
Simpler Optimal Sorting from a Directed Acyclic Graph

Ivor van der Hoog∗ Eva Rotenberg∗ Daniel Rutschmann∗

Abstract

Fredman proposed in 1976 the following algorithmic problem: Given are a ground set X, some partial
order P over X, and some comparison oracle OL that specifies a linear order L over X that extends P . A
query to OL has as input distinct x, x′ ∈ X and outputs whether x <L x′ or vice versa. If we denote by e(P)
the number of linear orders that extend P , then it follows from basic information theory that log e(P) is a
worst-case lower bound on the number of queries needed to output the sorted order of X.

Fredman did not specify in what form the partial order is given. Haeupler, Hlad́ık, Iacono, Rozhon, Tarjan,
and Tětek (’24) propose to assume as input a directed acyclic graph, G, with m edges and n = |X| vertices.
Denote by PG the partial order induced by G. Their algorithmic performance is measured in running time and
the number of queries used, where they use Θ(m+ n+ log e(PG)) time and Θ(log e(PG)) queries to output X
in its sorted order. Their algorithm is worst-case optimal, both in terms of running time and queries. Their
analysis relies upon sophisticated counting arguments using entropy, recursively defined sets defined over the
run of their algorithm, and vertices in the graph that they identify as bottlenecks for sorting.

We do away with sophistication. We show that when the input is a directed acyclic graph then the problem
admits a simple solution using Θ(m+n+ log e(PG)) time and Θ(log e(PG)) queries. Especially our proofs are
much simpler as we avoid the usage of advanced charging arguments, and instead rely upon two observations.

Funding. Ivor van der Hoog has received funding from the European Union’s Horizon 2020 research and
innovation programme under the Marie Sk lodowska-Curie grant agreement No 899987. Eva Rotenberg and Daniel
Rutschmann are supported by Eva Rotenberg’s Carlsberg Foundation Young Researcher Fellowship CF21-0302 –
“Graph Algorithms with Geometric Applications”.

1 Introduction

Sorting is a fundamental problem in computer science. In 1976, Fredman introduced a natural generalisation of
sorting, namely sorting under partial information [4]: Given a ground set X of size n, and some partial order P
on X, and an oracle OL with access to a ground-truth linear order L of X, the task is to minimise the number
of oracle queries to recover the linear order of X. A query takes two input elements from X, and outputs their
relation in the linear order. Algorithmic efficiency is measured in time, and the number of queries used. Let
e(P) denote the number of linear orders that extend the partial order P . Then, for any binary (e.g. yes/no)
query, ⌈log2(e(P))⌉ is a worst-case lower bound for the number of queries needed, simply because the sequence
of answers should be able to lead to any possible extension of the order.

Previous work. Fredman [4, TCS’76] shows an exponential-time algorithm for sorting under partial
information that uses log e(P) + O(n) queries. This fails to match the Ω(log e(P)) lower bound when log e(P)
is sublinear. Kahn and Saks [9, Order’84] prove that there always exists a query which reduces the number of
remaining linear extensions by a constant fraction; showing that an O(log e(P))-query algorithm exists. Kahn
and Kim [8, STOC’92] are the first to also consider algorithmic running time. They note that Kahn and Saks
[9] can preprocess a partial order using exponential time and space, so that given OL it can output the sorted
order of X in linear time plus O(log e(P)) queries. Kahn and Kim [8, STOC’92] propose the first polynomial-time
algorithm that performs O(log e(P)) queries. They do not separate preprocessing the partial order and oracle
queries, and use an unspecified polynomial time using the ellipsoid method. Cardinal, Fiorini, Joret, Jungers and
Munro [3, STOC’10] (in their full version in Combinatorica) preprocess P in O(n2.5) time, to output the sorted
X in O(log e(P) + n) time using O(log e(P)) queries. Their runtime poses the question whether query-optimal
(sub)quadratic-time algorithms are possible.

