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4. Regulární a inverzní matice

Cv. 4.1 Otestujte regularitu matice





1 3 2
2 3 5
1 1 1



.

Řešení:

Regularitu matice můžeme otestovat pomocí hodnosti matice. Převedeme matici
na odstupňovaný tvar:





1 3 2
2 3 5
1 1 1



 ∼





1 3 2
0 −3 1
0 −2 −1



 ∼





1 3 2
0 −3 1
0 0 −5

3



 .

Matice má plnou hodnost, tedy je regulární.

Cv. 4.2 Rozhodněte, kdy je trojúhelníková matice regulární.

Řešení:

Horní trojúhelníková matice je již (skoro) v odstupňovaném tvaru. Pokud jsou
diagonální prvky nenulové, pak to jsou pivoty a matice je regulární. Pokud ale-
spoň jeden diagonální prvek je nulový, pak v příslušném sloupci není pivot, a
tím pádem je matice singulární.

Pro dolní trojúhelníkovou matici je situace podobná. Matici transponujeme a
převedeme tím na předchozí případ.

Cv. 4.3 Dokažte, že následující matice jsou singulární, a to tak, že najdete nenulové
řešení soustavy Ax = 0:

(a) matice A má nulový i-tý sloupec tj. A∗i = 0;

(b) matice A má i-tý a j-tý sloupec shodný, tj. A∗i = A∗j pro i 6= j.

Řešení:

(a) x = ei;

(b) x = ei − ej .

Cv. 4.4 Najděte inverzní matici k maticím

(a)
(

2 1
1 3

)

(b)





1 2 3
2 3 5
3 5 10





(c)







d1 0
. . .

0 dn






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Řešení:

Ve všech třech případech využijeme algoritmu, kdy pomocí Gaussovy–Jordanovy
(G-J) eliminace převedeme matici (A | In) na tvar (In | A−1).

(a) Pomocí G-J eliminace dostáváme

(

2 1 1 0
1 3 0 1

)

∼

(

1 3 0 1
2 1 1 0

)

∼

(

1 3 0 1
0 −5 1 −2

)

∼

∼

(

1 3 0 1
0 1 −1

5
2
5

)

∼

(

1 0 3
5

−1
5

0 1 −1
5

2
5

)

(b) Pomocí G-J eliminace dostáváme





1 2 3 1 0 0
2 3 5 0 1 0
3 5 10 0 0 1



 ∼





1 2 3 1 0 0
0 −1 −1 −2 1 0
0 −1 1 −3 0 1



 ∼

∼





1 2 3 1 0 0
0 −1 −1 −2 1 0
0 0 2 −1 −1 1



 ∼





1 2 3 1 0 0
0 −1 −1 −2 1 0
0 0 1 −1

2
−1

2
1
2



 ∼

∼





1 2 0 5
2

3
2

−3
2

0 −1 0 −5
2

1
2

1
2

0 0 1 −1
2

−1
2

1
2



 ∼





1 0 0 −5
2

5
2

−1
2

0 1 0 5
2

−1
2

−1
2

0 0 1 −1
2

−1
2

1
2





(c) Pomocí G-J eliminace dostáváme







d1 0 1 0
. . . . . .

0 dn 0 1






∼







1 0 1
d1

0
. . . . . .

0 1 0 1
dn







Jediné, co G-J eliminace provádí za operace je přeškálování řádků, protože
první podmatice je již v diagonálním tvaru.

Inverzní matice existuje ale jen tehdy, když všechny hodnoty d1, . . . , dn jsou
nenulové. V opačném případě je matice singulární, a tudíž inverzi nemá.

Cv. 4.5 Invertujte matice elementárních řádkových úprav.

Řešení:

Ukážeme dva postupy.

1) První způsob je pomocí G-J eliminace převodem (A | In) na (In | A−1). Matici



Příklady na procvičení z Lineární algebry 1 23

Ei(α) invertujeme takto:

(Ei(α) | In) =

















1 0 . . . . . . 0 1 0 . . . . . . 0

0
. . . . . . ... 0

. . . . . . ...
... . . . α

. . . ...
... . . . 1

. . . ...
... . . . . . . 0

... . . . . . . 0
0 . . . . . . 0 1 0 . . . . . . 0 1

















∼

∼

















1 0 . . . . . . 0 1 0 . . . . . . 0

0
. . . . . . ... 0

. . . . . . ...
... . . . 1

. . . ...
... . . . 1/α

. . . ...
... . . . . . . 0

... . . . . . . 0
0 . . . . . . 0 1 0 . . . . . . 0 1

















= (In | Ei(α
−1)).

Matici Eij(α) invertujeme takto:

(Eij(α) | In) =

















1 0 . . . . . . 0 1 0 . . . . . . 0
. . . . . . ... 0

. . . . . . ...

