
Bidirectional Dijkstra’s Algorithm is Instance-Optimal
Bernhard Haeupler∗ Richard Hladík† Václav Rozhoň‡ Robert E. Tarjan§

Jakub Tětek¶

Abstract

While Dijkstra’s algorithm has near-optimal time complexity for the problem of finding the shortest st-path,
in practice, other algorithms are often superior on huge graphs. A prominent such example is the bidirectional
search, which executes Dijkstra’s algorithm from both endpoints in parallel and stops when these executions
meet.

In this paper, we give a strong theoretical justification for the use of such bidirectional search algorithms.
We prove that for weighted multigraphs, both directed and undirected, a careful implementation of bidirectional
search is instance-optimal with respect to the number of edges it explores. That is, we prove that no correct
algorithm can outperform our implementation of bidirectional search on any single instance by more than a
constant factor.

For unweighted graphs, we show that bidirectional search is instace-optimal up to a factor of O(∆) where ∆
is the maximum degree of the graph. We also show that this is the best possible.

1 Introduction
From a theoretical perspective, Dijkstra’s algorithm, with its near-linear time complexity, is close to optimal for
the problem of finding the shortest path between two vertices s and t. However, when the input graph is huge, we
can often find the shortest path between two vertices without exploring the entire input graph. In this scenario,
other algorithms are often significantly more efficient in practice than Dijkstra’s algorithm. One method that
stands out is bidirectional search. This approach, proposed by Dantzig [14] in 1963 and Nicholson [37] in 1966,
executes Dijkstra’s algorithm from both s and t and halts when the two executions meet. While in the worst case,
this algorithm has to look at all the nodes and edges of the input graph, it often performs much better in practice.

In this paper, we explain why: On weighted multigraphs with positive weights, a version of this method is
instance-optimal in terms of the number of edges that the algorithm accesses. This means that the algorithm is the
most efficient one for every single instance. Concretely, up to a constant factor, there is no correct algorithm that
would access fewer edges than bidirectional Dijkstra on even a single input. This result works in the adjacency list
model of sublinear algorithms where we assume that we have only a simple query access to the nodes and edges in
the graph and we are not given any additional information about it. Note that the time complexity of bidirectional
search is proportional to the number of edges accessed, up to a logarithmic term. Thus, bidirectional search is also
close to being instance-optimal from the classical time-complexity perspective. We also prove a similar result for
the class of unweighted graphs and bidirectional BFS.

Theorem 1.1. (Informal corollary of Theorems 5.1, 6.1 and 6.2) In the adjacency list model of sublin-
ear algorithms, there exists an instance-optimal algorithm for the shortest st-path problem on weighted multigraphs.
On unweighted multigraphs, there exists an algorithm that is instance-optimal up to ∆(G)1; this factor cannot be
improved.

∗bernhard.haeupler@inf.ethz.ch, INSAIT, Sofia University “St. Kliment Ohridski” & ETH Zurich
†rihl@uralyx.cz, INSAIT, Sofia University “St. Kliment Ohridski” & ETH Zurich
‡vaclavrozhon@gmail.com, INSAIT, Sofia University “St. Kliment Ohridski”
§ret@cs.princeton.edu, Princeton University
¶j.tetek@gmail.com, INSAIT, Sofia University “St. Kliment Ohridski”
1We use ∆(G) or just ∆ to denote the maximum degree of G.

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited202

D
ow

nl
oa

de
d

04
/0

6/
25

 to
 1

09
.8

1.
82

.1
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

While the proof of Theorem 1.1 is technically straightforward, we believe that the result is appealing for a
number of reasons. First, we stress that the proven guarantee for bidirectional search is extremely strong. The
result makes it clear that bidirectional search is the asymptotically best possible algorithm for the shortest st-path
problem on any given input graph, provided that we are not given any additional information about the input
graph.

Second, there are several standard variants of bidirectional search (see Section 2). While we know of three
variants proposed in the literature [14, 37, 38], none of them are instance-optimal. To prove Theorem 1.1, we have
to use a different very simple variant of the algorithm.

Third, our result expands the set of problems that are now known to be amenable to the strong guarantee of
instance optimality. While there are several areas of computer science where the results of this type are known,
it seems that in the setup of Theorem 1.1 – sublinear graph algorithms – our result is the first of its kind. We
discuss other problems amenable to this type of analysis in Section 2.

Finally, the shortest st-path problem is interesting from the perspective of determining which conditions
are necessary for achieving instance optimality. In particular, our results show that certain subtle assumptions
about edge weights are crucial. Without these assumptions, instance optimality becomes impossible to attain.
This highlights the delicate choices one sometimes has to make to prove instance optimality. We discuss this in
Section 5.1.

