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Abstract
In this paper, we present the first nontrivial lower bound on the translative covering
density of tetrahedra. To this end, we show the lower bound, in any translative covering
of tetrahedra, on the density relative to a given cube. The resulting lower bound on the
translative covering density of tetrahedra is 1 + 1.227 × 10−3.
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1 Introduction

More than 2,300 years ago, Aristotle claimed that congruent regular tetrahedra can
fill the whole space with neither gap nor overlap. In modern terms, he claimed that
regular tetrahedra of given size can form both a packing and a covering in E

3 simulta-
neously. Unfortunately, this statement is wrong. Aristotle’s mistake was discovered by
Regiomontanus in the fifteenth century (see [16]). Then, two natural questions arose
immediately: What is the density of the densest tetrahedron packing and what is the
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density of the thinnest tetrahedron covering? In fact, the packing case was emphasized
by Hilbert [12] as a part of his 18th problem. Since then, many scholars, including
mathematicians, physicists, and chemical engineers have made contributions (mis-
takes as well) to tetrahedra packings. For the complicated history, we refer to [2, 16].
For packings and tetrahedron packings, we refer to [3, 11, 13, 19, 22, 25].

Covering is often regarded as a counterpart of packing. Let θc(·), θ t (·) and θ l(·)
denote the densities of the thinnest congruent covering, the thinnest translative covering
and the thinnest lattice covering, respectively. Clearly,

1 ≤ θc(·) ≤ θ t (·) ≤ θ l(·).

In high dimensions, through the works of Bambah, Coxeter, Davenport, Erdős, Few,
Watson, and in particular Rogers (see [18]), covering densities are much better under-
stood than packing densities. For more details, we refer to [9, 17, 23]. Nevertheless,
in low dimensions, little is known about covering compared to packing. For covering
densities in the plane, we refer to [6, 14, 15, 20, 21, 24].

Now, we focus on results in E
3. Let B denote the unit ball and let T denote the

regular tetrahedron with unit edges. Except for the five types of parallelohedra which
can translatively tile E

3, the only known exact result is

θ l(B) = 5
√
5π

24
,

which was discovered in 1954 by Bambah [1]. For tetrahedron coverings, several
bounds have been achieved. In the lattice case,

216 + 1

216
≤ θ l(T ) ≤ 125

63
,

where the upper bound was discovered by Fiduccia et al. [7], Dougherty and Faber [5]
and Forcade and Lamoreaux [8] in 1990s, and the lower bound was achieved by Xue
and Zong [23] in 2018 by studying the volumes of generalized difference bodies. In
2022, Fu et al. [9] improved the lower bound to

θ l(T ) ≥ 25

18
.

In the congruent case, Conway and Torquato [4] obtained

θc(T ) ≤ 9

8

by constructing a particular tetrahedron covering in 2006. It is surprising that, nothing
nontrivial is known about θ t (T ) up to now.

In this paper, we prove the following result:
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Theorem 1.1 If T + X is a translative covering of E
3, then its density is at least

1 +
√
2

1152 . In other words, we have

θ t (T ) ≥ 1 +
√
2

1152
> 1 + 1.227 × 10−3.

2 Preliminaries

2.1 Proof Outline

Assume that E
3 is covered by translates of the tetrahedron T with vertices (1, 1,−1),

(1,−1, 1), (−1, 1, 1) and (−1,−1,−1). In order to show that the density of this
covering is more than 1 + 1.227 × 10−3, it is sufficient to select a cube P and prove
that no matter where a translate of this cube is placed, the covering density of the
tetrahedra restricted to this ‘cubical window’ is more than 1 + 1.227 × 10−3.

For technical purposes the cube P will have faces parallel to the coordinate planes.
Here we say only that P will be large enough to contain every tetrahedron which
overlaps another tetrahedron, which contains the cube’s center. Select a member T ′
of the covering which contains the center of P . It turns out that for the proof we also
need to identify a smaller polyhedron D′ in cube P , so that already D′ contains all
such translates of T ′.

Now consider a random translate of a P (together with D′). We will study the
cluster of tetrahedra which overlap T ′. We distinguish two cases:

Case 1. The cluster contains more than N tetrahedra (N will be specified later in
the detailed proof).

Case 2. The cluster contains at most N tetrahedra.
Finally, let us explain how we get density bounds in the above two cases:
Conclusion in Case 1. In order to get a lower density bound we may assume that

the region outside D′ and inside P is single covered, and verify that if the total volume
of the tetrahedra in the cluster is evenly spread out to cube P , like butter on a toast,
the density will be more than 1 + 1.227 × 10−3.

