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Abstract
For graphs of average degree d, positive integer weights bounded by W , and accuracy parameter ϵ > 0,

[Chazelle, Rubinfeld, Trevisan; SICOMP’05] have shown that the weight of the minimum spanning tree can be

(1+ ϵ)-approximated in Õ(Wd/ϵ2) expected time. This algorithm is frequently taught in courses on sublinear

time algorithms. However, the Õ(Wd/ϵ2)-time variant requires an involved analysis, leading to simpler but
much slower variations being taught instead.

Here we present an alternative that is not only simpler to analyze, but also improves the number of queries,
getting closer to the nearly-matching information theoretic lower bound. In addition to estimating the weight
of the MST, our algorithm is also a perfect sampler for sampling uniformly at random an edge of the MST.
At the core of our result is the insight that halting Prim’s algorithm after an expected Õ(d) number of steps,
then returning the highest weighted edge of the tree, results in sampling an edge of the MST uniformly at
random. Via repeated trials and averaging the results, this immediately implies an algorithm for estimating
the weight of the MST. Since our algorithm is based on Prim’s, it naturally works for non-integer weighted
graphs as well.

1 Introduction

As data sets grow at an unprecedented rate, traditional algorithms that operate in linear or polynomial time
can become infeasible. Sublinear time algorithms, which construct approximate solutions based on only a small
portion of the input, offer a solution in this setting. By reducing the dependency on input size, these algorithms
address practical limitations in both computational resources and time constraints. Techniques developed for
sublinear time algorithms also find application in other modern computational problems such as distributed [16],
dynamic [4, 5], streaming algorithms [11] and learning [13].

In this work, we focus on the minimum spanning tree (MST) problem. Computing the MST was shown to
be impossible in sublinear time (i.e., o(n2) on dense graphs) even when allowing the MST to be a constant factor
approximation [15]. However, [6] showed that one can estimate the weight of the MST up to (1+ ϵ) in Õ(Wd/ϵ2)
expected time1 for graphs with average degree d and positive integer weights bounded by W . Note that this
time complexity has no dependence on the number of vertices n and is just constant time for sparse graphs with
small edge weights. [6] also proved a lower bound of Ω(Wd/ϵ2) time, matching their upper bound up to polylog
factors. Later work on estimating the weight of the MST studied other settings, such as complete graphs where
the weights form a metric [10] or euclidean distances [8]. Applications include, for example, (2+ ϵ)-approximating
the length of a (metric) TSP tour in sublinear time.

Since computing the MST is a well established and common problem, algorithms for estimating the MST are
a natural choice to teach in courses on sublinear time algorithms. However, since the analysis of [6] is somewhat
involved, for educational purposes simplified but slower versions of the algorithm are commonly taught instead
[9, 19, 20, 17, 18, 7, 22, 12, 1, 2, 14, 3]. These simplified algorithms capture the main ideas of [6] but their time
complexities do not match the lower bound of Ω(Wd/ϵ2). Depending on the accuracy of the error analysis, the
simplified versions only achieve an expected time ranging between Õ(W 3ϵ−2dmax) and O(poly(W/ϵ)dmax), where
dmax is the maximum degree in the graph. In addition to the worse dependence on W and ϵ, note that the
maximum degree dmax can generally be substantially larger than the average degree d, even in sparse graphs.

In this work, we show that a simple modification of Prim’s algorithm achieves the same Õ(Wd/ϵ2) time
complexity as [6] for estimating the weight of the MST. Our algorithm also improves the log factors of the
sampling complexity, bringing the complexity closer to the lower bound of Ω(Wd/ϵ2). The techniques further
imply a perfect sampler for sampling an edge of the MST uniformly at random in just Õ(d) expected time.
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1.1 Our Results Throughout, d is the average vertex degree, where the degree deg(v) of a vertex is the number
of edges adjacent to it, n the number of vertices, W = Wmax/Wmin the ratio of largest to smallest edge weight.
Given a set of vertices U ⊆ V , vol(U) represents the sum of the degrees of the vertices in U . Like [6], we assume
that the algorithm receives n and W as input, but it does not need to know d. We consider the standard model
for sublinear time graph algorithms, where query access to the adjacency list is given. Querying the next entry
in the adjacency list of any vertex is assumed to take O(1) time, i.e., reading the entire adjacency list of a vertex
v takes O(deg(v)) time.