Optimality of unidirectional Dijkstra’s algorithm in a restricted setting Additionally, we prove
in Section 4 that in directed graphs, assuming we may access only the out-neighbors of vertices and that we
cannot access the degrees, unidirectional Dijkstra’s algorithm is instance-optimal. The proof is very simple and it
showcases well the general approach that we use in our other proofs. For the sake of simplicity of exposition, we
only prove this claim for the class of deterministic algorithms, while we prove our other results also for randomized
algorithms.

While the fact that our lower bounds also hold for randomized algorithms may seem uninteresting at first,
we think that the opposite is true. Note that while the classical shortest-paths algorithms like Dijkstra’s [18] or
Bellman-Ford [5, 42] are deterministic, many state-of-the algorithms for the shortest path problem in various
models of computation are, in fact, randomized. This includes the fastest known algorithm for computing distance
in undirected graphs by Duan, Mao, Shu, and Yin [20] or the state-of-the-art parallel algorithms for the shortest
path problem [10, 11, 9, 41]. We also note that the sublinear model of computation is notorious for requiring
randomization in order to get any non-trivial algorithm for most problems.

2 Related work
This section presents an overview of related work. First, we explain the bidirectional search meta-algorithm and
its variants proposed in the literature. Next, we discuss the connections with the popular A* algorithm, which is
used for the same task as bidirectional search in the case we have additional information about the input graph.
Finally, we discuss other setups and problems that admit instance-optimality-based analysis.

The bidirectional Dijkstra’s algorithm This algorithm was first proposed by Dantzig [14] but his description
was very vague. The first to precisely specify a correct algorithm was Nicholson [37]. There are several variants of
the bidirectional Dijkstra’s algorithm as there is quite significant flexibility in the algorithm. We formulate the
core structure of the algorithm as a meta-algorithm in Algorithm 1.

Selection rule Several rules have been proposed for selecting between the two searches in Algorithm 1.
Dantzig [14] suggests alternating between exploring a vertex in one of the two executions. On the other hand,
Nicholson [37] suggests always exploring the node that is closer to s or t, respectively. Finally, Pohl [38] suggests
that we explore in the execution in which the number of vertices that have been seen but not yet explored is
smaller. It can be seen that none of those approaches achieve the instance-optimality guarantees of Theorem 1.1.
Therefore, in our instance-optimal Algorithm 2 we will use a different, yet very simple equal-work rule in which we
simply alternate between relaxing an edge in the forward and backward run.

Stopping condition There are also differences in the stopping condition: Dreyfus [19] suggests to stop when
the two executions meet (for a correct definition of “meets”). Pohl [38] suggests a stopping condition that uses
distance bounds computed by the algorithm to determine that the shortest path has already been found. In our
paper, we use this approach.

One has to be cautious of a seemingly natural stopping condition that is not correct: if we stop when the two

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited203

D
ow

nl
oa

de
d

04
/0

6/
25

 to
 1

09
.8

1.
82

.1
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Algorithm 1: Bidirectional Search Meta-Algorithm
Input: Graph G(V, E), source vertex s, target vertex t
Input: Selection function, stopping condition

1 Initialize forward search from s and backward search from t;
2 while stopping condition is not satisfied do
3 Use a selection rule to select one of the two directions;
4 if direction is forward then
5 Execute one edge relaxation of Dijkstra’s algorithm from s;
6 else
7 Execute one edge relaxation of reverse Dijkstra’s algorithm from t;
8 end
9 end

10 Recover the shortest path from the two runs;

sets of open vertices intersect for the first time, the vertex at which the two executions meet may not lie on the
shortest path. Indeed, this incorrect stopping rule appeared in the literature as was pointed out by Pohl [38].

Optimality We are not aware of works that give theoretical guarantees of bidirectional search comparable
to Theorem 1.1. In [38], Pohl gives a heuristic argument. Namely, he models the input graph in a continuous
probabilistic way and argues heuristically that under this model, his version of bidirectional search is the best
possible. In general, it is known that bidirectional search or algorithms based on it can have sublinear time
complexity for certain specific classes of graphs such as hyperbolic random graphs [6], power-law graphs [8],
Chung-Lu random graphs [4], or expanding graphs [2, 7].

Relation to the A* algorithm One might wonder how it can be that bidirectional Dijkstra is instance-optimal,
but in practice, it is often outperformed by the famous A* algorithm. The reason is that A* requires additional
advice (heuristical distance estimates) as a part of the input. More formally, A* solves a different problem than
bidirectional Dijkstra; specifically, a problem where the input consists of both the graph and the additional advice
on every node. This shows an important nuance of Theorem 1.1: bidirectional search is optimal only if we assume
that we have no way of learning additional meaningful information about the input graph.

The A* algorithm was first suggested by Hart, Nilsson, and Raphael [30]. The algorithm was later shown to
be optimal among all unidirectional-Dijkstra-like algorithms by Dechter and Pearl [15].

