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9. Baze a dimenze

Baze a souradnice

Cv. 9.1 Najdéte bazi a urcete dimenzi nasledujicich vektorovych prostori:

a) Bazi tvori naptiklad ej, ey ¢ jakékoli dva linearné nezavislé vektory. Di-
menze je tudiz 2.

(b) Bazi tvori napiiklad e, ey ¢ jakékoli dva linedrné nezavislé vektory. Di-
menze je tudiz 2.

Tato vlastnost plati obecné. Je-li T téleso, pak vektorovy prostor T2 nad T
ma dimenzi 2 a jeho bazi je napriklad kanonicka baze eq, e;. Dikaz: vektory
e1, €y jsou ziejmé linearné nezavislé a kazdy vektor v = (Ul,'l}g)T € T lIze
napsat v = v1(1,0)7 + (0, 1)T = vie; + vyeo.

(c) Bazi tvoif napriklad ey, e, (i,0)7, (0,7)”. Dimenze je tudiz 4.
Diikaz. Nejprve ukdzeme, Ze to jsou generatory. Kazdy vektor v € C2 je

tvaru v = (ay + byi, as + boi)T, kde ay, as, by, by € R. MitZeme tento vektor
tedy vyjadrit

v =ay(1,0)" +by(i,0)" + ax(0,1)" + by(0,)”.

Linearni nezavislost. Uvazujme linearni kombinaci vektoru (s realnymi koe-
ficienty!)

a1(1,0)7 4+ b1(i,0)" 4+ a(0,1)T + b2(0,4)" = (0,0)”, ay,as, by, by € R.
Rovnice lze ekvivalentné psat (a; + bii, as + byi)” = (0,0)7 a je splnéna
praveé tehdy, kdyz a1 = by = ay = by = 0.

(d) Bézi tvorf napiiklad 1, z, 2. Dimenze je tudiz 3.

(e) Béazi tvori naptiklad (39), (34), (99), (39). Dimenze je tudiz 4.
0
1

(f) Bazi tvori napiiklad (§98), (94), (§9). Dimenze je tudiz 3.

o= O

Cv. 9.2 Zjistste, zda (—1,5,3)T € span{(1,2,2)T, (4,1,3)T}.

Pokud ano, tak urcete souradnice vektoru vzhledem k dané bazi.

Resendt:
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Chceme vyjadiit vektor v = (—1, 5, 3)T jako linearni kombinaci vektort (1, 2, 2)7,
(4,1,3)7, cili
(-1,5,3)" = a(1,2,2)" + B(4,1,3)".

To je vlastné soustava t¥i rovnic o dvou neznamych (a, 8), kterou miazeme zapsat

maticoveé
1 4]-1
2 1] 5
2 3| 3
Vyfesenim soustavy zjistime, ze existuje jediné feseni o = 3, § = —1. To jsou i

hledané soufadnice [v]g = (3, —1)7.

Cv. 9.3 V prostoru P? najdéte soufadnice vektoru x? 4 2 vzhledem k bazi 2? + 1, x — 2,
222 +x — 1.
Reseni:
Postupujeme analogicky, jako v predchozi tloze. Chceme vyjadrit vektor p(x) =
22 + 2 jako linearni kombinaci vektorit 2% + 1, x — 2, 22% + x — 1, ¢ili

P H2=ax®+1)+B8(x—2) +v(22* +2 —1).
Po upraveé
22+ 2= (a+29)2" + (B+7)z+ (a =28 —7).
To ndm da soustavu tif rovnic o tfech neznamych, jejiz maticové vyjadieni je
10 2|1
0 1 10
1 -2 —112

Matice soustavy je regularni, a tudiz soustava ma jediné feSeni, a to a = 3,
B =1,y = —1. Hledané soufadnice jsou [p(z)|p = (3,1, —1)T.

