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9. Báze a dimenze

Báze a souřadnice

Cv. 9.1 Najděte bázi a určete dimenzi následujících vektorových prostorů:

(a) R2 nad R,

(b) C2 nad C,

(c) C2 nad R,

(d) P2,

(e) R2×2 nad R,

(f) prostor symetrických matic v R2×2 nad R.

Řešení:

(a) Bázi tvoří například e1, e2 či jakékoli dva lineárně nezávislé vektory. Di-
menze je tudíž 2.

(b) Bázi tvoří například e1, e2 či jakékoli dva lineárně nezávislé vektory. Di-
menze je tudíž 2.
Tato vlastnost platí obecně. Je-li T těleso, pak vektorový prostor T2 nad T

má dimenzi 2 a jeho bází je například kanonická báze e1, e2. Důkaz: vektory
e1, e2 jsou zřejmě lineárně nezávislé a každý vektor v = (v1, v2)

T ∈ T lze
napsat v = v1(1, 0)

T + v2(0, 1)
T = v1e1 + v2e2.

(c) Bázi tvoří například e1, e2, (i, 0)
T , (0, i)T . Dimenze je tudíž 4.

Důkaz. Nejprve ukážeme, že to jsou generátory. Každý vektor v ∈ C2 je
tvaru v = (a1 + b1i, a2 + b2i)

T , kde a1, a2, b1, b2 ∈ R. Můžeme tento vektor
tedy vyjádřit

v = a1(1, 0)
T + b1(i, 0)

T + a2(0, 1)
T + b2(0, i)

T .

Lineární nezávislost. Uvažujme lineární kombinaci vektorů (s reálnými koe-
ficienty!)

a1(1, 0)
T + b1(i, 0)

T + a2(0, 1)
T + b2(0, i)

T = (0, 0)T , a1, a2, b1, b2 ∈ R.

Rovnice lze ekvivalentně psát (a1 + b1i, a2 + b2i)
T = (0, 0)T a je splněna

právě tehdy, když a1 = b1 = a2 = b2 = 0.

(d) Bázi tvoří například 1, x, x2. Dimenze je tudíž 3.

(e) Bázi tvoří například ( 1 0
0 0 ), ( 0 1

0 0 ), ( 0 0
1 0 ), ( 0 0

0 1 ). Dimenze je tudíž 4.

(f) Bázi tvoří například ( 1 0
0 0 ), ( 0 1

1 0 ), ( 0 0
0 1 ). Dimenze je tudíž 3.

Cv. 9.2 Zjistěte, zda (−1, 5, 3)T ∈ span{(1, 2, 2)T , (4, 1, 3)T}.

Pokud ano, tak určete souřadnice vektoru vzhledem k dané bázi.

Řešení:
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Chceme vyjádřit vektor v = (−1, 5, 3)T jako lineární kombinaci vektorů (1, 2, 2)T ,
(4, 1, 3)T , čili

(−1, 5, 3)T = α(1, 2, 2)T + β(4, 1, 3)T .

To je vlastně soustava tří rovnic o dvou neznámých (α, β), kterou můžeme zapsat
maticově





1 4 −1
2 1 5
2 3 3



 .

Vyřešením soustavy zjistíme, že existuje jediné řešení α = 3, β = −1. To jsou i
hledané souřadnice [v]B = (3,−1)T .

Cv. 9.3 V prostoru P2 najděte souřadnice vektoru x2 + 2 vzhledem k bázi x2 +1, x− 2,
2x2 + x− 1.

Řešení:

Postupujeme analogicky, jako v předchozí úloze. Chceme vyjádřit vektor p(x) =
x2 + 2 jako lineární kombinaci vektorů x2 + 1, x− 2, 2x2 + x− 1, čili

x2 + 2 = α(x2 + 1) + β(x− 2) + γ(2x2 + x− 1).

Po úpravě
x2 + 2 = (α + 2γ)x2 + (β + γ)x+ (α− 2β − γ).

To nám dá soustavu tří rovnic o třech neznámých, jejíž maticové vyjádření je





1 0 2 1
0 1 1 0
1 −2 −1 2



 .

Matice soustavy je regulární, a tudíž soustava má jediné řešení, a to α = 3,
β = 1, γ = −1. Hledané souřadnice jsou [p(x)]B = (3, 1,−1)T .

Cv. 9.4 Souřadnice vektoru v vzhledem k bázi B = {z1, z2, z3, z4} jsou [v]B = (a1, a2, a3, a4)
T .

