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Abstract

The palette sparsification theorem (PST) of Assadi, Chen, and Khanna (SODA 2019) states that
in every graph G with maximum degree ∆, sampling a list of O(logn) colors from {1, . . . ,∆ + 1} for every
vertex independently and uniformly, with high probability, allows for finding a (∆ + 1) vertex coloring of G by
coloring each vertex only from its sampled list. PST naturally leads to a host of sublinear algorithms for
(∆+1) vertex coloring, including in semi-streaming, sublinear time, and MPC models, which are all proven to
be nearly optimal, and in the case of the former two are the only known sublinear algorithms for this problem.

While being a quite natural and simple-to-state theorem, PST suffers from two drawbacks. Firstly, all its
known proofs require technical arguments that rely on sophisticated graph decompositions and probabilistic
arguments. Secondly, finding the coloring of the graph from the sampled lists in an efficient manner requires
a considerably complicated algorithm.

We show that a natural weakening of PST addresses both these drawbacks while still leading to sublinear
algorithms of similar quality (up to polylog factors). In particular, we prove an asymmetric palette
sparsification theorem (APST) that allows for list sizes of the vertices to have different sizes and only
bounds the average size of these lists. The benefit of this weaker requirement is that we can now easily show
the graph can be (∆ + 1) colored from the sampled lists using the standard greedy coloring algorithm. This
way, we can recover nearly-optimal bounds for (∆ + 1) vertex coloring in all the aforementioned models using
algorithms that are much simpler to implement and analyze.
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1 Introduction

Let G = (V,E) be any n-vertex graph with maximum degree ∆. A basic graph theory fact is that vertices of G
can be colored with ∆ + 1 colors such that no edge is monochromatic. This can be done using a textbook greedy
algorithm: iterate over vertices of G in any arbitrary order and for each vertex greedily find a color that has not
been used in its neighborhood, which is guaranteed to exist by the pigeonhole principle. This algorithm is quite
simple and efficient as it runs in linear time and space. But, can we design even more efficient algorithms?

Assadi, Chen, and Khanna [5] addressed this question by designing various sublinear algorithms for (∆ + 1)
vertex coloring. These are algorithms whose resource requirements are significantly smaller than their input.
Canonical examples include (a) graph streaming algorithms [12] that process graphs by making one pass over
their edges and using a limited space; (b) sublinear time algorithms [10] that process graphs by querying its
adjacency list/matrix and using limited time; or (c) Massively Parallel Computation (MPC) algorithms [23] that
process graphs in synchronous rounds and a distributed manner with limited communication (see Section 2.1).

The key contribution of [5] was proving the following (purely combinatorial) theorem about (∆ + 1) coloring,
termed the palette sparsification theorem (PST).

Theorem 1.1. (Palette Sparsification Theorem (PST) [5]) For any graph G = (V,E) with maximum
degree ∆, if we sample O(log n) colors L(v) for each vertex v ∈ V independently and uniformly at random
from the colors {1, 2, . . . ,∆ + 1}, then, with high probability, G can be colored so that every vertex v chooses its
color from its own list L(v).

The authors in [5] used PST to design sublinear algorithms in all the models above using a “sparsifying”
nature of this result: Firstly, it is easy to see that to color G from the sampled lists, we can ignore all edges
(u, v) ∈ E where L(u) ∩ L(v) = ∅ since they never create any conflict under any coloring. Secondly, for any
edge (u, v) ∈ E, the probability that it still remains conflicting—the probability that two independently chosen
O(log n)-lists from (∆ + 1) colors intersect—is O(log2(n)/∆). Combining these with the upper bound of n∆/2 on
the number of edges implies that in expectation there are only O(n log2(n)) “important” edges that the algorithm
should consider. The sublinear algorithms can now be obtained from this in a simple way1.

Since its introduction [5], PST and its variants and generalizations have been studied in sublinear
algorithms [4, 6–9], distributed computing [13,14,17], and discrete mathematics [2, 3, 19,21,22].

