

Uvedená matice má dimenzi řádkového (a tedy i sloupcového) prostoru
rovnou 2 a dimenzi jádra rovnou 1. Tyto dimenze odpovídají dim f(R3) a
dimKer(f).
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(b) V předchozí úloze jsme ukázali, že dim f(R3) = 2. Protože f(R3) ⊆ R2,
dostáváme dokonce f(R3) = R2. Libovolná báze prostoru R2 je proto bází
obrazu f(R3). Obecně bázi obrazu můžeme zkonstruovat z obrazů báze pů-
vodního prostoru, tedy vektorů (0, 1)T , (−1, 0)T , (1, 0)T . V tomto případě
je druhý vektor závislý na třetím, jeho odstraněním dostáváme bázi pro-
storu R2.
Pro určení báze jádra můžeme využít maticové reprezentace a nalézt řešení
soustavy

(

0 −1 1
1 0 0

)

x = 0.

Množina řešení má tvar {(0, x3, x3)
T ; x3 ∈ R}. Pozor, tato množina odpo-

vídá množině souřadnic bází vzhledem k bázi B, protože

o = [f(x)]kan = kan[f ]B · [x]B.

Zvolíme-li z jádra matice například vektor [x]B = (0, 1, 1)T , odpovídající
vektor x ∈ Ker(f) dopočítáme jako

x = 0 ·





1
0
1



 + 1 ·





0
1
1



 + 1 ·





1
1
0



 =





1
2
1



 .

Cv. 13.4 Co je obrazem prostoru span{sin x, cosx} při zobrazení s maticí ( 0 0
1 0 ) vzhledem

k bázím {cosx− sin x, sin x} a {cosx+ sin x, cos x}?

Řešení:

Z definice konstrukce maticové reprezentace lineárního zobrazení vůči daným
bázím lze z maticové reprezentace vyčíst předpis dané funkce

f(cosx− sin x) = 0 · (cosx+ sin x) + 1 · cosx = cosx,

f(sin x) = 0 · (cosx+ sin x) + 0 · cosx = 0.

Dostáváme tedy, že obraz bude

span{cosx, 0} = span{cosx}.

Jádro pak má tvar span{sin x}.

Cv. 13.5 Buď f : U → V lineární zobrazení a W podprostor f(U). Dokažte, že tzv. úplný
vzor

f−1(W ) = {x ∈ U ; f(x) ∈ W}

je podprostor prostoru U .

Řešení:

Stačí ukázat, že o ∈ f−1(W ) a že je tato množina uzavřená na operace. Protože je
W vektorový podprostor, obsahuje o. Z vlastností lineárního zobrazení je jedním
z vektorů x splňujících f(x) = o i nulový vektor o. Tedy o ∈ f−1(W ).
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Mějme dále x, y ∈ f−1(W ). Z definice f−1(W ) existují a, b ∈ W takové, že
f(x) = a a f(y) = b. Protože W je vektorový podprostor, také a + b ∈ W .
Úpravami dostáváme

a+ b = f(x) + f(y) = f(x+ y).

Dle definice vektor x+ y ∈ f−1(W ), množina je proto uzavřená na sčítání.

Obdobně mějme x ∈ f−1(W ) a skalár α. Platí, že existuje y ∈ W , že f(x) = y
a také platí αy ∈ W . Pomocí úprav

αy = αf(x) = f(αx)

a definice f−1(W ) vektor αx ∈ f−1(W ), množina je proto uzavřená na násobení.

Zobrazení prosté a „na“

Cv. 13.6 Najděte příklady lineárních zobrazení (vyjádřených například maticově f(x) =
Ax) takových, aby zobrazení

(a) bylo prosté a „na“ ,

(b) bylo prosté, ale nebylo „na“ ,

(c) nebylo prosté, ale bylo „na“ ,

(d) nebylo ani prosté, ani „na“ .

Řešení:

Toto je kreativní příklad. Detailnější podmínky na matici A, aby příslušné line-
ární zobrazení bylo / nebylo prosté či „na“ rozebereme později ve Cv. 13.8.

(a) Například A = I2. Zobrazení je tudíž identita a zřejmě je prosté i „na“ .

(b) Například A =
(

1 0
0 1
1 1

)

. Zobrazení není „na“ , protože sloupce matice A

vygenerují pouze dvoudimenzionální podprostor v prostoru R3. Na dru-
hou stranu, zobrazení je prosté, protože vztah Ax = Ay vede na rovnici
A(x− y) = 0, která má pouze triviální řešení x = y.