Theorem 1.1. There is a randomized algorithm that computes a (1 + ϵ) approximation of the MST weight
using O(Wdϵ−2 log(W/ϵ)) queries in expectation and runs in O(Wdϵ−2 log(W/ϵ) log log logW

ϵ ) expected time. The
algorithm’s output is correct with probability 3/4.

The previous bound by [6] is O(Wdϵ−2 log(Wd/ϵ)) expected time and number of queries, when the graph has
integer weights. Their result was extended to real weights by discretizing the weights into multiples of Θ(W/ϵ),
resulting in a O(Wdϵ−3 log(Wd/ϵ)) bound for non-integer weights, i.e., a super-cubic dependence on ϵ. Closing
this gap for integral and real weights was explicitly asked as open question in [6]. Our algorithm answers this
question for the sampling complexity, and for time complexity it is answered up to a log log ϵ−1 factor.

The lower bound is Ω(Wd/ϵ2) and it is open if the logarithmic gap between upper and lower bound can
be closed [21]. Our result makes progress towards answering this question by showing that the logarithmic
dependence on d is not required.

The same techniques used to obtain Theorem 1.1 also imply the following perfect sampler for sampling edges
of the MST uniformly at random in Õ(d) time.

Theorem 1.2. In O(d log2 n) expected time we can sample edge weights of the MST. Here any weight w is
returned with probability #MST edges of weight w

n−1 . If the MST is unique then we can sample an edge of the MST
uniformly at random.

Note that the number of edges of weight w in the MST is unique, even if the MST itself is not unique. Further,
we can always assume that the MST is unique by tie-breaking the edges (e.g., edges of the same weight could be
ordered alphabetically by their end points).

Both Theorems 1.1 and 1.2 are obtained from a simple modification of Prim’s algorithm. We show that
running Prim’s algorithm from a random start vertex, then halting the execution after a random number of steps,
results in a uniform sample of an MST edge. The pseudo-code is given in Algorithm 1, and formally we prove the
following guarantee:

Lemma 1.1. For T > 2|E|, Algorithm 1 (SampleMSTedgeT (G)) returns weight w with probability

P[SampleMSTedgeT (G) = w] =
#MST edges of weight w

n

and returns 0 with probability 1/n. In particular, E[SampleMSTedgeT (G)] = MST-weight/n.

Observe that E[n · SampleMSTedgeT (G)] for T = n2 > 2|E| is the weight of an MST. Thus by repeating
trials and averaging the results, we can estimate the weight of the MST via simple application of Chebyshev’s
inequality. (We show that a smaller T = O(W/ϵ) suffices resulting in Theorem 1.1.) Further, Theorem 1.2 is
implied by repeatedly calling SampleMSTedgeT (G) (for T = n2) until it returns a non-zero value.

Lemma 1.1 also works for disconnected graphs, in which case it returns weight w with probability (#MSF
(minimum spanning forest) edges of weight w)/n. Then the probability of returning 0 is k/n, where k is the
number of connected components of G. (See Section 2.1 for details.)

Lastly, we would like to mention that the condition of Line 4 in Algorithm 1 is just a single line modification
of Prim’s algorithm (see Algorithm 3 in the appendix). Prim’s algorithm uses a priority queue to queue edges
ordered by edge weight. Line 4 just means to halt Prim’s algorithm once a total of X · deg(vstart) edges have
been added to the queue. Prim’s algorithm is one of the standard algorithm for computing the MST and it’s
an interesting insight how this small modification to Prim’s algorithm makes it suitable for the sublinear-time
regime.
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Algorithm 1 SampleMSTedgeT (G) (Full pseudo code, including Prim’s Algorithm, see Algorithm 3)

1: Choose X ≥ 1 according to Pr[X ≥ k] = 1/k (i.e. X ← 1
Y for Y uniform from (0, 1])

2: if X ≥ T , halt and return 0.
3: Run Prim’s algorithm from a uniformly at random picked vstart ∈ V .
4: Halt Prim early when vol(U) > X · deg(vstart) where U ⊆ V are the vertices explored so far.