Despite its long list of applications, and perhaps even due to its generality, PST suffers from two drawbacks.
Firstly, the proof of PST is considerably complicated and technical; it goes through the so-called sparse-dense
decomposition of graphs due to [24] (and the variant proved in [5] itself, building on [18]), and then a detailed
three-phase approach for coloring each part in the decomposition differently using various probabilistic and random
graph theory arguments2. Secondly, PST, as stated, is a purely combinatorial theorem and not an algorithmic
one, and thus to obtain the coloring of G, one needs to run a rather complicated and non-greedy post-processing
algorithm to find the coloring of G from the sampled lists (given also the decomposition of the graph; see [5]).

Our contribution. We show that introducing a simple asymmetry in the definition of PST leads to the
same colorability guarantee but this time using a much simpler proof and algorithm.

Asymmetric Palette Sparsification Theorem (APST). For any graph G = (V,E) with maximum
degree ∆, there is a distribution on list-sizes ` : V → N (depending only on vertices V and not edges E)
such that an average list size is deterministically O(log2(n)) and the following holds. With high probability,
if we sample `(v) colors L(v) for each vertex v ∈ V independently and uniformly at random from colors
{1, 2, . . . ,∆ + 1}, then, with high probability, the greedy coloring algorithm that processes vertices in the
increasing order of list-sizes finds a proper coloring of G by coloring each v from its own list L(v).

1For instance, for a streaming algorithm, first sample all the O(n logn) colors, and during the stream whenever an edge arrives,
see if it is an important edge and if so store it. At the end, use Theorem 1.1 to color the graph using these stored edges. This leads

to a single-pass streaming algorithm with O(n log2(n)) space for (∆ + 1) coloring.
2All known proofs of PST for (∆ + 1) coloring (or so-called (deg +1)-(list) coloring) [2,5,15,17,21] follow this decomposition plus

three-phase approach and it was even pointed out in [21] that: “something of this type [...] seems more or less unavoidable”.
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The benefit of our APST compared to the original PST of [5] (and all its other alternative variants
in [2, 15, 17, 21]) is twofold: it admits a significantly simpler proof, while also allowing for coloring from the
sampled list using the standard greedy algorithm itself. At the same time, it is also weaker than the original PST
on two fronts: it requires O(log2(n)) list sizes per vertex as opposed to O(log n) (which is similar to [15,17]) but
much more importantly, it allows the vertices to have much larger list sizes in the worst-case and only bounds
the average list sizes (this is different than all prior work on PST, and was inspired by the recent work of [16] on
the communication complexity of (∆ + 1) coloring). We note that asymmetric list sizes are necessary if we like
to color the graph greedily from the sampled colors3.

Finally, APST allows for recovering the same type of sublinear algorithms as in [5] with only an extra
polylog(n) overhead in their resources. In particular, we obtain the following sublinear algorithms for (∆ + 1)
vertex coloring:

• A randomized graph streaming algorithm with Õ(n) space4 and a single pass over the input.

• A randomized sublinear time algorithm with Õ(n1.5) time, given (non-adaptive) query access to both
adjacency list and matrix of the input (also called the general query model).

• A randomized MPC algorithm with Õ(n) memory per machine and O(1) rounds.

The number of passes in the streaming algorithms as well as the rounds in the MPC one are clearly optimal. It
was also proven in [5] that the runtime of the sublinear time algorithm and the space of the streaming algorithm
are nearly optimal up to polylog (n) factors (for the streaming algorithm, storing the coloring itself requires this
much space anyway). These constitute the simplest known sublinear algorithms for (∆ + 1) vertex coloring.5

In conclusion, we find our APST as a more “algorithmic friendly” version of PST that still allows for recovering
nearly optimal sublinear algorithms for (∆+1) coloring. In addition, we hope its proof can act as a gentle warmup
and introduction to the original PST itself.

2 Preliminaries

A hypergeometric random variable with parameters N , K, and M is a discrete random variable in N distributed
as follows: we have N elements, K of them are marked as ‘good’, and we sample M elements uniformly at random
and without replacement and count the number of good samples. We use a standard result on the concentration
of hypergeometric random variables.