Určete souřadnice vektoru v vzhledem k bázi B′, pokud

(a) B′ = {z4, z3, z2, z1},

(b) B′ = {z1 + z4, z2, z3, z4},

(c) B′ = {z1 + z4, z2 + z3, z4, z2}.

Řešení:

Souřadnice vektoru v vzhledem k bázi B′ můžeme určit standardním způso-
bem, ale vzhledem k tomu, jak báze B′ vypadá, tak souřadnice odvodíme přímo.
K tomu nám pomůže fakt, že ze zadání víme v = a1z1 + a2z2 + a3z3 + a4z4 =
∑4

i=1 aizi.

(a) Protože můžeme psát v = a4z4+ a3z3+ a2z2+ a1z1, tak hledané souřadnice
jsou[v]B′ = (a4, a3, a2, a1)

T .
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(b) Chceme vyjádřit vektor jako

v = ? (z1 + z4)+ ? z2+ ? z3+ ? z4,

přičemž víme
v = a1z1 + a2z2 + a3z3 + a4z4.

Zde se nabízí vhodně přičíst a odečíst hodnotu a1z4 a vyjádřit vektor jako

v = a1(z1 + z4) + a2z2 + a3z3 + (a4 − a1)z4,

z čehož [v]B′ = (a1, a2, a3, a4 − a1)
T .

(c) Analogickou úvahou vyjádříme vektor jako

v = a1(z1 + z4) + a2z2 + a3z3 + (a4 − a1)z4

= a1(z1 + z4) + a3z3 + (a4 − a1)z4 + a2z2

= a1(z1 + z4) + a3(z2 + z3) + (a4 − a1)z4 + (a2 − a3)z2,

z čehož [v]B′ = (a1, a3, a4 − a1, a2 − a3)
T .

Dimenze

Cv. 9.5 Najděte všechny podprostory vektorového prostoru R2 nad R.

Řešení:

Budeme postupovat výčtem možných hodnot pro dimenzi podprostoru. Dimenzi
0 má pouze podprostor {o}, dimenzi 1 mají přímky procházející počátkem (těch
je nekonečně mnoho), a dimenzi 2 má jen celý prostor R2.

Cv. 9.6 Určete počet podprostorů Z2
p nad Zp.

Řešení:

Opět rozdělíme podprostory podle jejich dimenze. Dimenzi 0 má pouze podpro-
stor {o}. Dimenzi 2 má jen celý prostor Z2

p. Dimenzi 1 mají přímky procházející
počátkem. Přímka má normovaný směr buď (0, 1) nebo (1, a), a ∈ Zp. Celkem
dostáváme, že počet podprostorů je p+ 3.

Cv. 9.7 Buďte U, V podprostory vektorového prostoru W a nechť dimU = 7, dimV = 8,
dimW = 13.

(a) Odhadněte zdola a shora hodnotu dim(U+V ) a najděte konkrétní příklady,
kdy se obě meze nabydou.

(b) Odhadněte zdola a shora hodnotu dim(U ∩ V ) a opět ukažte, že je odhad
těsný.

Řešení:

(a) Protože oba prostory U, V jsou podprostory prostoru U + V , musí platit
dimU ≤ dim(U + V ) a dim V ≤ dim(U + V ). To nám dává první odhad
zdola dim(U+V ) ≥ 8. Zároveň není těžké nahlédnout, že je odhad těsný, to
znamená, že se někdy může nabýt jako rovnost. Uvažujme například prostor
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W = R13 a jeho podprostory U = span{e1, . . . , e7}, V = span{e1, . . . , e8}.
Potom U + V = V , čili dim(U + V ) = dimV = 8.
Pro odhad shora stačí využít toho, že oba prostory U, V jsou podprostory
prostoru W . Proto musí platit dim(U + V ) ≤ dimW . To vede na odhad
dim(U +V ) ≤ 13. I tento odhad je těsný. Uvažujme opět prostor W = R13,
ale tentokrát s podprostory U = span{e1, . . . , e7}, V = span{e6, . . . , e13}.
V tomto případě U + V = W , a tak dim(U + V ) = dimW = 13.

(b) Zde využijeme větu o dimenzi spojení a průniku podprostorů, která říká

dimU + dimV = dim(U + V ) + dim(U ∩ V ).

V našem případě má věta tvar

dim(U ∩ V ) = dimU + dimV − dim(U + V ) = 15− dim(U + V ).