(Thus Prim visits a total of X · deg(vstart) edges, double counting edges when visiting them again from
their other endpoint.)

5: return highest edge weight added to the MST so far, or 0 if Prim was not halted early.

Algorithm 2 Estimate MST weight(G, W , ϵ)

1: total ← 0
2: for i in 0...32W/ϵ2 do
3: total ← total + SampleMSTedgeT (G)
4: end for
5: return n · total/(32W/ϵ2)

1.2 Comparison to Previous Work Since our claim is to be simpler than previous work, we here highlight
the differences between our work, the MST algorithm by [6], and previous simplifications as taught in graduate
courses [19, 20, 17, 18, 7, 22, 12, 1, 2, 14, 3]. The time complexity of [6] is Õ(W/ϵ2d), but for educational
purposes simpler variants are taught with a worse complexity (e.g., Õ(poly(W/ϵ)dmax)). We here outline why
these simplifications are slower, and explain why our algorithm does not share this issue.

Readers only interested in our algorithm can skip ahead to Section 2, as none of the following information
is needed to understand our algorithm. The following information is only for comparison of simplicity and
complexity.

Dependency on W and ϵ: Assume G is an integer weighted graph with maximum edge weight W . The
idea of [6] is to reduce estimation of the MST-weight to estimating the number of connected components. Let Gi

be the graph G containing only edges of weight ≤ i, and let ci be the number of connected components in Gi,
then [6] showed

MST-weight = n−W +

W−1∑
i=1

ci

By constructing a sublinear-time algorithm for estimating the number of connected components ci, [6] could
also estimate the MST-weight. Since W many estimators c̃i ≈ ci are computed and their approximation errors
will add up, the accuracy of c̃i must depend on W . Depending on how precise/involved the error analysis is, a
different accuracy requirement on c̃i is proven. This is why previous simplifications resulted in a worse complexity
dependence on W .

Our algorithm does not encounter this issue, because we just run Prim’s algorithm (Algorithm 1) on G instead
of summing estimates computed from each Gi. In particular, Algorithm 1 returns MST-weight/n in expectation
by Lemma 1.1, and the variance is

Var[SampleMSTedgen2(G)] ≤
W∑

w=1

w2 · #MST edges of weight w

n
≤W · MST-weight

n
.

Direct application of Chebyshev-bound then shows we only need to average O(Wϵ−2) calls to Algorithm 1 to
(1 + ϵ)-approximate the MST-weight.

Dependency d vs dmax: The complexity of [6] depends on the average degree d, but the algorithm is
commonly taught with dependence on the maximum degree dmax to simplify its analysis. Bounding the complexity
wrt. d is tricky because the degrees differ between G and Gi.

[6] shows that one can estimate the number of connected components of graph G in Õ(dϵ−2) time. However,
this algorithm assumes reading the adjacency list of any vertex v takes O(deg(v)) time. This is true for the input
graph G but not for the graphs Gi because the algorithm must scan the adjacency list of G for the edges in Gi
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(i.e., the time is proportional to deg(v) in G which could be much larger than the degree in Gi). Thus showing
that estimating the number of connected components of Gi still takes Õ(d) time, requires a more careful analysis.
Further, the algorithm requires a preprocessing step to compute a threshold d∗ (roughly equal to the average
degree), and then all vertices of degree larger than d∗ are skipped to prevent spending too much time on high
degree vertices. To simplify the analysis, it is easier to just assume the adjacency list of any vertex is accessed in
O(dmax) time.

We do not encounter this issue of differing degrees between G and Gi since Algorithm 1 runs directly on
G and not any Gi. To sketch our complexity analysis, remember that the complexity of Prim’s algorithm is
O(k log n) where k is the number of edges encountered by Prim’s, and O(log n) is the complexity of the priority
queue used by Prim’s. Algorithm 1 visits min(X,T ) · deg(vstart) edges, which is O(d log(T )) in expectation, as

E[deg(vstart)] = d and E[min(X,T )] =
∫ T

1
1/x dx = O(log T ). Together with the previously stated bound of

running Algorithm 1 for O(Wϵ−2) times, this then implies estimating the MST-weight in Õ(Wdϵ−2) expected
time.