Proposition 2.1. (cf. [20, Theorem 2.10]) Suppose X is a hypergeometric random variable with parameters
N,K,M and thus the expectation E [X] = M ·K/N . Then, for any t > 0

Pr(X 6 E [X]− t) 6 exp

(
− t2

2E [X]

)
.

2.1 Sublinear Models Considered in this Paper For completeness, we present a quite brief definition of
each of the sublinear algorithms models that we consider. We refer the interested reader to [5] for more background
on these models.

Graph streaming. In this model, the input graph G = (V,E) is presented to the algorithm as a stream of
its edges ordered in some arbitrary manner. The algorithm makes a single pass (or sometimes multiple ones) over

this stream while using Õ(n) memory and at the end of the stream, outputs a solution to the problem on G.

3Consider coloring a (∆ + 1)-clique. When coloring the last vertex v of the clique in the greedy algorithm, there is only one color

that can be assigned to v but to ensure this color is sampled by v even with a constant probability, we need L(v) to have size Ω(∆).

Our APST addresses this by allowing vertices that are colored later in the greedy algorithm to also sample more colors, while earlier
vertices need to stick with smaller list sizes.

4Throughout, we use Õ(f) := O(f · poly log (f)) to suppress polylog factors.
5To our knowledge, no other streaming nor sublinear time algorithms beside [5] have been developed for this problem but for MPC

algorithms, [9, 11] have subsequently presented other algorithms for this problem.
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Sublinear time. In this model, the input graph G = (V,E) is presented to the algorithm via query access to
its adjacency list and matrix or alternatively speaking, using degree-, neighbor-, and pair-queries. The algorithm
can make its queries adaptively or non-adaptively and then at the end outputs a solution to the problem on G.

MPC. In this model, the input graph G = (V,E) is originally partitioned across multiple machines, each

with Õ(n) memory. Computation happens in synchronous rounds wherein each machine can send and receive

Õ(n)-size messages. After the last round, one designated machine outputs a solution to the problem on G.

3 Asymmetric Palette Sparsification

We present our asymmetric palette sparsification theorem and its simple proof in this section.

Theorem 3.1. (Asymmteric Palette Sparsification Theorem) Let G = (V,E) be any n-vertex graph with
maximum degree ∆. Sample a random permutation π : V → [n] uniformly and define

`(v) := min

(
∆ + 1 ,

40n lnn

π(v)

)
,

for every v ∈ V as the size of the lists of colors to be sampled for vertex v. Then,

• List sizes: Deterministically,
∑
v∈V `(v) = O(n log2(n)), and for any fixed vertices u 6= v ∈ V ,

E [`(v)] = O(log2(n)) and E [`(u) · `(v)] = O(log4(n)).

• Colorability: If for every vertex v ∈ V , we sample a list L(v) of `(v) colors from [∆ + 1] uniformly and
independently, then, with high probability (over the randomness of ` and sampled lists) the greedy algorithm
that iterates over vertices v ∈ V in the increasing order of `(v) finds a proper list-coloring of G from the lists
{L(v) | v ∈ V }.

We establish the advertised properties in the theorem in the following claims.

Claim 3.1. (List sizes) Deterministically,
∑
v∈V `(v) = O(n ln2(n)), and for all u 6= v ∈ V ,

E [`(v)] = O(ln2(n)) and E [`(u) · `(v)] = O(ln4(n)).

Proof. By the definition of `(v),∑
v∈V

`(v) 6
∑
v∈V

40n lnn

π(v)
=

n∑
i=1

40n lnn

i
= O(n ln2 n),

by the sum of the Harmonic series. This proves the deterministic bound on the total size of the lists as well as the
first inequality for the expected size of each list, given the distribution of list sizes is symmetric across vertices.
For the second inequality, we have

E [`(u) · `(v)] 6
∑
i 6=j

Pr(π(v) = i ∧ π(u) = j) · (40n ln (n))2

i · j
=

1600n2 ln2 (n)(
n
2

) ·
n∑
i=1

i−1∑
j=1

1

i · j
= O(ln4(n)),

again, by the sum of the Harmonic series. This concludes the proof.