Cv. 9.4 Souradnice vektoru v vzhledem k bazi B = {21, 29, 23, 24} jsou [v]g = (a1, as, as, as)? .
Urcete souradnice vektoru v vzhledem k béazi B’, pokud

(a) B, = {Z47’Z3722721}7
(b) B/ — {Zl + 24y Ry 23, Z4}a
(¢) B' = {21+ 24, 22 + 23, 24, 22}

Reseni:

Souradnice vektoru v vzhledem k bazi B’ muZeme uréit standardnim zpiso-
bem, ale vzhledem k tomu, jak baze B’ vypada, tak soufadnice odvodime p¥imo.
K tomu nam pomuze fakt, ze ze zadéni vime v = ai121 + @229 + a3z3 + G424 =

Z?:l @iz

(a) Protoze muzeme psat v = ayz4 + agzs + asze + ag 21, tak hledané souradnice
. _ T
jsoulv]p = (a4, as, as, ar)".
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(b) Chceme vyjadrit vektor jako
v="(2+2)+ T2t Tt T2,
pficemz vime
V= Q121 + G220 + 323 + G424.
Zde se nabizi vhodné pricist a odecist hodnotu a,z4 a vyjadrit vektor jako

v =ai(z1 + 2z4) + aszo + azzz + (ag — a1)zy4,

z Gehoz [v]p = (ay, as, as,aqs — ay)’.

(c¢) Analogickou uvahou vyjadiime vektor jako

ai(z1 + z4) + agzo + azzs + (ag — a1) 2y
aq (21 + 2’4) + aszz + (CL4 — a1)24 + 929
a

1(z1 + 24) +as(ze + 2z3) + (ag — a1)z4 + (a2 — as)ze,

z teho [v|p = (ay, a3, a4 — ay,as — az)’.

Dimenze

Cv. 9.5

Cv. 9.6

Cv. 9.7

Najdéte viechny podprostory vektorového prostoru R? nad R.

Reseni:

Budeme postupovat vyc¢tem moznych hodnot pro dimenzi podprostoru. Dimenzi
0 mé pouze podprostor {o}, dimenzi 1 maji pfimky prochézejici poc¢atkem (téch
je nekone¢né mnoho), a dimenzi 2 ma jen cely prostor R?.

Urcete pocet podprostorta Zf) nad Z,.

Reseni:

Opét rozdélime podprostory podle jejich dimenze. Dimenzi 0 mé pouze podpro-
stor {o}. Dimenzi 2 ma jen cely prostor Zg. Dimenzi 1 maji pifimky prochézejici
pocatkem. Piimka ma normovany smér bud (0, 1) nebo (1,a), a € Z,. Celkem
dostavame, ze pocet podprostort je p + 3.

Budte U,V podprostory vektorového prostoru W a necht dimU =7, dim V' = 8§,
dim W = 13.

(a) Odhadnéte zdola a shora hodnotu dim(U + V') a najdéte konkrétni priklady,
kdy se obé meze nabydou.

(b) Odhadnéte zdola a shora hodnotu dim(U N V') a opét ukazte, zZe je odhad
tésny.

Reseni:

(a) Protoze oba prostory U,V jsou podprostory prostoru U + V', musi platit
dimU < dim(U 4+ V) a dimV < dim(U + V). To nam dava prvni odhad
zdola dim(U + V') > 8. Zaroven neni tézké nahlédnout, ze je odhad tésny, to
znamena, ze se nékdy muze nabyt jako rovnost. Uvazujme napiiklad prostor
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W = R!3 a jeho podprostory U = span{ey,...,er}, V = span{ey, ..., es}.
Potom U +V =V, ¢ili dim(U + V) =dimV = 8.

Pro odhad shora sta¢i vyuzit toho, ze oba prostory U,V jsou podprostory
prostoru W. Proto musi platit dim(U + V) < dim W. To vede na odhad
dim(U + V) < 13. I tento odhad je tésny. Uvazujme opét prostor W = R13,
ale tentokrat s podprostory U = span{ey,...,e;}, V = span{es, ..., e13}.
V tomto piipadé U +V =W, a tak dim(U + V) = dim W = 13.

(b) Zde vyuzijeme vétu o dimenzi spojeni a pruniku podprostori, ktera rika
dimU 4+ dimV = dim(U + V) + dim(U N'V).
V naSem pripadé ma véta tvar
dim(UNV)=dimU +dimV — dim(U + V) = 15 — dim(U + V).