Pro odhady zdola a shora využijme předchozí odhady na dim(U + V ) a
dostaneme

dim(U ∩ V ) = 15− dim(U + V ) ≤ 15− 8 = 7

a
dim(U ∩ V ) = 15− dim(U + V ) ≤ 15− 13 = 2.

Odhady jsou opět těsné, o čemž nás přesvědčí stejné příklady jako v před-
chozím bodu.

Direktní součet

Cv. 9.8 Nechť U, V jsou podprostory vektorového prstoru W . Dokažte, že pokud U∩V =
{o}, pak každý vektor w ∈ U+V lze zapsat jediným způsobem ve tvaru w = u+v,
kde u ∈ U a v ∈ V .

Řešení:

Budeme postupovat sporem. Předpokládejme pro spor, že existují dvě různá
vyjádření součtu w = u + v = u′ + v′, kde u, u′ ∈ U a v, v′ ∈ V . Pak ale vektor
z := u − u′ = v − v′ je nenulový a nachází se v průniku U ∩ V , což je spor
s předpokladem.

Cv. 9.9 Buď W direktním součtem svých podprostorů U, V . Dokažte: Je-li u1, . . . , um

báze U a v1, . . . , vn báze V , pak u1, . . . , um, v1, . . . , vn je báze W .

Řešení:

Protože vektory u1, . . . , um generují podprostor U a vektory v1, . . . , vn generují
podprostor V , tak vektory u1, . . . , um, v1, . . . , vn musí generovat prostor W =
U +W .

Z předpokladu (a definice direktního součtu podprostorů) je U ∩ V = {o}, čili
dim(U ∩ V ) = 0. Podle věty o dimenzi spojení a průniku podprostorů máme

m+ n = dimU + dimV = dim(U + V ) + dim(U ∩ V ) = dim(U + V ) = dimW.

Prostor W má tedy dimenzi m+n. Ale zároveň víme, že množina jeho generátorů
u1, . . . , um, v1, . . . , vn má velikost také m+ n. Proto musí tyto generátory tvořit
bázi prostoru W .
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10. Maticové prostory

Cv. 10.1 Buď

A =

(

1 2
3 1

)

, v =

(

1
2

)

.

Postupně nad tělesy R, Z5 a Z7 rozhodněte, zda platí:

(a) v ∈ Ker(A),

(b) v ∈ S(A).

Řešení:

Z definice jádra a sloupcového prostoru matice platí

Ker(A) = {x ∈ Tn; Ax = 0},

S(A) = span{A∗1, . . . , A∗n} = {Ax; x ∈ Tn},

stačí tedy ověřit, zda vektor v = (1, 2)T řeší soustavu Ax = 0 nad daným tělesem
a zda platí Ax = v pro nějaké x ∈ T2.

Nad tělesem R:

(a) vektor v nepatří do jádra matice A, protože

Av =

(

1 2
3 1

)(

1
2

)

=

(

5
5

)

6=

(

0
0

)

,

(b) vektor v patří do sloupcového prostoru matice A, protože soustava

(

A v
)

=

(

1 2 1
3 1 2

)

∼

(

1 2 1
0 −5 −1

)

∼

(

1 0 3
5

0 1 1
5

)

má řešení, konkrétně platí (1, 2)T = 3
5
(1, 3)T + 1

5
(2, 1)T .

Nad tělesem Z5:

(a) vektor v patří do Ker(A), protože

Av =

(

1 2
3 1

)(

1
2

)

=

(

0
0

)

,

(b) vektor v nepatří do S(A), protože soustava

(

A v
)

=

(

1 2 1
3 1 2

)

∼

(

1 2 1
0 0 4

)

nemá nad tělesem Z5 řešení.

Nad tělesem Z7:

(a) vektor v nepatří Ker(A), protože

Av =

(

1 2
3 1

)(

1
2

)

=

(

5
5

)

6=

(

0
0

)

,
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(b) vektor v patří do S(A), protože soustava

(

A v
)

=

(

1 2 1
3 1 2

)

∼

(

1 2 1
0 2 6

)

∼

(

1 0 2
0 1 3

)

má nad tělesem Z7 řešení a platí (1, 2)T = 2(1, 3)T + 3(2, 1)T .

Cv. 10.2 Najděte báze prostorů R(A), S(A) a Ker(A) pro matici

A =





1 2 2 3
2 4 1 3
3 6 1 4



 .

Řešení:

Převedeme matici A do redukovaného odstupňovaného tvaru RREF(A):

A =





1 2 2 3
2 4 1 3
3 6 1 4



 ∼





1 2 0 1
0 0 1 1
0 0 0 0



 = RREF(A).