Establishing the colorability property is the main part of the proof. We first need some notation. Iterating
over vertices in the increasing order of `(·) is the same as the decreasing order of π(·). With this in mind, for any
vertex v ∈ V , define N<

π (v) as the neighbors u of v with π(u) < π(v), namely, the ones that are processed after
v by the greedy algorithm. Let deg<π (v) := |N<

π (v)|.
An easy observation is that when coloring any vertex v by the greedy algorithm, there are still at least

deg<π (v) + 1 colors not used in the neighborhood of v. Thus, lower bounding deg<π (v) allows us to later prove that
L(v) contains an available color for v with high probability. We only need such a bound for a subset of vertices
captured in the following claim.
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Claim 3.2. For all v ∈ V with π(v) > 40n ln(n)/(∆ + 1) and deg(v) > 3∆/4,

Pr

(
deg<π (v) <

∆ · π(v)

4n

)
6 n−2.5.

Proof. Fix any vertex v as above and condition on π(v) = i+1 for some i ∈ {0, 1, . . . , n− 1}. We pick an arbitrary
subset of 3∆/4 neighbors of v and for j ∈ [3∆/4], define Xj ∈ {0, 1} as the indicator random variable which is 1
iff the j-th neighbor of v appears in the first i vertices of π. For X being the sum of these Xj-variables, we have,

E
[
deg<π (v) | π(v) = i+ 1

]
> E [X] =

3∆/4∑
j=1

E [Xj ] =
3∆

4
· i

n− 1
,

as each neighbor of v appears in the first i position of π with probability i/(n− 1) conditioned on π(v) = i+ 1.
Random variable X is distributed as a hypergeometric random variable with parameters N = n− 1, K = i, and
M = 3∆/4. Thus, by Proposition 2.1 for t := ∆ · i/(2n),

Pr

(
X 6

∆ · i
4n

)
6 Pr (X 6 E [X]− t) 6 exp

(
− t2

2E [X]

)
= exp

(
−∆2 · i2 · 4 · (n− 1)

4 · n2 · 3 ·∆ · i

)
6 exp

(
−∆ · i

6 · n

)
6 exp

(
−40 ln (n)

12

)
� n−3,

where in the second line, we used the values of N,K,M, and t first, then the bound n > 1, and subsequently the
lower bound on i in the claim statement combined with ∆ > 1. Given that deg<π (v) > X and the above bound
holds for all choices of π(v), we obtain the proof.

Claim 3.3. (Colorability) With high probability, when coloring each vertex v ∈ V in the greedy algorithm, at
least one of the colors sampled in L(v) has not been used in the neighborhood of v; that is, the greedy algorithm
can color this vertex.

Proof. We condition on the choice of π and by union bound obtain that with high probability, the complement
of the event in Claim 3.2 holds for all vertices. For any vertex v ∈ V , we say a color is available to v iff it is not
assigned to any neighbor of v by the time we process v in the greedy algorithm. Let a(v) denote the number of
available colors and note that a(v) > deg<π (v) + 1 > 1.

In the following, we fix a vertex v ∈ V and further condition on the randomness of L(u) for all vertices u with
π(u) > π(v). The conditionings so far fix the set of available colors and the values of a(v) and `(v), but L(v) is
still a random `(v)-subset of the colors.

If π(v) 6 40n ln(n)/(∆ + 1), we have `(v) = ∆ + 1 which means all of the available colors counted in a(v) are
sampled in L(v), thus proving the claim for this vertex.

For the remaining vertices, we have,

Pr (no available color of v is sampled in L(v)) 6 (1− a(v)

∆ + 1
)`(v) 6 exp

(
−a(v) · `(v)

∆ + 1

)
.

Now, if deg(v) < 3∆/4, we have a(v) > ∆/4 and we always have `(v) > 40 lnn, thus, in this case,

Pr (no available color of v is sampled in L(v)) 6 exp

(
−∆

4
· 40 lnn

∆ + 1

)
6 n−5.

