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We provide a simple combinatorial analysis of the RANKING algorithm, originally introduced
in the seminal work by Karp, Vazirani, and Vazirani [KVV90], demonstrating that it achieves a
(1/2 4 ¢)-approximate matching for general graphs for ¢ > 0.005.

1 Introduction

In this work, we study a randomized greedy matching algorithm called RANKING for general graphs.
This algorithm was first introduced in the seminal work of Karp, Vazirani, and Vazirani [17] in
1990 for online bipartite matching with one-sided vertex arrivals and was subsequently extended to
general graphs [12] and bipartite graphs [19] with random vertex arrivals. The algorithm belongs to
a class of matching algorithms called vertex-iterative (VI) randomized greedy matching algorithms.
These algorithms first draw a permutation m over the vertices uniformly at random. They then
iterate over the vertices in the order of 7, matching each vertex to one of its available neighbors (if
any) according to a specific neighbor selection policy. In RANKING for general graphs, this policy
selects the first unmatched neighbor in the order given by the same permutation 7 used for the
initial iteration.

Besides their simplicity and applicability to settings such as online matching, a significance of
VI randomized greedy matching algorithms is that they outperform deterministic greedy algorithms
and the randomized edge-iterative greedy algorithm® [8], achieving an approximation ratio larger
than 0.5. The approximation ratio of vertex-iterative randomized greedy matching algorithms is
well-understood for bipartite graphs, with the best approximation ratio being between 0.696 [19]
and 0.75 [12]. However, despite a long line of work [1, 21, 3, 22, 12, 6], our understanding of
their approximation ratio for general graphs remains limited, with the best-known lower and upper
bounds being 0.5469 [6] and 0.75 [12]. Aronson, Dyer, Frieze, and Suen [1] were the first to show
that VI randomized greedy algorithms surpass 0.5 for general graphs by designing a VI algorithm
called the modified randomized greedy (MRG)? and proving a lower bound of 0.5 + 1/400, 000 for
its approximation ratio. This approximation ratio was later improved to 0.5 + 1/256 [21]. Both
of these papers involve quite complicated combinatorial analyses. Later, in [6] and [22], authors
proved 0.5469 and 0.531 approximation guarantees for RANKING and MRG, respectively, using
factor-revealing linear programs.

!The algorithm that draws a permutation 7 over the edges uniformly at random and greedily includes the edges
according to .
2In this algorithm, the neighbor selection policy selects one of the unmatched neighbors uniformly at random.
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In this work, we take a fresh look at the RANKING algorithm for general graphs and provide
a significantly simpler combinatorial analysis demonstrating that it achieves an approximation
ratio of at least 0.505. Our approach is not only more straightforward and intuitive compared to
all previous work, but our approximation guarantee also surpasses existing guarantees obtained
without solving factor-revealing linear programs.

Our Techniques. Our proof idea starts with a few simple, well-known observations. Let OPT be
the maximum matching of the input graph, which we can assume is a perfect matching w.l.o.g. [21],
and let R be the output of RANKING. If R has an approximation ratio smaller than 1/2 + ¢ for
a constant ¢ > 0, then R @& OPT contains at least (1/2 — 3¢)n/2 augmenting paths of length
three. Furthermore, since R is a maximal matching, the endpoints of these augmenting paths are
unmatched in R, and they form an independent set. Following these observations, we define a
graph structure called a k-wasteful independent set (k-WIS) in Definition 2.1. Given a subset of 2k
vertices, they form a k-WIS if they are the 2k endpoints of £ augmenting paths of length three in
R & OPT. Our analysis then involves a double counting of these k-WIS for k = (1/2 —3c)n/2. We
provide combinatorial lower and upper bounds for the expected number of k-WIS in the output
of RANKING (respectively in Lemma 2.2 and Lemma 2.5). We then show that for ¢ < 0.005, our
bounds reach a contradiction, hence proving that RANKING in expectation has an approximation
ratio of at least 0.505.

Further Related Work. After its introduction in the seminal work of Karp, Vazirani, and
Vazirani [17], RANKING and its extensions have been studied extensively in various settings such as
online matching with vertex arrivals [9, 11, 2, 7, 13, 14, 16, 6], oblivious matching [19, 22, 3], and
stochastic matching with query commits [10, 5]. See the excellent survey on online matching [15]
for a more detailed discussion of related work.

1.1 Preliminaries

Notation and Definitions. Throughout the paper, we denote the input graph as G = (V| E),
where |V| = n. A maximal matching in G is a matching M such that there is no edge e € E\ M for
which M Ue is also a matching. A maximum matching in G is a matching with the maximum number
of edges, denoted by u(G). Let OPT denote a fixed maximum matching of G. As discussed in
[12, 21] (see Corollary 2 of [21]), one can assume that G contains a perfect matching when analyzing
the ratio of the RANKING algorithm.

The Ranking Algorithm. We first draw a permutation 7 over the vertices uniformly at random.
Then, we iterate over the vertices in order of m, and match each vertex to its first unmatched
neighbor, again in the order of 7, if any. We use m(v) to denote the position of vertex v in the
permutation selected by RANKING.