Bázi řádkového prostoru R(A) tvoří (například) nenulové vektory v řádcích vý-
sledné matice, tedy vektory (1, 2, 0, 1)T , (0, 0, 1, 1)T . Důvodem je, že elementární
řádkové úpravy nemění řádkový prostor matice, a tedy R(A) = R( RREF(A)).
Najít bázi řádkového prostoru matice RREF(A) je pak jednoduché – jsou to
všechny nenulové řádky.

Bázi sloupcového prostoru můžeme vybrat z původních sloupců matice A, které
odpovídají bázickým sloupcům odstupňovaného tvaru. Bázické sloupce jsou první
a třetí, tedy vektory (1, 2, 3)T a (2, 1, 1)T tvoří bázi S(A). Zdůvodnění je teď jiné,
než v případě řádkového prostoru, protože elementární řádkové úpravy obecně
mohou změnit sloupový prostor matice. Co ale elementární řádkové úpravy ne-
mění, je lineární závislost a nezávislost mezi sloupci. Tudíž můžeme tvrdit: bázi
S( RREF(A) tvoří první a třetí sloupec matice RREF(A), proto bázi S(A) tvoří
první a třetí sloupec matice A.

Bázi jádra matice A získáme z řešení soustavy Ax = 0. Množinu všech řešení
této soustavy můžeme vyjádřit pomocí nebázických proměnných x2, x4 ve tvaru

(−2x2 − x4, x2,−x4, x4)
T = (−2, 1, 0, 0)Tx2 + (−1, 0,−1, 1)Tx4.

Bázi Ker(A) tedy tvoří např. vektory (−2, 1, 0, 0)T , (−1, 0,−1, 1)T .

Cv. 10.3 Najděte matici A takovou, že

(a) R(A) obsahuje vektory (1, 1)T , (1, 2)T a S(A) obsahuje (1, 0, 0)T , (0, 0, 1)T ,

(b) bázi R(A) i S(A) tvoří vektor (1, 1, 1)T a báze Ker(A) je (1,−2, 1)T .

Řešení:
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(a) Tento příklad je zaměřený na kreativitu a ne na postup podle šablony.
Proto popíšeme jen základní myšlenky, které pomohou hledanou matice
najít. Ze zadaných vektorů v řádkovém a sloupcovém prostoru vidíme, že
hledáme matici 3 × 2. Dále, z podmínek na řádkový prostor dostáváme
R(A) = R2, neboli stačí, aby matice A měla lineárně nezávislé sloupce.
Pokud dáme vektory z podmínky na S(A) přímo do sloupců matice A,
získáme požadovanou matici





1 0
0 0
0 1



 .

Hledaná matice ale není zdaleka jednoznačná. Požadovanou vlastnost spl-
ňují další matice, jako například





1 1
0 0
1 2



 ,





0 1
0 0
1 0



 .

(b) V tomto případě hledáme matici 3× 3, pro kterou platí

dimR(A) = dimS(A) = rank(A) = 1, dimKer(A) = 1.

Z věty o dimenzi jádra a hodnosti matice ale víme, že pro každou matici
A ∈ Tm×n musí platit vztah

dimKer(A) + rank(A) = n.

V našem případě dostáváme 1 + 1 = dimKer(A) + rank(A) = 3. Matice
splňující požadované vlastnosti tedy neexistuje.

Cv. 10.4 Rozhodněte, zda pro matice A,B ∈ Rn×n platí

(a) S(A) = S(B) implikuje RREF(A) = RREF(B),

(b) RREF(A) = RREF(B) implikuje S(A) = S(B).

Řešení:

(a) Tvrzení neplatí. Například matice

A =

(

1 0
0 0

)

, B =

(

0 1
0 0

)

mají stejný sloupcový prostor

span{(1, 0)T , (0, 0)T} = S(A) = S(B) = span{(0, 0)T , (1, 0)T},

ale jejich redukované odstupňované tvary jsou různé (obě matice jsou v RREF).

(b) Neplatí ani tato opačná implikace. Například pro matice

A =

(

1 0
0 0

)

, B =

(

0 0
1 0

)

máme RREF(A) = RREF(B) = A, ale přitom

span
{

(1, 0)T , (0, 0)T
}

= S(A) 6= S(B) = span
{

(0, 1)T , (0, 0)T
}

.
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Cv. 10.5 S využitím maticových prostorů určete dimenzi prostoru

V = {x ∈ Rn; x1 + . . .+ xn = 0}.