Otherwise, deg(v) > 3∆/4 and we can use the bounds of Claim 3.2 and have,

Pr (no available color of v is sampled in L(v)) 6 exp

(
−∆ · π(v)

4n
· 40n lnn

π(v)
· 1

∆ + 1

)
6 n−5.

Thus, in both cases, with high probability, we can color v from L(v) in the greedy algorithm. Taking a union
bound over all vertices concludes the proof.
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Theorem 3.1 follows immediately from Claim 3.1 and Claim 3.3.

Remark 3.4. We note that almost the same exact proof of Theorem 3.1 implies the following stronger result also:
we can assume each vertex v ∈ V starts with a list S(v) of deg(v)+1 arbitrary colors which can be different across
the vertices and we sample `(v) colors L(v) from S(v) instead. Then, with high probability, the greedy algorithm
can still color G from the sampled lists (the proof is virtually identical since the greedy algorithm also works for
this problem). In other words, the (deg +1)-list coloring version of APST also holds (the PST version of this
result is also proven in [17]; see also [2]). We omit repeating this proof here.

4 Sublinear Algorithms from Asymmetric Palette Sparsification

We now show how our asymmetric palette sparsification theorem in Theorem 3.1 can be used to obtain sublinear
algorithms for (∆ + 1) vertex coloring. These algorithms are more or less identical to the (exponential-time)
sublinear algorithms of [5] from their original palette sparsification theorem and we claim no novelty in this
part6. Instead, we merely point out how the “asymmetry” in list-sizes in Theorem 3.1 does not weaken the
performance of the resulting sublinear algorithms beyond some polylog(n)-factors, but instead leads to much
simpler post-processing algorithms for finding the coloring of the graph from the sampled lists.

Theorem 4.1. There exists randomized sublinear algorithms that given any graph G = (V,E) with maximum
degree ∆ with high probability output a (∆ + 1) vertex coloring of G using:

• Graph streaming: a single pass over the edges of G in any order and Õ(n) space;

• Sublinear time: Õ(n1.5) time and non-adaptive queries to adjacency list and matrix of G;

• Massively parallel computation (MPC): O(1) rounds with machines of Õ(n) memory.

As stated earlier, the proof of Theorem 4.1 follows the same exact strategy as the (exponential-time) sublinear
algorithms of [5]. To do so, we need the following definition.

Conflict graphs. Let G = (V,E) be any graph with maximum degree ∆ and L := {L(v) | v ∈ V } be a set
of lists of colors sampled for vertices of G according to the distribution of Theorem 3.1. We define the conflict
graph GL = (V,EL) of G and L as the spanning subgraph of G consisting of all edges (u, v) ∈ E such that the
sampled lists L(u) and L(v) intersect with each other.

The next observation allows us to use conflict graphs in our sublinear algorithms as a proxy to the graph G.

Observation 4.1. The greedy algorithm in Theorem 3.1 outputs the same exact coloring when run over the
conflict graph GL instead of the original graph G.

Proof. The only edges that affect the greedy algorithm of Theorem 3.1 are edges (u, v) ∈ E such that L(u)∩L(v)
is non-empty. These edges are identical in G and GL.

The following easy claim also allows us to bound the size of the conflict graphs.

Claim 4.2. The list of colors L consists of O(n log2 n) colors deterministically and the expected number of edges
in GL = (V,EL) is E |EL| = O(n log4 n).

Proof. From Claim 3.1, we already know that L consists of O(n log2 n) colors deterministically. For the second
part, for any edge (u, v), we have,

Pr ((u, v) is in EL) 6 E
`(u),`(v)

[Pr (L(u) ∩ L(v) 6= ∅ | `(u), `(v))] 6 E
[
`(u) · `(v)

∆ + 1

]
=
O(log4 (n))

∆
,

6We do note that however, their time-efficient algorithms are considerably more complex. They first need to find a so-called
sparse-dense decomposition of the input graph via sublinear algorithms. Then, this decomposition is used to color the final graph

from the sampled colors using an algorithmic version of the proof of their palette sparsification theorem which in particular requires
a highly non-greedy and not-so-simple approach.