∗Department of Applied Mathematics and Computer Science, Technical University of Denmark, Denmark

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited350

D
ow

nl
oa

de
d

04
/0

6/
25

 to
 1

09
.8

1.
82

.1
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

For subquadratic algorithms, it becomes relevant how one obtains the partial order. Van der Hoog, Kostityna,
Löffler and Speckmann [11, SOCG’19] study the problem in a restricted setting where P is induced by a set of
intervals. Here, distinct xi, xj ∈ X are incomparable whenever their intervals ([ai, bi], [aj , bj]) intersect (otherwise,
xi ≺P xj whenever bi < aj). They preprocess the intervals in O(n log n) time such that, given OL, they can
produce a pointer to a linked list storing X in its sorted order using O(log e(P)) queries and time. For their
queries, they use finger search [2] (i.e., exponential search from a pointer). Finger search has as input a value xi,
a sorted list π, and a finger p ∈ π with p < xi. It finds the farthest q along π for which q < xi in O(1 + log di)
time and comparisons. Here, di denotes the length of the sublist from p to q [2].

Van der Hoog and Rutschmann [7, FOCS’24] assume that P is given as another oracle OP where queries

receive distinct x, x′ ∈ X and output whether x ≺P x′. For fixed c ≥ 1, they preprocess OP using O(n1+ 1
c)

time and queries to OP . Given OL, they produce a pointer to a linked list storing X in its sorted order using
O(c · log e(P)) queries and time. Their query algorithm also makes use of finger search. They show matching
lower bounds in their setting.

Haeupler, Hlad́ık, Iacono, Rozhon, Tarjan, and Tětek [5, ’24] assume that the partial order PG is induced by
a graph G with m edges. Their algorithm can be seen as a combination of topological sort and heapsort. Their
algorithm first isolates a collection B ⊂ X which they call bottlenecks. They then iteratively consider all sources
S in G−B, remove the source s ∈ S that is minimum in the linear order L, and append s to the output π. Before
appending s to π, they find the maximum prefix Bs = {b ∈ B | b <L s} using finger search where the finger is
the head of B. They remove Bs from B, append Bs to π, and then append s. To obtain the minimum s ∈ S,
they store all current sources of the graph in a heap where comparisons in the heap use the linear oracle OL.
Their algorithm does not separate preprocessing the graph G, and oracle queries. It uses Θ(n + m + log e(PG))
overall time and Θ(log e(P)) linear oracle queries. Since reading the input takes at least Ω(n + m) time, their
overall algorithmic runtime is thereby worst-case optimal. The bulk of their analysis is dedicated to charging the
algorithmic runtime and query time to the workings of their heap, and to handling the special bottleneck vertices.
We note that for any input k, their solution can also report the first k elements of X in optimal time.

Contribution. We consider the setting from [5], where the input is a directed acyclic graph G over X with
m edges and where, unlike [3, 7, 11], one does not separate the algorithmic performance between a pre-processing
phase using G and a phase that uses queries to OL. We show that this problem formulation allows for a surprisingly
simple solution: G denotes the input and Hi the graph at iteration i. Remove a maximum-length directed path
π from G to get H1. Iteratively remove an arbitrary source xi from Hi to get Hi+1. Insert xi into π using finger
search where the finger pi is the farthest in-neighbour of xi in G along π (we find pi by simply iterating over all
in-neighbours of xi). We use Θ(n+m+ log e(PG)) time and Θ(log e(PG)) queries. We consider this algorithm to
be simpler. Our proof of correctness is considerably simpler, as it relies upon only one counting argument and
one geometric observation.

2 Algorithm

The input is a directed acyclic graph G with vertex set X = (x1, . . . , xn). This graph induces a partial order PG

where xi ≺ xj if and only if there exists a directed path from xi to xj in G. The input also contains an oracle
OL that specifies a linear order L over X. For any distinct xi, xj , an (oracle) query answers whether xi <L xj .
The goal is to output X in its sorted order L.

We describe our algorithm. Our key observation is that the problem becomes significantly easier when we first
extract a maximum-length directed path π from G. We iteratively remove an arbitrary source xi from H = G−π
and insert it into π. Once H is empty, we return π. In our analysis, our logarithms are base 2 and d∗(xi) denotes
the sum of the out-degree and the in-degree of a vertex xi in G.