Řešení:

Prostor V odpovídá množině řešení soustavy
(

1 1 · · · 1 0
)

,

to znamená jádru matice A =
(

1 1 · · · 1
)

Tato matice má rozměr 1×n a má hod-
nost 1. Pro dimenzi jádra použijeme vzoreček (věta o dimenzi jádra a hodnosti
matice):

dimV = dimKer(A) = n− rank(A) = n− 1.

Závěr: Hledaná dimenze je tedy n + 1.

Kdybychom chtěli najít i bázi, tak jednoduše vyřešíme soustavu Ax = 0 po-
mocí Gaussovy eliminace. Bázi tak tvoří například vektory (1,−1, 0 . . . , 0)T ,
(0, 1,−1, 0 . . . , 0)T , . . . , (0 . . . , 0, 1,−1)T .

Cv. 10.6 Z vektorů vyberte bázi prostoru V = span{v1, v2, v3, v4} a pro ostatní vektory
najděte souřadnice vůči této bázi:

v1 = (3, 1, 5, 4)T , v2 = (2, 2, 3, 3)T , v3 = (1,−1, 2, 1)T , v4 = (1, 3, 1, 1)T .

Řešení:

Zapíšeme jednotlivé vektory do sloupců matice A, kterou převedeme do reduko-
vaného odstupňovaného tvaru

A =









3 2 1 1
1 2 −1 3
5 3 2 1
4 3 1 1









∼









1 0 1 0
0 1 −1 0
0 0 0 1
0 0 0 0









= RREF(A).

Připomeňme, že elementární řádkové úpravy zachovávají lineární závislost a ne-
závislost mezi sloupci, a to dokonce i konkrétní lineární kombinace. Tudíž z ma-
tice RREF(A) snadno vyčteme nejen bázi prostoru S(A) = V , ale i hledané
souřadnice.

Vidíme, že bázické sloupce jsou první, druhý a čtvrtý. Bázi prostoru S(A) = V
tedy tvoří původní vektory v1 = (3, 1, 5, 4)T , v2 = (2, 2, 3, 3)T a v4 = (1, 3, 1, 1)T .

Ze třetího sloupce upravené matice RREF(A) dostaneme souřadnice vektoru v3
vzhledem k bázi B = {v1, v2, v4}, neboť platí

v3 = (1,−1, 2, 1)T = 1 · (3, 1, 5, 4)T + (−1) · (2, 2, 3, 3)T ,

a tedy [v3]B = (1,−1, 0)T .

Cv. 10.7 Určete, jaký je vztah mezi prostory Ker(AB) a Ker(B) pro matice

(a) A ∈ Rm×n, B ∈ Rn×p,
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(b) A ∈ Rn×n regulární, B ∈ Rn×p.

Řešení:

(a) Nechť x ∈ Ker(B), pak z definice jádra platí Bx = o. Vektor x patří také
do jádra matice AB, protože

(AB)x = A(Bx) = Ao = o,

dostaneme tedy inkluzi Ker(B) ⊆ Ker(AB). Obrácená inkluze obecně ne-
platí, např. pro A = 0n a B = In je vektor y = (1, 0, . . . , 0)T v jádru matice
AB, ale nikoliv v jádru matice B.

(b) Nahlédneme, že pro regulární matici A platí také inkluze Ker(AB) ⊆ Ker(B),
a tedy můžeme psát Ker(AB) = Ker(B).
Důkaz. Nechť x ∈ Ker(AB), potom (AB)x = o. Z regularity matice A
existuje inverzní matice A−1, pro kterou platí

Bx = (A−1A)Bx = A−1((A B)x) = A−1o = o,

z čehož plyne x ∈ Ker(B).

Cv. 10.8 Rozhodněte, zda platí rank(A+B) ≤ rank(A) + rank(B) pro A,B ∈ Rm×n.

(Hint: Jaký je vztah mezi prostory S(A +B) a S(A) + S(B)?)

Řešení:

Uvažujme prostor generovaný sjednocením sloupců matice A a sloupců matice B,
tedy spojení S(A) + S(B). Dimenze tohoto prostoru je

dim(S(A) + S(B)) ≤ dimS(A) + dimS(B) = rank(A) + rank(B).

Dále, prostor S(A) + S(B) obsahuje všechny vektory generované sloupci matice
A+B, tedy S(A+B) je podprostorem S(A) + S(B). Platí proto

rank(A+B) = dimS(A+B) ≤ dim(S(A) + S(B)) ≤ rank(A) + rank(B).
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