A bidirectional version of the A* algorithm was suggested by Holte, Felner, Sharon, Sturtevant, and Chen
[31]. Different versions of the bidirectional A* algorithm have been studied; we refer the interested reader to [31,
44, 43]. Eckerle, Chen, Sturtevant, Zilles, and Holte [21] made significant progress in proving an analogous result
that bidirectional A* is optimal among bidirectional-Dijkstra-like algorithms. Shaham, Felner, Sturtevant, and
Rosenschein [43] in fact used these results to give algorithms that are optimal among all bidirectional-Dijkstra-like
algorithms, if one sets optimally a parameter of that algorithm. However, one does not know the optimal parameter
in advance, meaning that this result falls short of giving an algorithm optimal among bidirectional-Dijkstra-like
algorithms.

While our techniques are straightforward and similar to these papers, our Theorem 1.1 is significantly stronger
because we prove optimality among all correct algorithms, while the previous work [21, 43] restricts itself to
certain classes of algorithms. Moreover, we show optimality in terms of the number of edge accesses, not vertex
accesses. Since the time complexity is near-linear in the number of edge accesses of the algorithm, this means that
our algorithm is also near-instance-optimal in terms of its actual time complexity, and not just the number of
encountered nodes.

Instance optimality for other problems Due to its strength, instance optimality is an extremely appealing
beyond-worst-case guarantee an algorithm can have; see the relevant chapter in Roughgarden [39] for an introduction.
There are several known setups where we can make instance-optimality-based analyses of algorithms work.

The original paper by Fagin, Lotem, and Naor [22] that coined the term comes from the area of greedy
algorithms for retrieving data from databases.

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited204

D
ow

nl
oa

de
d

04
/0

6/
25

 to
 1

09
.8

1.
82

.1
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Several algorithms with instance-optimality-like guarantees are known for problems related to sorting, such as
the problem of finding the convex hull [1], computing set intersections [16], sorting with partial information [26,
32], or sorting vertices of an input graph by their distance (the problem solved by Dijkstra’s algorithm) [27].

In the area of distributed algorithms, many algorithms can be proved to have a guarantee called universal
optimality that is closely connected to instance optimality [23, 28, 24]. This includes algorithms for the approximate
shortest path problem [29, 47, 40].

Another area where instance-optimal algorithms are known is the area of sequential estimation [46, 45, 33].
There is an instance-optimal sublinear-time algorithm for computing the distance of a point from a given curve [3].
Yet another area with known instance-optimal algorithms is that of multi-armed bandits, with works on that topic
including [35, 12, 13, 36, 34].

3 Preliminaries
In this section, we review standard concepts necessary for the later analysis.

Our model of sublinear algorithms We work within a standard query model for sublinear graph algorithms
[25, Chapter 10]. The complexity measure of interest is then the number of queries performed. We assume that
the input contains a weighted multigraph G with n nodes; the edges have real weights. Note that a multigraph
can contain both self-loops and parallel edges.

We assume that the graph G is stored in the adjacency list format. That is, we have query access to its
vertices, each of which keeps a list of its neighbors. More formally, vertices are numbered 1 to n and on undirected
graphs, we are allowed to perform the following queries:

1. Degree(i): Given an input identifier i with 1 ≤ i ≤ n, this function returns the degree of the i-th vertex.

2. Neighbor(i, j): Given an input identifier i with 1 ≤ i ≤ n and the index of its neighbor j with
1 ≤ j ≤ degG(i)2, this function returns the identifier of the j-th neighbor of i. Additionally, it returns the
positive real weight of the edge.

On directed graphs, we can similarly query the Indegree and the Outdegree of a vertex; moreover, we have
functions Inneighbor and Outneighbor that can list the neighbors of a given vertex in both directions.3

Each query has a unit cost and we use the number of queries as our main measure of algorithmic complexity.
This measure of query complexity is closely related to the classical time complexity since classical algorithms
based on Dijkstra’s algorithm have their time complexity proportional to the number of edges explored, up to a
logarithmic factor necessary for heap maintenance.

We will prove instance optimality in the more general setting of randomized algorithms. For such algorithms,
we measure the expected number of queries. A randomized algorithm is said to be correct if it is correct on every
instance with a probability at least 0.9.

The shortest st-path problem In the shortest st-path problem, we are given an input (directed or
undirected) multigraph G. The edges of the graph have weights given by function ℓ : E(G)→ R>0; this function
induces a distance function d : V (G) × V (G) → R≥0 that maps any two different nodes u, v to their positive
shortest-path distance d(u, v) (that might be different from d(v, u) on directed graphs). It is important to consider
edges with strictly positive, instead of nonnegative, weights. We discuss the difference later in Section 5.1.