Data structures. We maintain a path π where for all vertices p, q ∈ π: p <L q if and only if p precedes q in
π. We store the path π in a dynamic list order structure Tπ which is a data structure that supports the following:

• FingerInsert(qi, xi). Given vertices xi ̸∈ π and qi ∈ π, insert xi into π succeeding qi.

• Search(xi, pi, OL). Given a vertex xi ̸∈ π and a vertex pi ∈ π with pi <L xi. Return the farthest vertex
qi along π where qi <L xi. Let di denote the number of vertices on the subpath from pi to qi along π. We
want to use O(1 + log di) time and queries to OL.

• Compare(p, q). Given p, q ∈ π, return q if it succeeds p in π in O(1) time (return p otherwise).

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited351

D
ow

nl
oa

de
d

04
/0

6/
25

 to
 1

09
.8

1.
82

.1
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

To achieve this, we store π in leaf-linked a balanced finger search tree Tπ. Many implementations exist [2]. We
choose the level-linked (2-4)-tree by Huddleston and Mehlhorn [6], which supports FingerInsert in amortised
O(1)-time, and Search in O(1 + log di) time. For Compare, we store the linked leaves in the simple dynamic
list ordering structure by Bender et al. [1] whose simplest implementation supports Compare in O(1) time, and
FingerInsert in amortised O(1) time.

Algorithm and runtime analysis. Our algorithm is straightforward. The pseudo code is given by
Algorithm 1 where each algorithmic step also indicates the running time. We require linear space. We first
extract a longest directed path π from G, which we store in our two data structures. This takes O(n + m) total
time. If π has n− k vertices, this leaves us with a graph H with k vertices.

We then iteratively remove an arbitrary source xi from H. Since xi is a source in H, all vertices p ∈ X
that have a directed path to xi in G must be present in π. We iterate over all in-neighbours of xi in G, and
use our Compare operation to find the in-neighbour pi that is furthest along π. If xi has no in-neighbours, pi
is a dummy vertex that precedes the head of π instead. Finally, we proceed in a way that is very similar to the
algorithm for topological sorting by Knuth [10]: We remove xi from H, iterate over all out-neighbours of xi in H
and decrement their in-degree, and update the linked list of sources to include the newly found ones. Since we
inspect each in- and out-edge of xi only once, this takes O(m) total time.

We then want to find the farthest qi along π that precedes xi in L. In the special case where pi is the dummy
vertex preceding the head h of π, we use a query to OL to check whether xi <L h. If so, we return qi = pi.
Otherwise, we set pi = h and invoke Search. This returns qi in O(1 + log di) time and queries, where di is the
length of the subpath from pi to qi in π (di = 1 if pi = qi).

Finally, we insert xi into Tπ succeeding qi in constant time. Updating the dynamic list order data structure
and rebalancing Tπ takes amortised O(1) time. Thus, these operations take O(n) total time over all insertions.

Therefore, our algorithm uses O
(
n + m +

∑
xi∈H

(1 + log di)
)

time and O
(∑
xi∈H

(1 + log di)
)

queries.

Algorithm 1 Sort(directed acyclic graph G over a ground set X, Oracle OL) time

1: π ← a longest directed path in G ▷ O(n + m)
2: Tπ ← a level-linked (2-4)-tree over π [6] ▷ O(n)
3: H ← G− π ▷ O(n + m)
4: Compute for each vertex in H its in-degree in H ▷ O(n + m)
5: S ← sources in H ▷ O(n)
6: while S ̸= ∅ do
7: Remove an arbitrary vertex xi from S ▷ O(1)
8: pi ← a dummy vertex, which is prepended before the head of π ▷ O(1)
9: for all in-neighbors u of xi in G do ▷ O(d∗(xi))

10: pi ← Compare(pi, u) ▷ O(1)

11: Remove xi from H and add any new sources in H to S ▷ O(d∗(xi))
12: qi ← Search(xi, pi, OL) ▷ O(1 + log di)
13: FingerInsert(qi, xi) ▷ O(1) amortised

14: return the leaves of Tπ in order ▷ O(n)

2.1 Proof of optimality. Recall that e(PG) denotes the number of linear extensions of PG and let H start out
with k vertices. For ease of analysis, we re-index the vertices X so that the path π are vertices (xk+1, . . . , xn), in
order, and xi for i ∈ [k] is the i’th vertex our algorithm inserts into Tπ. We prove that our algorithm is tight by

showing that
k∑

i=1

(1 + log di) = k +
k∑

i=1

log di ∈ O(log e(PG)).