2 Estimating MST-weight in Sublinear Time

Here we prove our main results Theorems 1.1 and 1.2. We first prove in Section 2.1 that Algorithm 1 samples
an MST edge as described in Lemma 1.1 which is then used to prove Theorem 1.2. Then we use Lemma 1.1 in
Section 2.2 to prove Theorem 1.1.

2.1 Sampling MST-edges in Sublinear Time Throughout this subsection we assume that parameter T of
SampleMSTedgeT (Algorithm 1) satisfies T > 2|E|, e.g., by letting T = n2. This is equivalent to halting Prim’s
algorithm when vol(U) > X · deg(vstart) in Line 4 as there cannot be more than n2 edges in the graph.

Lemma 1.1. For T > 2|E|, Algorithm 1 (SampleMSTedgeT (G)) returns weight w with probability

P[SampleMSTedgeT (G) = w] =
#MST edges of weight w

n

and returns 0 with probability 1/n. In particular, E[SampleMSTedgeT (G)] = MST-weight/n.

We will here prove a slightly stronger variant of this lemma, which states that it samples edges of the minimum
spanning forest with

P[SampleMSTedgeT (G) = w] =
#MSF edges of weight w

n

and returning 0 with probability k/n where k is the number of connected components in G. Here we assume
that Prim’s algorithm terminates naturally on its own (i.e., SampleMSTedge return 0) when it explored the entire
connected component that contains the start vertex, and it only produces an MST of that connected component.

Proof. For any w > 0, let Gw contain all edges of G with weight ≤ w, and let G−
w contain all edges of weight < w.

Let Uw and U−
w be the set of all connected components in Gw and G−

w respectively. Here we let each component
C ∈ Uw be represented by a set of vertices, so C ⊆ V .

For u ∈ V let C−
w,u ∈ U−

w and Cw,u ∈ Uw be the connected components containing u in each of their respective
domains. When Algorithm 1 starts from u, then it returns weight w if and only if all of the following 3 conditions
hold: (i) Prim was halted early (the algorithm did not return 0), (ii) Prim managed to explore outside of C−

w,u

(i.e., the constructed MST contains an edge of weight ≥ w) and (iii) Prim did not yet explore outside of Cw,u

(the constructed MST does not contain an edge of weight > w).
Since Prim halts early when vol(U) > X · du where U are the vertices it explored, we have by (ii)

vol(C−
w,u) ≤ X · du, and by (iii) vol(Cw,u) > X · du. Thus we get the following probability

P[SampleMSTedge = w|vstart = u] = P[vol(C−
w,u) ≤ X · du < vol(Cw,u)]
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Given the distribution of X, this translates to:

P[SampleMSTedge = w|vstart = u] = P
[
vol(C−

w,u)

du
≤ X <

vol(Cw,u)

du

]
= P

[
X ≥

vol(C−
w,u)

du

]
− P

[
X ≥ vol(Cw,u)

du

]
=

du

vol(C−
w,u)

− du
vol(Cw,u)

(2.1)

Since the start vertex is picked uniformly at random, we can write

P[SampleMSTedge = w] =
1

n

∑
u∈V

P[SampleMSTedge = w|vstart = u]

(by (2.1)) =
1

n

∑
u∈V

(
du

vol(C−
w,u)

− du
vol(Cw,u)

)

(by
⋃̇

C−∈U−
w

C− = V and
⋃̇

C∈Uw

C = V ) =
1

n

 ∑
C−∈U−

w

∑
u∈C−

du
vol(C−)

−( ∑
C∈Uw

∑
u∈C

du
vol(C)

)
(by vol(·) being the sum of degrees) =

1

n

 ∑
C−∈U−

w

vol(C−)

vol(C−)

−( ∑
C∈Uw

vol(C)

vol(C)

)
=

1

n
(|U−

w | − |Uw|)

=
#MSF edges of weight w

n

The last equality holds, because |U−
w | is the number of components using edges of weight < w, and |Uw| is the

number of components using edges of weight ≤ w. So the difference |U−
w | − |Uw| is the number of components in

U−
w that the MSF connects via edges of weight w.