1
. . . ...

... . . . 1
. . . ...

α
. . . 0

... . . . . . . 0
1 0 . . . . . . 0 1

















∼

∼

















1 0 . . . . . . 0 1 0 . . . . . . 0

0
. . . . . . ... . . . . . . ...

... . . . 1
. . . ... 1

. . . ...
... . . . . . . 0 −α

. . . 0
0 . . . . . . 0 1 1

















= (In | Eij(−α)).

Matici Eij invertujeme takto:

(Eij | In) =













0 1 1 0

1 0 0 1













∼

∼













1 0 0 1

0 1 1 0













= (In | Eij).

Tudíž Ei(α)
−1 = Ei(α

−1), Eij(α)
−1 = Eij(−α) a E−1

ij = Eij.

2) Druhý způsob je využitím významu matic elementárních úprav. Matice Ei(α)
násobí i-tý řádek číslem α 6= 0. Inverzní operace je vydělení i-tého řádku číslem
α, což je reprezentováno maticí Ei(α

−1). Zkouška Ei(α)Ei(α
−1) = I pak skutečně

ověří, že se jedná o inverzní matici.
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Matice Eij(α) přičte α-násobek j-tého řádku k i-tému. Inverzní operace je ode-
čtení α-násobku j-tého řádku od i-tého, což je representováno maticí Eij(−α).
Zkouška opět ověří, že se jedná o inverzní matici.

Matice Eij prohazuje i-tý a j-tý řádek. Inverzní operace je tatéž, výměna i-tého
a j-tého řádku. Tudíž matice Eij je inverzní sama k sobě.

Cv. 4.6 Upravte následující výrazy.

(a) (ABC)−1

(b) (I − BTA−1)A+ (ATB)TA−1

Řešení:

(a) Stačí iterativně aplikovat pravidlo (PQ)−1 = Q−1P−1. Tedy:

(ABC)−1 = (A(BC))−1 = (BC)−1A−1 = C−1B−1A−1.

(b) S využitím základních vlastností maticového součinu, transpozice a inverze
odvodíme

(I − BTA−1)A+ (ATB)TA−1

= IA− BTA−1A+ (ATB)TA−1 [distributivita]

= IA− BT I + (ATB)TA−1 [definice inverze]

= A− BT + (ATB)TA−1 [násobení maticí I]

= A− BT +BTAA−1 [transpozice součinu matic]

= A− BT +BT [definice inverze]
= A.

Cv. 4.7 Dokažte, že pro A,B ∈ Rn×n, kde A regulární, platí

(ABA−1)k = ABkA−1.

Řešení:

Postupujeme matematickou indukcí. Pro k = 1 tvrzení platí, protože

(ABA−1)1 = AB1A−1.

Indukční krok. Nechť tvrzení platí pro k − 1, tedy (ABA−1)k−1 = ABk−1A−1.
Upravíme za použití indukčního předpokladu

(ABA−1)k = (ABA−1)k−1(ABA−1) = (ABk−1A−1)(ABA−1)

= ABk−1(A−1A)BA−1 = ABk−1BA−1

= ABkA−1.
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Cv. 4.8 Invertujte matici řádu n:

A =















1 1 1 . . . 1
1 2 2 . . . 2
1 2 3 . . . 3
...

...
... . . . ...

1 2 3 . . . n















Řešení:

Podle postupu sestavíme rozšířenou matici:

(A | In) =

















1 1 1 . . . 1 1 0 . . . . . . 0

1 2 2 . . . 2 0
. . . . . . ...

1 2 3 . . . 3
... . . . 1

. . . ...
...

...
... . . . ...

... . . . . . . 0
1 2 3 . . . n 0 . . . . . . 0 1

















.

Od řádků 2 až n odečteme první řádek a dostaneme
















1 1 1 . . . 1 1 0 . . . . . . 0

0 1 1 . . . 1 −1 1
. . . ...

0 1 2 . . . 2
... 0 1

. . . ...
...

...
... . . . ...

... . . . . . . 0
0 1 2 . . . n− 1 −1 0 . . . 0 1

















.

V levé části je vpravo dole je matice stejného typu jako A, pouze o řád menší.
Postupujeme tedy indukcí dále a po dalších n− 2 krocích dostaneme

















1 1 1 . . . 1 1 0 . . . . . . 0

0 1 1 . . . 1 −1 1
. . . ...

0
. . . 1 . . . 1 0

. . . 1
. . . ...

... . . . . . . ...
... . . . . . . . . . 0

0 . . . . . . 0 1 0 . . . 0 −1 1

















.

Nyní od prvního řádku odečteme druhý, pak od druhého třetí, atd. až od před-
posledního ten poslední. Dostaneme matici, kde hledaná inverze A−1 je napravo

















1 0 0 . . . 0 2 −1 0 . . . 0

0 1 0 . . . 0 −1 2 −1
. . . ...