(c) Například A = ( 1 0 1
0 1 1 ). Zobrazení pak není prosté, protože A(1, 1, 1)T =

(2, 2)T = A(0, 0, 2)T . Zobrazení je ale „na“ , protože ve sloupcích matice A
je kanonická báze prostoru R2, tudíž vygenerujeme jakýkoli vektor v R2.

(d) Například A = 0.

Cv. 13.7 Mějme lineární zobrazení f : R → R zadané obrazem báze B:

f(2, 1, 1) = (1, 2, 3)T ,

f(1, 3, 5) = (3, 2, 1)T ,

f(7, 1, 4) = (1, 1, 1)T .

Zjistěte, jestli je zobrazení prosté (pokud není, najděte vektory u, v ∈ R3 takové,
že u 6= v ∧ f(u) = f(v)) a jestli je „na“ (pokud ne, najděte vektor, který nemá
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předobraz, tedy u ∈ R3 takové že ∀v ∈ R3 : f(v) 6= u). Určete dimenzi a bázi
obrazu a jádra tohoto lineárního zobrazení.

Řešení:

Prostota: Napřed určíme, jestli je zobrazení prosté (injektivní). Pokud by ne-
bylo, pak by nutně existovaly dva různé vektory u, v ∈ R3 (z definičního oboru)
takové, že f(u) = f(v). Upravme si tuto situaci:

f(u) = f(v),

A[f ]B · [u]B = A[f ]B · [v]B,

A[f ]B · [u]B − A[f ]B · [v]B = o,

A[f ]B · ([u]B − [v]B) = o,

kde A[f ]B značí matici lineárního zobrazení a [u]B, [v]B značí vektory souřadnic
vektorů u, v vůči bázi B, tedy [f(u)]A = A[f ]B · [u]B. V našem případě je báze
A kanonická báze. Tedy pokud je zobrazení prosté, pak jeho matice má ve svém
jádře jediný vektor o.

Sestrojíme tedy matici (bude brát vektory souřadnic v bázi B a vracet vektory
souřadnic v kanonické bázi):

kan[f ]B =





1 3 1
2 2 1
3 1 1



 .

Pomocí Gaussovy eliminace najdeme její jádro:




1 3 1
2 2 1
3 1 1



 ∼





1 3 1
0 −4 −1
0 −8 −2



 ∼





1 3 1
0 4 1
0 0 0



 .

Vidíme, že jádro má dimenzi jedna a všechna řešení této homogenní soustavy
mají tvar:

{

(−1
4
t,−1

4
t, t)T ; t ∈ R

}

. Můžeme volit vektor [u]B = (1, 1,−4)T , tedy

u = 1 · (2, 1, 1)T + 1 · (1, 3, 5)T − 4 · (7, 1, 4)T = (−25, 0,−10)T ,

který se zobrazí na nulu (stejně jako nulový vektor)

f(0, 0, 0) = (0, 0, 0)T = f(−25, 0,−10).

Všimněte si, že souřadnice vektoru z jádra matice byly vůči bázi B, my chtěli
souřadnice vektoru u v kanonické bázi, museli jsme tedy ještě řešit převod mezi
souřadnicemi.

Dimenze jádra: Vzhledem k tomu, že jádro lineárního zobrazení má dimenzi
jedna, tak jeho bázi může tvořit například vektor u = (−25, 0,−10)T (vzpo-
meňte, jak jsme na něj přišli – platí, že [(−25, 0,−10)T ]B = (1, 1,−4)).

Obraz a surjektivita (jestli je „na“): Každý vektor z obrazu je lineární
kombinací sloupcových vektorů. Speciálně existuje vektor a ∈ R3 takový, že
f(a) = (1, 2, 3)T (psáno v kanonické bázi), to byl náš zadaný vektor (2, 1, 1)T ,
který měl v bázi B souřadnice [(2, 1, 1)T ]B = (1, 0, 0)T .
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Z minulé Gaussovy eliminace vidíme, že dimenze obrazu (což je dimenze sloup-
cového prostoru, což dle věty z přednášky je rovné dimenzi řádkového prostoru)
je rovná dvěma a její báze jsou například první dva sloupci matice kan[f ]B , tedy
vektory (1, 2, 3)T , (3, 2, 1)T (obraz je pak lineární obal těchto dvou vektorů).
Dimenze obrazu je tedy dva a zobrazení f není „na“ .