At last, we observe that the probabilities of all edge weights add up (n− k)/n < 1 where k is the number of
connected components of G. If the algorithm does not return any edge weight, then it returns 0. This happens
with probability k/n.

Lemma 2.1. For T ≥ 1, SampleMSTedgeT (G) visits O(d log T ) edges in expectation and runs in O(dQ log T )
expected time where Q is the insert/pop time complexity of the priority queue used by Prim’s algorithm.

Proof. The number of edges visited by SampleMSTedgeT (G) (Algorithm 1) is min(X,T ) · deg(vstart) (where we
count edges double if they are visited again from the other end point). Here E[deg(vstart)] = d, as the start

vertex is sampled uniformly, and E[min(X,T )] =
∫ T

1
P[X ≥ x] dx =

∫ T

1
1/x dx = O(log T ). Since X and vstart are

sampled independently, we have E[min(X,T ) ·deg(vstart)] = O(d log T ). Hence the time complexity is O(dQ log T )
as Prim’s algorithm inserts/pops each visited edge to/from the priority queue.

A typical comparison-based min-heap takes at most Q = O(log n) time per insert/pop, since we add at
most O(n2) edges to the queue. This then leads to the following Theorem 1.2. For our MST-weight algorithm
(Theorem 1.1) we will use a different kind of queue with Q = O(log log logW

ϵ ), see next subsection.

Theorem 1.2. In O(d log2 n) expected time we can sample edge weights of the MST. Here any weight w is
returned with probability #MST edges of weight w

n−1 . If the MST is unique then we can sample an edge of the MST
uniformly at random.

Proof. By Lemma 1.1, we can assume Algorithm 1 (for T = n2) samples w with probability #MST edges of weight w
n−1

by restarting whenever it returns 0. Returning 0 happens with probability 1/n and happens if and only if
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Prim visits the entire graph. Thus the time complexity of Algorithm 1, conditioned on it returning 0, is
O(|E| log n) = O(dn log n). With Lemma 2.1, this implies the expected time (until an edge weight is returned) is

O(d log2 n) +
∑
k≥1

P[restart k times] · E[time of Algorithm 1|return 0] = O(d log2 n) +
∑
k≥1

1

nk−1
O(d log(n))

which is O(d log2 n). By also returning the edge that used the highest edge weight, the algorithm samples edges
of the MST uniformly at random.

2.2 Estimating the MST Weight By repeatedly calling Algorithm 1, taking the average, and multiplying
by n, we obtain an estimate of the MST. For T = n2, we would know by Lemma 1.1 that this would be correct
in expectation. However, we use T = W/ϵ to reduce the worst-case number of visited edges and make our time
complexity independent of n. The following Lemma 2.2 shows that the expectation is not too far off for this T .

Lemma 2.2. For T = 4W/ϵ, we have (1 − ϵ/2)MST/n ≤ E[SampleMSTedgeT (G)] ≤ MST/n, and
Var(SampleMSTedgeT (G)) ≤ MST ·Wmax/n.

Proof. Observe that both SampleMSTedge(n2)(G) and SampleMSTedgeT (G) (Algorithm 1) return the same result
when conditioned on X < T , while the latter returns 0 when conditioning on X ≥ T . Thus

E[SampleMSTedgeT ] = E[SampleMSTedgeT |X < T ] · P[X < T ] + E[SampleMSTedgeT |X ≥ T ]︸ ︷︷ ︸
=0

·P[X ≥ T ]

= E[SampleMSTedge(n2) |X < T ] · P[X < T ]

= E[SampleMSTedge(n2)]− E[SampleMSTedge(n2) |X ≥ T ] · P[X ≥ T ]

(by Lemma 1.1) = MST /n− E[SampleMSTedge(n2) |X ≥ T ]/T

As Algorithm 1 will always return either an edge weight or 0, we have 0 ≤ E[SampleMSTedge(n2) |X ≥ T ] ≤Wmax.
Together with MST /(n − 1) ≥ Wmin, 2/n > 1/(n − 1) for n ≥ 2, and W = Wmax/Wmin, this yields an overall
bound of:

MST

n
= E[SampleMSTedge(n2)] ≥ E[SampleMSTedgeT ] ≥

MST

n
−Wmax ·

ϵ

4W
≥ MST

n
(1− ϵ

2
)

Variance Since SampleMSTedgeT is more likely to return 0 immediately for smaller T , we have

Var(SampleMSTedgeT ) ≤ E[(SampleMSTedgeT )
2] ≤ E[(SampleMSTedge(n2))

2]

(by Lemma 1.1) =
∑
w

w2#MST edges of weight w

n
≤Wmax ·

MST

n

As we now have the expectation and variance of SampleMSTedgeT , we can use Chebyshev inequality to prove
Theorem 1.1.

Theorem 1.1. There is a randomized algorithm that computes a (1 + ϵ) approximation of the MST weight
using O(Wdϵ−2 log(W/ϵ)) queries in expectation and runs in O(Wdϵ−2 log(W/ϵ) log log logW

ϵ ) expected time. The
algorithm’s output is correct with probability 3/4.

Proof. We run SampleMSTedgeT for a total of s = Θ(W/ϵ2) times, average their results, and multiply by n. Let
Z be this result, then by Lemma 2.2 we have

(1− ϵ/2)MST ≤ E[Z] ≤ MST, Var(Z) ≤ MST ·Wmaxn/s.

Further, by Chebyshev-inequality we have

P [|Z − E[Z]| > ϵ

2
MST] ≤ 4

Var(Z)

ϵ2 MST2

To bound this by failure probability by 3/4 we observe that

Var(Z)

ϵ2 MST2 ≤
nMST ·Wmax

sϵ2 MST2 ≤ n ·Wmax

sϵ2 MST
≤ n ·Wmax

sϵ2nWmin
=

W

sϵ2

Thus by s = O(W/ϵ2) large enough, the failure probability is at most 3/4.
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Time Complexity By having s = O(W/ϵ2) calls to Algorithm 1 for T = 4W/ϵ, the expected time complexity
is O(WdQϵ−2 log(W/ϵ)) by Lemma 2.1. Here Q is the time complexity of an insert/pop to the priority queue
used by Prim’s algorithm.

We can implement the priority queue to take O(log log logW
ϵ time as follows. We round every encountered

edge weight to the nearest (1 + ϵ/2)i for i ∈ N, as that increases our MST estimate by at most a (1± ϵ/2) factor.
Then there are at most O(ϵ−1 logW ) distinct priorities in the priority queue, using the integer exponent i as the
priority. Using a non-comparison based priority queue like the van-Emde-Boas-tree has Q = O(log log logW

ϵ ) time

complexity. Thus our MST algorithm runs in O(Wdϵ−2 log(W/ϵ) log log logW
ϵ ) expected time.
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A Modification to Prim’s Algorithm

Algorithm 3 Full SampleMSTedge(G = (V,E), T ). Changes to Prim’s algorithm highlighted in blue.

1: Choose X ≥ 1 according to Pr[X ≥ k] = 1/k (i.e. X ← 1
Y for Y uniform from (0, 1])

2: if X ≥ T , return 0.
3: Choose vstart ∈ V uniformly at random.
4: // Start running Prim’s from vstart
5: U ← {vstart} // visited vertices
6: Tree← ∅ // this will be the MST
7: Q← {(v, {vstart, v}, w(vstart, v)) | v adjacent to vstart}
8: while Q ̸= ∅ do
9: u, e, p← EXTRACT-MIN(Q) // pop smallest edge weight p from queue

10: if u ∈ U then
11: continue // skip this vertex if it was visited already
12: end if
13: U ← U ∪ {u}
14: Tree← Tree ∪ {e}
15: for v adjacent to u do
16: ADD(Q, v, {u, v}, w(u, v))
17: end for
18: if vol(U) > X ˙deg(vstart) then // Early Stopping Condition
19: return maxe∈Tree w(e) // return highest edge weight added to MST so far
20: end if
21: end while
22: return 0
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