Copyright © 2025 by SIAM
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where the first inequality is by the law of conditional expectation (by conditioning on list-sizes first), the second
is by union bound, and the third is by the list-size properties of Theorem 3.1. Since the total number of edges in
G is at most n∆/2, we can conclude the proof.

We now prove Theorem 4.1 for each family of sublinear algorithms separately. In the following, we prove
the resource guarantees of the algorithms only in expectation instead of deterministically. However, using the
standard trick of running O(log n) copies of the algorithm in parallel, terminating any copy that uses more than
twice the expected resources, and returning the answer of any of the remaining ones, we obtain the desired
algorithms in Theorem 4.1 as well (this reduction only increases space/query/memory of algorithms with an
O(log n) multiplicative factor and the error probability with a 1/poly(n) additive factor).

Graph streaming. At the beginning of the stream, sample the colors L using Theorem 3.1 and during the
stream, only store the edges that belong to GL. In the end, run the greedy algorithm on GL and return the
coloring. Theorem 3.1 ensures that with high probability G is (list-)colorable from the sampled lists which leads
to a (∆ + 1) coloring of the entire graph. Observation 4.1 ensures that we only need to work with GL at the end

of the stream and not all of G, and Claim 4.2 bounds the space of the algorithm with Õ(n) space in expectation.

We can implement this algorithm in dynamic streams also by recovering the conflict graph using a sparse
recovery sketch instead of explicitly storing each of its edges in the stream. See [1] for more on dynamic streams.

Sublinear time. Sample the colors L using Theorem 3.1 and query the edges between all pairs of vertices
u 6= v ∈ V with L(u)∩L(v) being non-empty to find the edges of GL. The same analysis as in Claim 4.2 applied

to the
(
n
2

)
vertex-pairs (instead of 6 n∆/2 edges), ensures that the expected number of queries is Õ(n2/∆).

We can then color GL using the greedy algorithm in Õ(n) time. The correctness follows from Theorem 3.1 and
Observation 4.1 as before. This algorithm only requires adjacency matrix access to G and we run it when ∆ >

√
n

to obtain Õ(n
√
n) time/query algorithm. When ∆ 6

√
n, we instead run the standard greedy algorithm using

O(n∆) = Õ(n
√
n) time and queries to the adjacency list of G instead.

MPC. The algorithm is almost identical to the semi-streaming one. Suppose we have access to public
randomness. Then, we can sample the lists L publicly, and each machine that has an edge in GL can send it to
a designated machine. This way, a single machine receives all of GL and can color it greedily. The correctness
follows from Theorem 3.1 and Observation 4.1 and the memory needed for this designated machine will be Õ(n)
in expectation by Observation 4.2. Finally, we can remove the public randomness by having one machine do the
sampling first on its own and share it with all the remaining machines in O(1) rounds using the standard MPC
primitives of search and sort.
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[13] M. Fischer, M. M. Halldórsson, and Y. Maus. Fast distributed brooks’ theorem. In N. Bansal and V. Nagarajan,
editors, Proceedings of the ACM-SIAM Symposium on Discrete Algorithms, SODA 2023, pages 2567–2588. SIAM,
2023.
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[15] M. Flin, M. Ghaffari, M. M. Halldórsson, F. Kuhn, and A. Nolin. A distributed palette sparsification theorem. In
D. P. Woodruff, editor, Proceedings of ACM-SIAM Symposium on Discrete Algorithms, SODA 2024, pages 4083–4123.
SIAM, 2024.

[16] M. Flin and P. Mittal. (∆ + 1) vertex coloring in O(n) communication. In R. Gelles, D. Olivetti, and P. Kuznetsov,
editors, Proceedings of ACM Symposium on Principles of Distributed Computing, PODC 2024, pages 416–424. ACM,
2024.
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