Vektor mimo obraz: Doplněním těchto dvou vektorů na bázi R3 získáme vek-
tor, který nemá předobraz ve zobrazení f . Například to může být vektor (0, 0, 1)T

(pokud bychom nedoplňovali z kanonické báze, ale z jiné, mohl nám vyjít jiný
vektor).

Cv. 13.8 Jak poznáme ze zadané matice A ∈ Tm×n lineárního zobrazení f : U → V , že
zobrazení f je prosté, resp. „na“?

Řešení:

Lineární zobrazení je prosté právě tehdy, když Ker(f) = {o}. Z toho plyne, že
je zobrazení prosté právě tehdy, když

Ker(A) = {o}.

Jinými slovy, musí 0 = dimKer(A) = n − rank(A), neboli rank(A) = n. To
znamená, že matice A má lineárně nezávislé sloupce.

Lineární zobrazení je „na“ právě tehdy, když dimenze obrazu odpovídá dimenzi
prostoru V . Z toho plyne, že lineární zobrazení je „na“ právě tehdy, když

rank(A) = m.

To znamená, že matice A má lineárně nezávislé řádky.

Cv. 13.9 Rozhodněte, zda je dané lineární zobrazení prosté a zda je „na“ :

(a) f : R2×2 → R3 dané předpisem f

(

a b
c d

)

= (a+ b+ c, a+ b, a)T ,

(b) f : P2 → R4 dané předpisem f(ax2+bx+c) = (a+b, 2b−c, a−b+c, a+b)T ,

(c) f : P2 → R3 dané předpisem f(ax2 + bx+ c) = (a+ b, c, a+ b)T ,

(d) f : P2 → R3 dané předpisem f(ax2 + bx+ c) = (a+ b, 2b− c, a− b)T .

Řešení:

Ve všech případech můžeme vycházet z toho, že lineární zobrazení f : U → V je
prosté právě tehdy, když

Ker(f) = {o}

a je „na“ právě tehdy, když

dim f(U) = dim V.

(a) Zobrazení není prosté, protože

(a+ b+ c, a+ b, a)T = (0, 0, 0)T

má netriviální řešení, například a = b = c = 0 a d ∈ R.
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Zobrazení je „na“ , protože dimenze prostoru

{(a+ b+ c, a+ b, c)T ; a, b, c ∈ R}

je 3. To lze nahlédnout například tak, že lze vygenerovat vhodnout volbou
koeficientů a, b, c vektory (1, 1, 1)T , (1, 1, 0)T , (1, 0, 0)T , které jsou lineárně
nezávislé.

(b) Zobrazení není prosté, protože rovnice

(a+ b, 2b− c, a− b+ c, a+ b)T = (0, 0, 0, 0, 0)T

má množinu řešení {(a,−a,−2a)T ; a ∈ R}.
Zobrazení není ani „na“ , protože P2 má dimenzi 3, zatímco R4 má di-
menzi 4. Při lineárním zobrazení se může dimenze zachovat nebo se snížit.

(c) Zobrazení není prosté, protože rovnice

(a+ b, c, a+ b)T = (0, 0, 0)T

má množinu řešení {(a,−a, 0)T ; a ∈ R}.
Zobrazení není ani „na“ , protože hodnoty v první a poslední složce jsou si
vždy rovny. V obrazu tedy neleží například vektor (1, 0, 0)T .

(d) Zobrazení je prosté, protože rovnice

(a+ b, 2b− c, a− b)T = (0, 0, 0)T

má pouze triviální řešení.
Zobrazení je „na“ , protože množina obrazů {(a + b, c, a − b)T ; a, b, c ∈ R}
se dá vyjádřit jako

{a(1, 0, 1)T + b(1, 0,−1)T + c(0, 1, 0)T ; a, b, c ∈ R}.

Vidíme, že obrazem je lineární obal vektorů (1, 0, 1)T , (1, 0,−1)T , (0, 1, 0)T ,
které jsou lineárně nezávislé. Dimenze obrazu je proto 3, stejně jako dimenze
prostoru P2.