Pro odhady zdola a shora vyuzijme ptfedchozi odhady na dim(U + V) a
dostaneme

dm(UNV) =15 —dim(U +V) <15 -8 =7

dim(U N V) =15 — dim(U + V) < 15— 13 = 2.

Odhady jsou opét tésné, o ¢emz nas presveddi stejné piiklady jako v pred-
chozim bodu.

Direktni soucet

Cv. 9.8

Cv. 9.9

Necht U, V' jsou podprostory vektorového prstoru W. Dokazte, ze pokud UNV =
{0}, pak kazdy vektor w € U+V lze zapsat jedinym zpiisobem ve tvaru w = u+wv,
kdeueUavelV.

Reseni:

Budeme postupovat sporem. Predpokladejme pro spor, ze existuji dvé rtizna
vyjadieni souc¢tu w = u+v = u' + v/, kde u,u’ € U a v,v" € V. Pak ale vektor
z =wu—1u = v—1v je nenulovy a nachézi se v priuniku U NV, coZ je spor
s predpokladem.

Bud W direktnim sou¢tem svych podprostoru U, V. Dokazte: Je-li uq, ..., u,,
béze U a vy,...,v, baze V, pak uy, ..., Up,v1,...,0, je baze W.

Reseni:

Protoze vektory uy, ..., u,, generuji podprostor U a vektory vy, ..., v, generuji
podprostor V', tak vektory wq,...,un,v1,...,v, musi generovat prostor W =
U+w.

Z predpokladu (a definice direktniho soué¢tu podprostori) je U NV = {o}, ¢ili
dim(U N'V) = 0. Podle véty o dimenzi spojeni a priniku podprostoria mame

m+n=dmU +dimV =dim(U + V) +dim(U NV) = dim(U + V) = dim W.

Prostor W ma tedy dimenzi m+n. Ale zaroven vime, Ze mnozina jeho generatortu
ULy - oy U, V1, - - -, U, MA velikost také m + n. Proto musi tyto generatory tvorit
bézi prostoru W.
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10. Maticové prostory

(] ()

Postupné nad télesy R, Zs5 a Z; rozhodnéte, zda plati:

Cv. 10.1 Bud

(a) v € Ker(A),
(b) v e S(A).
Reseni:
Z definice jadra a sloupcového prostoru matice plati
Ker(A) = {v € T Az = 0},
S(A) =span{A,q, ..., A} = {Az; . € T"},

staci tedy ovéiit, zda vektor v = (1,2)7 fesf soustavu Az = 0 nad danym télesem
a zda plati Az = v pro n&jaké x € T2

Nad téelesem R:

(a) vektor v nepatfi do jadra matice A, protoze

w-G0-0+0)

(b) vektor v patii do sloupcového prostoru matice A, protoze soustava

)= 32~ (0 55~ 1]

mé feSeni, konkrétné plati (1,2)" = 2(1,3)" + £(2,1)7.

U= oo
~_

Nad télesem Zs:

(a) vektor v patii do Ker(A), protoze

=D 6)-6)

(b) vektor v nepatii do S(A), protoze soustava

1 21 1 21
= 119~ ()
nema nad télesem Zs TeSeni.

Nad telesem Zr:

(a) vektor v nepatii Ker(A), protoze

(000
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Cv. 10.2

Cv. 10.3

(b) vektor v patii do S(A), protoZe soustava

1 21 1 21 1 02
= 1) = 3le)~ 6 )
mé nad té&lesem Z; fefenf a plati (1,2)T = 2(1,3)T + 3(2,1)T.

Najdéte béaze prostori R(A), S(A) a Ker(A) pro matici

1
A =12
3

DN
[ )
= o W

Reseni:
Prevedeme matici A do redukovaného odstupiiovaného tvaru RREF(A):

1
A=1{2
3

Oy =~ N

2
1
1

- W

1
~ 10
0

S O N
O = O

1
1| = RREF(A).
0

Bazi fadkového prostoru R(A) tvoii (napiiklad) nenulové vektory v fadcich vy-
sledné matice, tedy vektory (1,2,0,1)T, (0,0,1,1)T. Davodem je, Ze elementéarni
radkové tpravy neméni fadkovy prostor matice, a tedy R(A) = R(RREF(A)).
Najit bazi fadkového prostoru matice RREF(A) je pak jednoduché — jsou to
vSechny nenulové radky:.