Augmenting Paths. An augmenting path P for a matching M in a graph G is a path that
alternates between edges of OPT and M such that the path starts and ends with vertices that are
unmatched in M. The length of the augmenting path is the number of edges it contains. The
presence of an augmenting path indicates that the matching M is not maximum. Furthermore,
when matching M is far from being maximum, say a 1/2-approximation, there exist many short
augmenting paths.



Proposition 1.1 ([18, Lemma 1]). Let & > 0 and M be a mazimal matching of G such that
M| < (1/2+4 «) - u(G). Then, at least (1/2 — 3a) - u(G) edges of M are in disjoint, length-three
augmenting paths.

Combinatorial Tools. We use the following two well-known bounds on the binomial coefficient.

Proposition 1.2 ([20, Chapter 3]). Let a1, as, ..., a, be n positive integers such that > | a; = m.

Then, for a positive integer z, > 1y (%) is minimized when {ay,...,a,} = {|m/n], [m/n]}.

Proposition 1.3 ([4, Chapter 11]). Let n and an be two positive integers and 1/n < a < 1/2.
Then, we have () < 2"H(@) where H(a) = —a -logy(a) — (1 — ) - logy(1 — @).

2 The Analysis

Throughout the analysis, we assume that the expected approximation ratio of RANKING is at most
1/2 + ¢ for some rational ¢ > 0. Then, we prove that if ¢ is smaller than some constant, it leads
to a contradiction. This implies a lower bound on the expected approximation ratio of RANKING.
Moreover, we assume that, without loss of generality, ¢n/2 is an integer. To understand this,
consider a graph where the approximation ratio of RANKING is 1/2 + ¢ and ¢n/2 is not an integer.
For ¢ = a/b with integers a, b, by copying the same graph 2b times, the approximation guarantee
of RANKING remains unchanged, but now c¢n//2 is an integer, where n’ = 2bn is the number of
vertices in the new graph. Our proof relies on counting a structure in the graph, referred to as a k-
wasteful independent set (k-WIS), which we define formally in Definition 2.1. Next, in Lemma 2.2,
we demonstrate a lower bound on the expected number of k-WIS if the approximation ratio of
RANKING is at most 1/2 + ¢. Further, in Lemma 2.5, we prove an upper bound on the number of
k-WIS. Finally, in Theorem 2.6, we combine these bounds to show a lower bound for the constant
c.

Definition 2.1 (k-wasteful independent set (k-WIS)). Given matching R the output of RANKING,
a subset of 2k vertices I is a k-wasteful independent set, iff vertices in I are end-points of k length-
three augmenting paths in R ® OPT. This also implies that I is an independent set of G since
RANKING outputs a mazimal matching and vertices in I are left unmatched in R. Figure 1 shows
an example of a 5-WIS.
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Figure 1: The red edges are from matching R outputted by RANKING and the blue ones are from OPT.
The lower vertices form a 5-WIS as they are the endpoints of five length-three augmenting.

Lemma 2.2 (Lower Bound on the Expected Number of k-WIS). If the approzimation ratio of
RANKING is at most 1/2 4 ¢ for 0 < ¢ < 1/6, then the expected number of k-WIS in the output of
RANKING is at least one, when k = (1/2 —3c) -n/2.



Proof. First, if the size of the matching produced by RANKING for some permutation is (1/24-c)-n/2,
then there exist at least (1/2 —3c¢)-n/2 disjoint length-three augmenting paths by Proposition 1.1.
Let p1,..., tn be the sizes of the matchings produced by RANKING for all different permutations
such that p; = (1/2 4 ¢;) - n/2 for some ¢; > 0 (such ¢; always exists since the output of RANKING
is a maximal matching). For the ith permutation, there exist at least (1/2 — 3¢;) - n/2 length-
three augmenting paths. Therefore, the total number of length-three augmenting paths in all
permutations, denoted by s, is at least

n!

1 n n-n  3n ! | n  3nc
5= (G=3a)g=—-F > ez (3-F )
i=1 i=1

where the last inequality is followed by the fact that the approximation ratio of the algorithm is at
least 1/24c. Let a; be the number of length-three augmenting paths in the ith permutation. There
exist at least (‘};) number of k-WIS in the ith permutation. It follows that the total number of k-
WIS is Z;il (‘Z) Moreover, Z:’il (‘}g) is minimized when all a;’s are equal due to Proposition 1.2.
Therefore, the total number of k-WIS is at least

; (k) >l </k 7”“) ol (Zj - gzg) .

which implies that the expected number of k-WIS is at least one. O

Claim 2.3. There exist at most (n2/k2) - 3% different k-WIS for all possible outputs of RANKING on
input graph G.