Lemma 2.1. Let G be a directed acyclic graph, PG be its induced partial order and π be a longest directed path in
G. If π has n− k vertices then log e(PG) ≥ k.

Proof. Denote ℓ(x) the length of the longest directed path in G from a vertex x. Denote for i ∈ [n] by
Li := |{x ∈ X | ℓ(x) = i}|. For each i ∈ [n− k], there is one u ∈ π with ℓ(u) = i so:

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited352

D
ow

nl
oa

de
d

04
/0

6/
25

 to
 1

09
.8

1.
82

.1
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

(2.1) k =

n−k∑
i=1

(Li − 1).

Consider a linear order L′ that is obtained by first sorting all x ∈ X by ℓ(x) from high to low, and ordering
(u, v) with ℓ(u) = ℓ(v) arbitrarily. The order L′ must extend PG, since any vertex w that has a directed path
towards a vertex u must have that ℓ(w) > ℓ(u). We count the number of distinct L′ that we obtain in this way
to lower bound e(PG):

e(PG) ≥
n−k∏
i=1

Li! ⇒ e(PG) ≥
n−k∏
i=1

2Li−1 = 2

(
n−k∑
i=1

(Li−1)

)
⇒ e(PG) ≥ 2k

Here, the first implication uses that x! ≥ 2x−1 and the second implication uses Equation 2.1.

What remains is to show that
k∑

i=1

log di ∈ O(log e(PG)). To this end, we create a set of intervals:

Definition 1. Let π∗ be the directed path that Algorithm 1 outputs. For any i ∈ [n] denote by π∗(xi) the index
of xi in π∗. We create an embedding E of X by placing xi at position π∗(xi).

Recall that for i ∈ [k], pi is the finger from where Algorithm 1 invokes Search with xi as the argument. We
create as set R of n open intervals Ri = (ai, bi) ⊆ [0, n] as follows:

• If i > k then (ai, bi) := (π∗(xi)− 1, π∗(xi)).
• Else, (ai, bi) := (π∗(pi), π

∗(xi)).

Lemma 2.2. Given distinct xi, xj ∈ X. If there exists a directed path from xi to xj in G then the intervals
Ri = (ai, bi) and Rj = (aj , bj) are disjoint with bi ≤ aj.

Proof. We consider three cases.
If i > k and j > k then xi and xj are part of the original longest directed path in G. If xi has a directed

path to xj in G then xi precedes xj on the original longest directed path. Thus, π∗(xi) precedes π∗(xj) and Ri

and Rj are distinct unit intervals where Ri precedes Rj .
If i ≤ k and j > k then xi was inserted into the path π with xj already in π. Since π∗ is a linear extension of PG,

it follows that xi was inserted preceding xj in π. It follows that xi precedes xj in π∗ and thus Ri = (π∗(pi), π
∗(xi))

lies strictly before Rj = (π∗(xj)− 1, π∗(xj)).
If j ≤ k then the vertex pj must equal or succeed xi in the path π∗. It follows that bi = π∗(xi) ≤ ai = π∗(pj).

The fact that these intervals are open then makes them disjoint.

The setR induces an interval order PR over X, which is the partial order≺R where xi and xj are incomparable
whenever Ri and Rj intersect, and where otherwise xi ≺R xj whenever bi ≤ aj . By Lemma 2.2, any linear order
L that extends PR must also extend PG and so e(PR) ≤ e(PG). The number of linear extensions of an interval
order is much easier to count. In fact, Cardinal, Fiorini, Joret, Jungers and Munro [3] and Van der Hoog,
Kostityna, Löffler and Speckmann [11] already upper bound the number of linear extensions of an interval order.
We paraphrase their upper bound, to give a weaker version applicable to this paper. For a proof from first
principles, see Section 3.