0
. . . 1

... 0
. . . . . . . . . 0

... . . . . . . 0
... . . . . . . . . . −1

0 . . . . . . 0 1 0 . . . 0 −1 1

















.

Cv. 4.9 Mějme blokovou matici
(

A B
0n C

)

s bloky A,B,C ∈ Rn×n.
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(a) Rozhodněte, kdy je regulární.

(b) Určete inverzi, pokud B = 0n.

(c) Určete inverzi obecně.

Řešení:

(a) Regularitu můžeme otestovat Gaussovou eliminací převodem do odstupňo-
vaného tvaru. Uvědomme si, že při eliminaci řádků odpovídajících matici A
nijak neupravujeme řádky odpovídající C a naopak. Regularita matice je
proto podmíněna regularitou bloku C, v opačném případě bychom dostali
nulový řádek. Pokud je blok C regulární, jsme schopni matici převést do
tvaru

(

A B
0n C

)

∼

(

A B
0n In

)

∼

(

A 0n
0n In

)

.

Tedy pokud by nebyl blok A regulární, mohli bychom z tohoto tvaru získat
Gaussovou eliminací nulový řádek. Regularita bloků A, C je tedy nutnou
podmínkou regularity matice.
Zároveň regularita A, C zajišťuje, že můžeme převést matici do tvaru

(

In 0n
0n In

)

,

což je redukovaný odstupňovaný tvar původní matice s plnou hodností.
Regularita bloků A, C je tedy jak nutnou, tak i postačující podmínkou
regularity.

(b) Pro výpočet inverze můžeme blokově zapsat rozšířenou soustavu jako
(

A 0n In 0n
0n C 0n In

)

.

Podobně jako v předchozím podúloze se při G-J eliminaci budou upra-
vovat řádky odpovídající blokům A a C nezávisle na sobě. Při převodu
(

A 0n | In 0n
)

se nulové bloky 0n po celou dobu výpočtu nebudou mě-
nit a nebude na nich záviset ani podoba eliminace. Na konci eliminace
proto dostaneme

(

In 0n | A−1 0n
)

. Obdobný průběh bude mít i výpočet
na podmatici

(

0n C | 0n In
)

. Inverzní matice má proto tvar
(

A−1 0n
0n C−1

)

.

(c) Pro výpočet inverze můžeme blokově zapsat rozšířenou soustavu jako
(

A B In 0n
0n C 0n In

)

.

Opět využijeme nezávislosti eliminace pro řádky odpovídající blokům A a
C a převedeme matici nejprve do tvaru

(

A B In 0n
0n In 0n C−1

)

.
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Klíčové je, že po zbytek eliminace se spodní dva bloky již měnit nebudou.
Víme tedy, že inverzní matice má tvar

(

X Y
0n C−1

)

,

kde matice X, Y zatím neznáme. Určit je můžeme ze vztahu matice a její
inverze,

(

A B
0 C

)(

X Y
0n C−1

)

=

(

In 0n
0n In

)

.

Z tohoto vztahu můžeme odvodit dvojici soustav,

AX = In a AY +BC−1 = 0n.

Z první soustavy dostáváme X = A−1, z druhé Y = −A−1BC−1. Inverzní
matice má tedy tvar

(

A−1 −A−1BC−1

0n C−1

)

.

Poznámka. Alternativní způsob získání matic X, Y je, že upravujeme přímo
bloky v matici

(

A B In 0n
0n In 0n C−1

)

.

První blokový řádek vynásobíme maticí A−1 (z bodu (a) víme, že existuje):
(

In A−1B A−1 0n
0n In 0n C−1

)

a nakonec od prvního blokového řádku odečteme A−1B-násobek druhého:
(

In 0n A−1 −A−1BC−1

0n In 0n C−1

)

Cv. 4.10 Uvažujme matici v blokovém tvaru

A =

(

α aT

b C

)

,

kde α 6= 0, a, b ∈ Rn−1 a C ∈ R(n−1)×(n−1). Aplikujte na matici jednu iteraci
Gaussovy eliminace a odvoďte rekurentní vzoreček na test regularity.

Řešení:

Od druhého řádkového bloku odečteme 1
α
b-násobek prvního řádku a dostaneme

(

α aT

b− α 1
α
b C − 1

α
baT

)

=

(

α aT

o C − 1
α
baT

)

.

Tím jsme provedli jednu iteraci Gaussovy eliminace. Protože pivot vlevo nahoře
je nenulový, můžeme usoudit, že matice A je regulární právě tehdy, když je
regulární matice C − 1

α
baT . Tím jsme zredukovali test regularity matice řádu n

na regularity matice matice řádu n− 1.
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