Isomorfismus

Cv. 13.10 Rozhodněte, zda zobrazení f : R3 → R3 dané předpisem

f(x, y, z) = (x+ y − 2z, y − z, x− y)T

je isomorfismem R3 na sebe sama (takzvaným automorfismem).

Řešení:

Isomorfismus dvou vektorových prostorů je vzájemně jednoznačné lineární zob-
razení (tedy lineární zobrazení, které je bijekce). Budeme chtít zjistit dimenzi
jádra (pokud je zobrazení prosté, tak má být nulová) a dimenzi obrazu = di-
menzi sloupcového prostoru (pokud má být zobrazení „na“ , tak musí být stejná
jako dimenze prostoru, do kterého to zobrazení jde).
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Sestavíme matici zobrazení vůči kanonické bázi (jakákoliv báze by posloužila
stejně):

kan[f ]kan =





1 1 −2
0 1 −1
1 −1 0



 .

Abychom určili rank této matice, provedeme Gaussovu eliminaci:




1 1 −2
0 1 −1
1 −1 0



 ∼





1 1 −2
0 1 −1
0 −2 2



 ∼





1 1 −2
0 1 −1
0 0 0



 .

Vidíme, že dimenze jádra matice je rovna jedné, takže zobrazení není prosté. To
můžeme i snadno ověřit: f(0, 0, 0) = (0, 0, 0)T = f(1, 1, 1).

Obdobně dimenze sloupcového prostoru je rovná dvěma (vzpomeňte na větu, že
dimenze sloupcového a řádkového prostoru se rovnají). Tedy funkce není „na“ .
Opět bychom mohli ověřit, že například vektor (0, 0, 1)T není v obraze (stejná
Gaussova eliminace doplněná o pravou stranu).

Závěr: zobrazení f není isomorfismem.

Cv. 13.11 Rozhodněte, jestli jsou následující dvojice vektorových prostorů isomorfní. Pokud
ano, najděte vhodný isomorfismus.

(a) R2×2 a R4,

(b) R4 a P3 (prostor reálných polynomů stupně nejvýš tři),

(c) Rm×n a Rn×m,

(d) Rn nad R a Cn nad C,

(e) R2 a
{

x = (x1, x2, x3, x4)
T ∈ R4 | x1 + x2 = x3 + x4 = 0

}

,

(f) R4 a prostor lineárních zobrazení f : R4 → R.

Řešení:

Dva vektorové prostory jsou isomorfní právě tehdy, když mají stejnou dimenzi a
fungují nad stejným tělesem.

(a) Ano, oba mají dimenzi 4. Není těžké rozmyslet, že isomorfismem je napří-
klad zobrazení

(

a b
c d

)

7→ (a, b, c, d)T .

(b) Ano, oba mají dimenzi 4. Reálný polynom stupně nejvýš tři

p(x) = p0 + p1x+ p2x
2 + p3x

3

můžeme reprezentovat jako uspořádanou čtveřici (p0, p1, p2, p3)T . Isomorfis-
mem zde je

(p0, p1, p2, p3)
T 7→ p0 + p1x+ p2x

2 + p3x
3.

(c) Ano, isomorfismem bude například transpozice

A 7→ AT .
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(d) Ne, prostory nepracují nad stejným tělesem.

(e) Ano, oba mají dimenzi 2. můžeme volit například zobrazení
(

a
b

)

7→ (a,−a, b,−b)T .

(f) Ano, vektoru u ∈ R4 přiřadíme lineární zobrazení f(x) = uTx. Naopak
každé lineární zobrazení f : R4 → R se dá zapsat maticí s jedním řádkem a
čtyřmi sloupci (věta z přednášky).

Cv. 13.12 Buď f : U → V isomorfismus a x1, . . . , xn ∈ U . Dokažte, že jsou-li x1, . . . , xn

lineárně nezávislé, pak i f(x1), . . . , f(xn) jsou lineárně nezávislé.

Řešení:

Mějme, α1, . . . , αn takové, že
∑n

i=1 αif(xi) = o. Dostáváme

o =

n
∑

i=1

αif(x)i = f

(

n
∑

i=1

αixi

)

.

Pro isomorfismus platí, že f(x) = o právě tehdy, když x = o. Proto také
∑n

i=1 αixi = o. Z lineární nezávislosti x1, . . . , xn dostáváme, že αi = 0 pro
všechny i, tedy f(x1), . . . , f(xn) jsou lineárně nezávislé.
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