Conclusion inCase 2. In order to get a lower density boundwemay assume that the
entire cubical window P is single covered, except multiple covered parts of T ′. These
multiple covered parts are estimated. Finally, it is verified, that if the total volume of
the parts overlapping tetrahedra T ′ is evenly spread out to cube P , like butter on a
toast, the density will be more than 1 + 1.227 × 10−3.

2.2 Geometric Lemmas

Let K be a convex body and define

D(K ) = {x − y : x, y ∈ K }.
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Fig. 1 The cuboctahedron D(2T ) contained in the cube P

Usually,we call D(K ) the difference body of K . Clearly D(K ) is a centrally symmetric
convex set centered at the origin o.

Example 2.1 (Groemer [10]). Let 2T denote the tetrahedron with vertices (2, 2,−2),
(2,−2, 2), (−2, 2, 2) and (−2,−2,−2). It is well known that

D(2T ) = {(x, y, z) : max{|x |, |y|, |z|} ≤ 4, |x | + |y| + |z| ≤ 8},

i.e., a cuboctahedron with edge length 4
√
2 and volume 1280

3 .

Without loss of generality, let P denote the cube (see Fig. 1) defined by

{(x, y, z) : max{|x |, |y|, |z|} ≤ 4}. (2.1)

Clearly,

D(2T ) ⊂ P and vol(P) = 512. (2.2)

Lemma 2.2 If o ∈ T + x and (T + x) ∩ (T + y) 	= ∅, then T + y ⊂ D(2T ).

Proof Since o ∈ T + x, x ∈ −T . Then

T + x ⊂ T − T = D(T ).

Without loss of generality, suppose that (T + x) ∩ (T + y) = z. Since z ∈ T + x ⊂
D(T ) and z ∈ T + y, we have y ∈ −T + z ⊂ −T + D(T ) and therefore

T + y ⊂ T − T + D(T ) = D(2T ).

The lemma is proved. 
�
Lemma 2.3 If T ∩ (T + x) 	= ∅, then T + x ⊂ 5T ∩ −7T .

Proof We claim that − 1
3u ∈ T if u ∈ T . Let v1, v2, v3 and v4 denote the vertices of

T . For any point u ∈ T , we have

u = α1v1 + α2v2 + α3v3 + α4v4,
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Fig. 2 5T ∩ −7T and D

where αi ≥ 0 for all i and α1 +α2 +α3 +α4 = 1. Without loss of generality, suppose
that α4 = max{α1, α2, α3, α4}. Since v1 + v2 + v3 + v4 = o, we have

−1

3
u = −1

3
(α1v1 + α2v2 + α3v3 + α4(−v1 − v2 − v3))

= 1

3
(α4 − α1)v1 + 1

3
(α4 − α2)v2 + 1

3
(α4 − α3)v3.

Since 1
3 (α4 − αi ) ≥ 0 for all i and the sum of them ≤ 1, combined with the convexity

of T , we have − 1
3u ∈ T .

Since T ∩(T +x) 	= ∅, there exist u1,u2 ∈ T such that u1+x = u2. Then we have
− 1

3u1 ∈ T , − 1
3u2 ∈ T . For any point u ∈ T , we have − 1

3u ∈ T . By the convexity of
T , we know that

u + x = u + u2 − u1 = 5

(
1

5
u + 1

5
u2 + 3

5

(
−1

3
u1

))
∈ 5T ,

u + x = u + u2 − u1 = −7

(
3

7

(
−1

3
u
)

+ 3

7

(
−1

3
u2

)
+ 1

7
u1

)
∈ −7T .

Therefore, T + x ⊂ 5T ∩ −7T if T ∩ (T + x) 	= ∅, the lemma is proved. 
�
Let C denote the cube defined by

{(x, y, z) : max{|x |, |y|, |z|} ≤ 3},

and let

D = 5T ∩ −7T ∩ C .

As shown in Fig. 2, we know that

vol(D) = vol(C) − 4 · 4
3

− 4 · 32
3

= 168. (2.3)
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Fig. 3 Results for Corollary 2.6(2)

The following lemma holds:

Lemma 2.4 If T ∩ (T + x) 	= ∅, then T + x ⊂ D.

Proof We know that T can be defined as the set of all points (x, y, z) where

x + y + z ≤ 1,

−x − y + z ≤ 1,

x − y − z ≤ 1,

−x + y − z ≤ 1,

(2.4)

holds. Since T ∩ (T + x) 	= ∅, there exist (x1, y1, z1) ∈ T and (x2, y2, z2) ∈ T such
that

x = (x2, y2, z2) − (x1, y1, z1).

For any point (x, y, z) ∈ T , inserting (x, y, z) into the two inequalities in (2.4),
(x2, y2, z2) as well, inserting (x1, y1, z1) the remaining two inequalities, and then
adding all inequalities together, we have

|x + (x2 − x1)| ≤ 3, |y + (y2 − y1)| ≤ 3, |z + (z2 − z1)| ≤ 3.