Bazi sloupcového prostoru mizeme vybrat z puvodnich sloupci matice A, které
odpovidaji bazickym sloupctiim odstupniovaného tvaru. Bazické sloupce jsou prvni
a tfeti, tedy vektory (1,2,3)T a (2,1,1)7 tvoii bazi S(A). Zdivodnéni je ted jiné,
nez v pripadé fadkového prostoru, protoze elementarni radkové tpravy obecné
mohou zménit sloupovy prostor matice. Co ale elementarni radkové upravy ne-
méni, je linearni zavislost a nezavislost mezi sloupci. Tudiz muzeme tvrdit: bazi
S(RREF(A) tvofi prvni a tteti sloupec matice RREF(A), proto bazi S(A) tvoii
prvni a treti sloupec matice A.

Bézi jadra matice A ziskdme z TeSeni soustavy Az = 0. Mnozinu v8ech FeSeni
této soustavy muzeme vyjadrit pomoci nebazickych proménnych o, x4 ve tvaru

(_21‘2 — Ty, Ty, —I4, :L‘4)T = (_27 17 07 O)TxZ + (_17 07 _]-7 1)T:L‘4-
Bézi Ker(A) tedy tvorf napi. vektory (—2,1,0,0)%, (—=1,0,—1,1)7.
Najdéte matici A takovou, ze

(a) R(A) obsahuje vektory (1,1)7,(1,2)T a S(A) obsahuje (1,0,0)7, (0,0, 1),
(b) bazi R(A) i S(A) tvoif vektor (1,1,1)T a baze Ker(A) je (1,-2,1)T.

Resendt:
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(a) Tento priklad je zaméfeny na kreativitu a ne na postup podle Sablony.
Proto popiseme jen zakladni myslenky, které pomohou hledanou matice
najit. Ze zadanych vektori v radkovém a sloupcovém prostoru vidime, ze
hleddme matici 3 x 2. Déale, z podminek na tadkovy prostor dostdvame
R(A) = R? neboli staci, aby matice A méla linedrné nezévislé sloupce.
Pokud dame vektory z podminky na S(A) pfimo do sloupci matice A,
ziskame pozadovanou matici

10
00
0 1
Hledana matice ale neni zdaleka jednoznacna. Pozadovanou vlastnost spl-
nuji dalsi matice, jako napriklad
11 0 1
0 0], 00
1 2 10
(b) V tomto piipadé hledame matici 3 x 3, pro kterou plati
dimR(A) = dimS(A) =rank(4) =1, dimKer(A4) = 1.

Z véty o dimenzi jadra a hodnosti matice ale vime, ze pro kazdou matici
A € T™ " musi platit vztah

dim Ker(A) 4 rank(A) = n.

V nasem piipadé dostavame 1 + 1 = dim Ker(A) + rank(A) = 3. Matice
spliujici pozadované vlastnosti tedy neexistuje.

Cv. 10.4 Rozhodnéte, zda pro matice A, B € R"*" plati

(a) S(A) = S(B) implikuje RREF(A) = RREF(B),
(b) RREF(A) = RREF(B) implikuje S(A) = S(B).

Resent:

(a) Tvrzeni neplati. Napiiklad matice
10 0 1
(o) 2
maji stejny sloupcovy prostor
span{(1,0)", (0,0)"} = S(A) = S(B) = span{(0,0)", (1,0)"},

ale jejich redukované odstupiiované tvary jsou rizné (obé matice jsou v RREF).