Proof. First, we select 2k edges from OPT that will create k length-three augmenting paths in
Definition 2.1. This selection has (”2/13) possible combinations. To determine which endpoints of
these edges will form I (the k—WIS) in Definition 2.1, there are 22* possible choices. We further
show that this is at most 3. Consider the collection of k length-three alternating paths denoted
by L. Suppose there is an augmenting path (va,v1,u1,us) in L (for instance, see Figure 1). In
this case, we can rule out the possibility of both v; and u; being present in I simultaneously, since
there is an edge between v; and u;, and I must be an independent set. Now apply this process to
all k& augmenting paths in L. For each pair of edges in OPT that appear in the same length-three
augmenting path in L, there are 3 possible choices for which endpoint can be included in I, since
the endpoints of the middle edge in the augmenting path cannot both be in I. Consequently, the
total number of different possible k-WIS is at most (nz/]f) -3k, O

Claim 2.4. Let I = {v1,v,...,v9} be a set of independent vertices in G. Then, the vertices in I
form a k-WIS with probability at most 1/22* in the output of RANKING.

Proof. Let Er denote the set of edges in OPT that have at least one endpoint in I. Since OPT
is a perfect matching and I is an independent set, we have |Er| = 2k, and E} covers all vertices
in I. Let V(E]) be the set of endpoints of E; and I = V(E;) \ I. For the edges in Ej to form
length-three augmenting paths, they must be partitioned into pairs, with each pair creating one
length-three augmenting path.

Let (v1,v2) and (uq,uz2) be such a pair with ve and ug in I (for instance, see Figure 1). Then there
must exist an edge between v, and u; to form the augmenting path. We claim that 7(vy) < 7(ug) if 7
is the permutation chosen by RANKING. To prove this by contradiction, assume that 7(vy) > 7(u2).



When uy is processed by RANKING, since it is wasted (unmatched in R), it must be available and
have no free neighbor. In particular, this means u; is matched and has a match with rank less than
m(uz). However, this implies that 7(match of u;) < m(u2) < 7(v1), contradicting the fact that u;
is matched with v; in R. Thus, we have 7(v1) < m(ug). We call ug in this case the counterpart
of v1 and let C(v1) denote the counterpart of v1. For each vertex in I, its counterpart is a unique
vertex in I. Hence, the set of all counterparts of vertices in I is I. Using the same argument, we
can show that for all vertices v € I, 7(v) < 7(C(v)).

If we consider a permutation of the vertices in I U I, it must satisfy the property described in
the above argument for I to be a k-WIS. In the remainder of the proof, we will focus on calculating
the probability of this property being satisfied. Let ¢ be a permutation over vertices in I. In each
iteration, we add a new vertex from I to the permutation such that it does not violate the property.
Let u be the last vertex in . In the permutation of vertices in I and I, C(u) can appear only after
u, and since u is the last element in I, the relative place of C(u) with respect to o is only after its
last element. For C'(u) to be after all elements in o, which has length 2k, it has a probability of
1/(2k + 1) since the permutation that RANKING chooses is uniformly at random.

Let u; be the ¢th vertex from the end in . When we add the counterpart of u;, there are 2¢ — 1
positions (from the end of the permutation to the one right after u;*) among the available (2k + i)
positions where we can place it. Therefore,

2k

2i—1
Pr[ I is a k-WIS in output of RANKING | < H ’
i=1

2k + i

_(4k)!/(TT, 20)
2%, (2k + i)
(4k)1/((2k)! - 2%F) 1

(4k)1/(2k)! 22k

O]

Lemma 2.5 (Upper Bound on the Expected Number of k-WIS). The expected number of k-WIS
in the output of RANKING is at most (”2/,3) - (3/4)k.

Proof. By Claim 2.3, there exist at most ("2/,3) - 3% different k-WIS. Also, each of them has a
probability 1/(22%) to be in the output of RANKING by Claim 2.4. Thus, by the linearity of the
expectation, the expected number of k-WIS in the output of RANKING is at most (”2/13) ((3/4)F. O

Theorem 2.6. The expected approrimation ratio of RANKING is at least 0.505 in general graphs.

Proof. Suppose that the approximation ratio of RANKING is at most 1/2 + ¢ for ¢ < 0.005. Let
k= (1/2—3c)-n/2. By Lemma 2.2, the expected number of k-WIS is at least one. On the other

hand, by Lemma 2.5, the expected number of k-WIS is at most (T;/]f) -(3/4)*. Hence, it must hold

that (”%2) . (3/4)’“ > 1. Now, we show that this cannot happen for ¢ < 0.005. In particular, we have

n/2 3\ "
2k 4
3As the counterparts of the last ¢ — 1 vertices are all placed after u;, there are, in total, 2(i—1)+1=2i—1slots
where we can put C(u;) to make m(u;) < 7(C(u;)) hold.




:< /2 ) . (i) s (Since k = (1/2 — 3¢) - n/2)

(1—-6¢)-n/2
TL/2 3 (1/2—3c)-n/2
= (66 N /2> : <4> (By the identity of binomial coefficients)

1 (By Proposition 1.3)

—9(n/2)-H(6c) | 9(n/2)logy(§)(1/2-3¢)

o (n/2)[H(60) +logy(2)-(1/2-30)]

<on/2)-H(Ge) <3> (/e

<1 (When ¢ < 0.005, H(6c) + logQ(g) -(1/2 = 3¢) < 0),

which is a contradiction. Therefore, ¢ cannot be smaller than 0.005 as otherwise, we obtain (
(3/4)% < 1 which completes the proof.
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