Therefore, T + x ⊂ C if T ∩ (T + x) 	= ∅. By Lemma 2.3, T + x ⊂ 5T ∩ −7T ∩C
if T ∩ (T + x) 	= ∅, the lemma is proved. 
�
Remark 2.5 In fact, by similar arguments it can be deduced that

⋃
(T + x) = D,

where T ∩ (T + x) 	= ∅. Then by Lemma 2.2 and (2.2),

⋃
(T + y) =

⋃
(D + x) ⊂ D(2T ) ⊂ P, (2.5)

where o ∈ T + x and (T + x) ∩ (T + y) 	= ∅.

Since the common part of two translated regular tetrahedra is a smaller regular
tetrahedra, there can be three different types of positions, see Fig. 3. Moreover, we
have the following result.
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Corollary 2.6 If T ∩ (T + x) 	= ∅ and x 	= o, then the following holds:

(1) T + x intersects at most one vertex of T ; If T + x intersects more than one edge
(face) of T , then it must intersect the vertices (edges) of T .

(2) If int(T + x) intersects one vertex (edge or face) of T , then α(T ) ∩ (T + x) is
three (two or one) regular triangles with the same edge length.

3 Translative Coverings of Tetrahedra

To study θ t (T ), the most natural approach is localization. Assume that X is a discrete
set of points in E

3 such that T + X is a translative covering of E
3. Let P be the cube

defined in (2.1). Then define

θ(T , X , P) =
∑
x∈X

vol(P ∩ (T + x))

vol(P)
. (3.1)

Let X denote the family of all such sets X . We call

θ(T , P) = min
X∈X θ(T , X , P). (3.2)

the covering density of T for P . Since P is a parallelohedron, clearly,

θ t (T ) ≥ θ(T , P). (3.3)

Proof of Theorem 1.1 T + X is a translative covering of E
3. Without loss of generality,

we suppose that o ∈ T +xm+1 and T +xm+1 is intersected by T +x1, T +x2, . . . , T +
xm . By (2.5), we have

m+1⋃
i=1

(T + xi ) ⊂ D + xm+1 ⊂ D(2T ) ⊂ P. (3.4)

We consider two cases.
Case 1. m ≥ 63. By (2.2), (2.3) and (3.4),

θ(T , X , P) =
∑
x∈X

vol (P ∩ (T + x))

vol(P)

≥
vol(P \ (D + xm+1)) + ∑

x∈X
vol ((D + xm+1) ∩ (T + x))

vol(P)

≥ 1 − 21

64
+

m+1∑
i=1

vol ((D + xm+1) ∩ (T + xi ))

vol(P)
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= 43

64
+ (m + 1) · vol(T )

vol(P)

≥ 193

192
.

Case 2. m ≤ 62. Let ∂(T ) denote the boundary of T . Then

∂(T + xm+1) =
m⋃
i=1

(∂(T + xm+1) ∩ (T + xi )) . (3.5)

Since (T + xm+1) ∩ (T + xi ) is a single point or homothetic to T . Since m is finite, if
(T+xm+1)∩(T+x1) is a single pointu, then theremust be i such thatu ∈ int(T+xi ).
So

∂(T + xm+1) =
m⋃
i=2

(∂(T + xm+1) ∩ (T + xi )) ,

and m − 1 ≤ 62 still holds. Therefore, we suppose that

(T + xm+1) ∩ (T + xi ) = λi T + yi , 1 ≤ i ≤ m

holds for some suitable positive number λi and a point yi .
Firstly, let v be a vertex of T + xm+1. If v ∈ λ1T + y1 and v ∈ λ2T + y2, then we

must have λ1T +y1 ⊂ λ2T +y2 or λ2T +y2 ⊂ λ1T +y1, say λ1T +y1 ⊂ λ2T +y2.
So

∂(T + xm+1) =
m⋃
i=2

(∂(T + xm+1) ∩ (T + xi )) ,

and m − 1 ≤ 62 still holds. Therefore, we suppose that each vertex of T + xm+1 is
covered exactly once. By Corollary 2.6(1), these vertices are covered by four different
elements in {T + x1, T + x2, . . . , T + xm}, say

T + x1, T + x2, T + x3, T + x4.

It follows from Corollary 2.6(2) that the total number of regular triangles obtained by
intersecting T + x1, T + x2, T + x3, T + x4 with ∂(T + xm+1) is 12, and the sum of
the areas of these regular triangles is

3 ·
√
3

4

(
λ21 + λ22 + λ23 + λ24

)
.