(b) Neplati ani tato opa¢na implikace. Napiiklad pro matice

10 0 0
A :<0 0)’ B:<1 0)
mame RREF(A) = RREF(B) = A, ale pfitom
span {(1,0)",(0,0)"} = S(A4) # S(B) = span {(0,1)",(0,0)"} .
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Cv. 10.5 S vyuzitim maticovych prostori uréete dimenzi prostoru
V={zeR" z;+...+xz, =0}
Reseni:
Prostor V' odpovida mnoziné feSeni soustavy
(11 - 1]0),
to znamené jadru matice A = (1 JE 1) Tato matice méa rozmér 1 xn a ma hod-
nost 1. Pro dimenzi jadra pouzijeme vzorec¢ek (véta o dimenzi jadra a hodnosti
matice):
dimV = dimKer(A) = n —rank(A) =n — 1.
Zévér: Hledana dimenze je tedy n + 1.
Kdybychom chtéli najit i bazi, tak jednoduSe vyfeSime soustavu Axr = 0 po-
moci Gaussovy eliminace. Bézi tak tvoii naptiklad vektory (1,—1,0...,0)T,
0,1,-1,0...,0)7, ..., (0...,0,1,—-1)T.
Cv. 10.6 Z vektortu vyberte bazi prostoru V' = span{v;, vy, v3,v4} a pro ostatni vektory

najdéte souradnice vudi této bazi:
U1 = (37 17 57 4)T7 Vg = (27 27 37 3)T7 V3 = (17 _17 27 1>T7 Vg = (17 37 17 1)T
Reseni:

Zapiseme jednotlivé vektory do sloupci matice A, kterou prevedeme do reduko-
vaného odstupnovaného tvaru

32 1 1 10 1 0
12 -1 3 01 —-10

A=153 2 1|~|o o o 1|~ BREF(A)
43 1 1 00 0 0

Pripomenme, Ze elementarni fadkové dpravy zachovavaji linedrni zavislost a ne-
zéavislost mezi sloupci, a to dokonce i konkrétni linearni kombinace. Tudiz z ma-
tice RREF(A) snadno vyéteme nejen béazi prostoru S(A) = V, ale i hledané
soutfadnice.

Vidime, ze bazické sloupce jsou prvni, druhy a ¢tvrty. Bazi prostoru S(A) =V
tedy tvorf pivodni vektory v; = (3,1,5,4)%, vy = (2,2,3,3)T a vy = (1,3,1,1)7.

Ze ttetiho sloupce upravené matice RREF(A) dostaneme souradnice vektoru v
vzhledem k bazi B = {vy,vs,v4}, nebot plati

vs=(1,-1,2, )7 =1-(3,1,5,4)T 4+ (1) - (2,2,3,3)7,

a tedy [U?)]B = (17 _17 O)T

Cv. 10.7 Urcete, jaky je vztah mezi prostory Ker(AB) a Ker(B) pro matice

(a) AeR™" Be R,
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(b) A € R™ " regularni, B € R"*?.

Reseni:

(a) Necht = € Ker(B), pak z definice jadra plati Bz = o. Vektor = patii také
do jadra matice AB, protoze

(AB)x = A(Bx) = Ao = o,

dostaneme tedy inkluzi Ker(B) C Ker(AB). Obracen4 inkluze obecné ne-
plati, napi. pro A =0, a B = I, je vektor y = (1,0,...,0)T v jadru matice
AB, ale nikoliv v jadru matice B.

(b) Nahlédneme, Ze pro regularni matici A plati také inkluze Ker(AB) C Ker(B),
a tedy muzeme psat Ker(AB) = Ker(B).
Dikaz. Necht z € Ker(AB), potom (AB)r = o. Z regularity matice A
existuje inverzni matice A=, pro kterou plati

Br = (A'A)Bx =AY (A B)r) = A0 =o,

z ¢ehoz plyne = € Ker(B).
Cv. 10.8 Rozhodnéte, zda plati rank(A + B) < rank(A) + rank(B) pro A, B € R™*",
(Hint: Jaky je vztah mezi prostory S(A+ B) a S(A) + S(B)?)
Reseni:
Uvazujme prostor generovany sjednocenim sloupctu matice A a sloupcii matice B,
tedy spojeni S(A) + S(B). Dimenze tohoto prostoru je
dim(S(A) + S(B)) < dimS(A) 4 dim S(B) = rank(A) + rank(B5).

Déle, prostor S(A) + S(B) obsahuje vSechny vektory generované sloupci matice
A+ B, tedy S(A + B) je podprostorem S(A) + S(B). Plati proto

rank(A + B) = dimS(A + B) < dim(S(A) + S(B)) < rank(A) + rank(B).
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