Lemma 2.3. (Lemma 1 in [11] and Lemma 3.2 in [3]) Let R = (R1, . . . Rn) be a set of n open intervals in
[0, n] and let each interval have at least unit size. Let PR be its induced partial order. Then:

n∑
i=1

log(|Ri|) ∈ O(log e(PR)).

We are now ready to prove our main theorem:

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited353

D
ow

nl
oa

de
d

04
/0

6/
25

 to
 1

09
.8

1.
82

.1
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Theorem 2.1. Given a directed acyclic graph G over X, inducing a partial order PG, and an oracle OL

whose queries specify a linear order L that extends PG, there exists an algorithm that uses linear space,
O(n + m + log e(PG)) time and O(log e(PG)) oracle queries to output the sorted order of X.

Proof. Our algorithm runs in O(n + m + k +
k∑

i=1

log di) time and uses O(k +
k∑

i=1

log di) queries. By Lemma 2.1,

k ∈ O(log e(PG)). The set R of Definition 1 is a set where each interval Ri has at least unit size. By
Lemma 2.2, e(PR) ≤ e(PG). For i ≤ k, the size |Ri| must be at least di since there are per construction
at least di vertices on the subpath from π∗(pi) to π∗(qj) in the embedding E. It follows by Lemma 2.3 that
k∑

i=1

log di ∈ O(log e(PR)) ⊆ O(log e(PG)).

3 Deriving Lemma 2.3 from first principles

We consider the following statement:

Lemma 2.3. (Lemma 1 in [11] and Lemma 3.2 in [3]) Let R = (R1, . . . Rn) be a set of n open intervals in
[0, n] and let each interval have at least unit size. Let PR be its induced partial order. Then:

n∑
i=1

log(|Ri|) ∈ O(log e(PR)).

While this lemma follows verbatim from Lemma 1 in [11] (which itself is weaker version of Lemma 3.2 in
in [3]), we also give a proof from first principles. We reindexR so that (R1, R2, . . . , Rm) is a maximum cardinality
set of pairwise-disjoint intervals in R, sorted from left to right. For any Ri ∈ R we denote by mid(Ri) its centre.
We define an (n−m)-dimensional polytope associated with R.

A =
{
x ∈ Rn

∣∣∣xi = mid(Ri) for i ≤ m and xi ∈ Ri for i > m
}

The volume of this polytope is Vol(A) =
n∏

i=m+1

|Ri|. Any x = (x1, . . . , xn) ∈ A with distinct coordinates defines

a linear extension L of PR via the rule “i ≺ j if and only if xi < xj”. We call the point x a realisation of L.
Observe that not all linear extensions of PR have a realisation x ∈ A.

Claim 1. Let L be a linear extension of PR. Let AL =
{
x ∈ A

∣∣x realises L
}
, then

Vol(AL) ≤ (2e)n−m.

Proof. Consider the m + 1 open intervals:

I := (−0.5,mid(R1)), . . . , (mid(Ri),mid(Ri+1)), . . . , (mid(Rm−1), n + 0.5).

For all (i, j) ∈ [m] × [m], the intervals (Ri, Rj) are disjoint and have length at least 1. It follows that each
interval in I has length at least 1. Suppose that L cannot be realised, then Vol(AL) = 0. Otherwise, we observe
that for any x, x′ realising L and any i ∈ {m+1, ..., n}, an interval in I contains xi if and only if it contains x′

i. This
allows us to say that an interval in I is occupied under L if it contains xi for any realisation x of L and any i > m.
There are at most n−m occupied intervals, and therefore at least m+ 1− (n−m) = (2m+ 1− n) non-occupied
intervals in I. Let GL be the union of the occupied intervals. Then |GL| ≤ |(−0.5, n+0.5)|−(2m+1−n) = 2(n−m),
as each non-occupied interval has length at least 1. Let:

BL =
{
y ∈ Rm ×Gn−m

L

∣∣∣yi = mid(Ri) for i ≤ m and (xj < xk ⇔ yj < yk) for j, k > m
}
.