Secondly, let e j denote the edge of T +xm+1 and let E j denote the set consisting of
all elements in {T +x5, T +x6, . . . , T +xm} that intersect e j , where 1 ≤ j ≤ 6. Since
they do not intersect the vertices of T + xm+1, it follows from Corollary 2.6(1) that
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Ei ∩ E j = ∅ if i 	= j . Thus we have |E1 ∪ E2 ∪· · ·∪ E6| = |E1|+ |E2|+ · · ·+ |E6|.
Without loss of generality, we suppose that

E1 ∪ E2 ∪ · · · ∪ E6 = {T + x5, T + x6, . . . , T + x|E1|+···+|E6|+4}.

It follows from Corollary 2.6(2) that the total number of regular triangles obtained by
intersecting

⋃
E j with ∂(T + xm+1) is

2 (|E1| + |E2| + · · · + |E6|) ,

and the sum of the areas of these regular triangles is

2 ·
√
3

4

(
λ25 + λ26 + · · · + λ2|E1|+···+|E6|+4

)
.

Finally, let f j denote the face of T + xm+1 and let Fj denote the set consisting of
all elements in {T + x|E1|+···+|E6|+5, T + x|E1|+···+|E6|+6, . . . , T + xm} that intersect
f j , where 1 ≤ j ≤ 4. Since they do not intersect the edges of T + xm+1, it follows
from Corollary 2.6(1) that Fi ∩ Fj = ∅ if i 	= j . Thus we have

∣∣∣∣∣∣
m⋃

i=|E1|+···+|E6|+5

(T + xi )

∣∣∣∣∣∣ =
∣∣∣∣∣∣

4⋃
j=1

Fj

∣∣∣∣∣∣ =
4∑
j=1

∣∣Fj
∣∣ ,

which implies that

m = 4 +
6∑
j=1

|E j | +
4∑
j=1

|Fj |. (3.6)

It follows from Corollary 2.6(2) that the total number of regular triangles obtained by
intersecting

⋃
Fj with ∂(T + xm+1) is

|F1| + |F2| + |F3| + |F4|,

and the sum of the areas of these regular triangles is

√
3

4

(
λ2|E1|+···+|E6|+5 + λ2|E1|+···+|E6|+6 + · · · + λ2m

)
.

Combining the preceding results, we conclude that the total number of regular
triangles obtained by intersecting T + x1, T + x2, . . . , T + xm with ∂(T + xm+1) is

t = 12 + 2
6∑
j=1

|E j | +
4∑
j=1

|Fj | ≤ 2m + 4 ≤ 128, (3.7)
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and the sum of the areas of these regular triangles is

S =
√
3

4

⎛
⎝3

4∑
i=1

λi
2 + 2

|E1|+···+|E6|+4∑
i=5

λi
2 +

m∑
i=|E1|+···+|E6|+5

λi
2

⎞
⎠ .

From (3.5), we know that

S ≥ 8
√
3. (3.8)

According to Power-Mean Inequality, (3.6) and (3.7), we have

⎛
⎝

⎛
⎝3

4∑
i=1

λi
3 + 2

|E1|+···+|E6|+4∑
i=5

λi
3 +

m∑
i=|E1|+···+|E6|+5

λi
3

⎞
⎠ /t

⎞
⎠

1
3

≥
(
S/

√
3

4
t

) 1
2

,

where λi > 0. Then it follows from (3.8) that

m∑
i=1

λi
3 ≥ 128

√
2t

3t
≥ 16

3
.

Therefore, in this case, we have

θ(T , X , P) =
∑
x∈X

vol (P ∩ (T + x))

vol(P)

= 1 +

∑
xi ,x j∈X ,i< j

vol
(
P ∩ (T + xi ) ∩ (T + x j )

)

vol(P)

≥ 1 +

∑
1≤i< j≤m+1

vol
(
(T + xi ) ∩ (T + x j )

)

vol(P)

≥ 1 +

m∑
i=1

vol ((T + xi ) ∩ (T + xm+1))

vol(P)

= 1 +
√
2

12 (λ31 + λ32 + · · · + λ3m)

512

≥ 1 +
√
2

1152
.

As a conclusion of these two cases, we have

θ(T , X , P) ≥ 1 +
√
2

1152
> 1 + 1.227 × 10−3.
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According to equations (3.1), (3.2) and (3.3), we obtain

θ t (T ) ≥ θ(T , P) = min
X∈X θ(T , X , P) ≥ 1 +

√
2

1152
> 1 + 1.227 × 10−3,

and the theorem is proved. 
�
Remark 3.1 By covering the structure with asymptotic δl(D(2T )) = 45

49 (see [13])

instead of vol(D(2T ))
vol(P)

= 5
6 , we can slightly improve the lower bound in Theorem 1.1.

However, since the improvement is not essential, its proof is not included here.
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