Then AL ⊆ BL, hence

Vol(AL) ≤ Vol(BL) =
|GL|n−m

(n−m)!
=

(2(n−m))n−m

(n−m)!
≤ (2e)n−m.

Which proves the claim.

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited354

D
ow

nl
oa

de
d

04
/0

6/
25

 to
 1

09
.8

1.
82

.1
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Claim 2.
n∑

i=m+1

ln |Ri| ≤ ln e(PR) + (1 + ln 2)(n−m)

Proof. We note that:
n∑

i=m+1

ln |Ri| = ln Vol(A) ≤ ln
∑

L⊇PR

Vol(AL).

We now use Claim 1 to upper bond Vol(AL) for all L and the claim follows.

Claim 3.
m∑
i=1

ln |Ri| ≤ (n−m)

Proof. As R1, . . . , Rm are pairwise disjoint intervals in [0, n],
∑m

i=1 |Ri| ≤ n.
By analysis, lnx ≤ x− 1, hence

m∑
i=1

ln |Ri| ≤
m∑
i=1

(|Ri| − 1) = (n−m).

Which proves the claim.

Combining Claim 2 and Claim 3 yields

n∑
i=1

log |Ri| =
1

ln(2)
·

n∑
i=1

ln |Ri| ≤ log e(PR) +
(

1 +
2

ln(2)

)
· (n−m).

We now apply Lemma 2.1 of our paper to note that n−m ≤ log e(PR) and Lemma 3 follows.

References

[1] Michael A Bender, Richard Cole, Erik D Demaine, Martin Farach-Colton, and Jack Zito. Two simplified algorithms
for maintaining order in a list. In European symposium on algorithms, pages 152–164. Springer, 2002.

[2] Gerth Stølting Brodal. Finger search trees. In Handbook of Data Structures and Applications, pages 171–178.
Chapman and Hall/CRC, 2018.

[3] Jean Cardinal, Samuel Fiorini, Gwenaël Joret, Raphaël M. Jungers, and J. Ian Munro. Sorting under partial
information (without the ellipsoid algorithm). Combinatorica, 33(6):655–697, Dec 2013.

[4] Michael L. Fredman. How good is the information theory bound in sorting? Theoretical Computer Science, 1(4):355–
361, April 1976.

[5] Bernhard Haeupler, Richard Hlad́ık, John Iacono, Vaclav Rozhon, Robert Tarjan, and Jakub Tětek. Fast and simple
sorting using partial information. arXiv preprint arXiv:2404.04552, 2024.

[6] Scott Huddleston and Kurt Mehlhorn. A new data structure for representing sorted lists. Acta informatica, 17:157–
184, 1982.

[7] Daniel Rutschmann Ivor van der Hoog. Tight bounds for sorting under partial information. In 65th IEEE Annual
Symposium on Foundations of Computer Science, FOCS. IEEE, 2024.

[8] Jeff Kahn and Jeong Han Kim. Entropy and sorting. In Proceedings of the twenty-fourth annual ACM symposium
on Theory of Computing, STOC ’92, pages 178–187, New York, NY, USA, July 1992. Association for Computing
Machinery.

[9] Jeff Kahn and Michael Saks. Balancing poset extensions. Order, 1(2):113–126, June 1984.
[10] Donald E Knuth. The Art of Computer Programming: Fundamental Algorithms, Volume 1. Addison-Wesley

Professional, 1997.
[11] Ivor van der Hoog, Irina Kostitsyna, Maarten Löffler, and Bettina Speckmann. Preprocessing Ambiguous Imprecise

Points. In 35th International Symposium on Computational Geometry (SoCG 2019), volume 129, pages 42:1–42:16,
2019.

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited355

D
ow

nl
oa

de
d

04
/0

6/
25

 to
 1

09
.8

1.
82

.1
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

	Introduction
	Algorithm
	Proof of optimality.

	Deriving Lemma 2.3 from first principles