For the shortest st-path problem, we are moreover given two vertices s and t of G. The task is to return an
arbitrary shortest st-path. Note that in the case of multi-graphs, it does not suffice to just output the sequence of
vertices but one must output the specific edges.

Dijkstra’s algorithm We now recall Dijkstra’s algorithm [17] and define terms that we will later use in our
proofs. Throughout the execution, we store for each vertex w the length d̂(s, w) of the shortest sw-path found so
far. The algorithm starts with the vertex s being open and all others being unvisited. It then repeatedly takes the
vertex u closest to s among all open vertices and relaxes all edges uv leaving this vertex as follows. Relaxing an
edge to an unvisited vertex v makes v open and sets d̂(s, v) := d̂(s, u) + ℓ(uv). If v is open, we update the length
of the currently shortest path to v by setting d̂(s, v) := min(d̂(s, v), d̂(s, u) + ℓ(uv)). If v is closed, we do nothing.

2We use degG to denote the degree in the graph G.
3We remark that the instance optimality can also be proven in slightly stronger models allowing additional queries. One such query

is Edges(i1, i2, j) which returns the j-th multiedge between the two nodes i1, i2.

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited205

D
ow

nl
oa

de
d

04
/0

6/
25

 to
 1

09
.8

1.
82

.1
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Once we have relaxed all edges leaving a vertex, the vertex is closed from that point on, and we continue with the
next vertex in the list of open vertices. It should be noted that the names unlabeled, labeled, and scanned are also
used for unvisited, open, and closed, respectively.

The classical Dijkstra’s algorithm finishes once the target node t becomes closed, or when the set of open
nodes becomes empty (in which case t is unreachable). However, in bidirectional search, the stopping condition is
more complex as there are two runs of Dijkstra’s algorithm involved.

Once the algorithm finishes, one can recover the shortest path to any closed vertex v. Namely, we start with v
and we find a vertex v′ such that d̂(s, v′) = d̂(s, v)− ℓ(v′, v). By iteratively finding the preceding vertex like this,
we may recover the whole shortest sv-path.

Instance optimality Intuitively speaking, an algorithm is instance-optimal (up to c) if it is optimal (up to
c) on every single instance among the set of correct algorithms.

We say that an algorithm A is correct if on any input, it outputs a correct output with probability ≥ 0.9. Note
that by standard probability amplification, the constant 0.9 is arbitrary and any constant > 1/2 would work.

Definition 1. A correct algorithm A is instance-optimal under complexity function T if there exists c = O(1)
such that on every input x it holds for every correct algorithm A′ that the expected complexity TA(x) and TA′(x) of
respectively A and A′ on x satisfy

TA(x) ≤ c · TA′(x) .

The definition of instance optimality readily generalizes to algorithms that are instance-optimal up to a
potentially nonconstant factor, such as ∆(G) that we encountered in Theorem 1.1.

Throughout the paper, we will assume T to be the query complexity. However, note that the time complexity
can be off only by a factor of at most O(log n) required to handle the heap operations necessary in Dijkstra’s
algorithm.

4 Warm-up: Unidirectional Search in Directed Graphs
In this section, we show the simplest result of the kind that we focus on. Namely, we consider a more restricted
query model, deterministic algorithms, and we focus on only computing the distance from s to t, instead of actually
finding the path. We then show that standard Dijkstra’s algorithm is instance-optimal if aborted at the right time.
Unlike in other sections, we also phrase the result here in a self-contained way to make it more accessible to a
casual reader.

The proof is conceptually similar to other proofs in this paper, which however need to take care of several
additional obstacles. We hope this proof may serve as a warm-up for the other proofs.

Theorem 4.1. Let us have a directed weighted graph G with positive weights and assume we are given two vertices
s, t. Assume the only operation we can do is to take a vertex we have seen and ask for its next out-neighbor (in an
adversarial ordering) and the weight of the edge to that vertex.

Consider executing Dijkstra’s algorithm from s and aborting it once we close some vertex v with d̂(s, v) = d̂(s, t)
(possibly v = t). Then this algorithm correctly computes the st-distance. Furthermore, no correct deterministic
algorithm A can perform fewer queries on G.

Proof. First, we argue correctness. By the standard proof of correctness of Dijkstra’s algorithm, once we close
the vertex v, we have d̂(s, v) = d(s, v). At the same time, vertices are closed in order of non-decreasing distance,
meaning that d(s, t) ≥ d(s, v) = d̂(s, v) = d̂(s, t). Moreover, it always holds that d̂(s, t) ≥ d(s, t). Thus, we have
d̂(s, t) = d(s, t), meaning that the distance is correct.

For the sake of contradiction, let us have an algorithm that performs fewer queries than Dijkstra on G.
Therefore, there has to be an edge uv for d(s, u) < d(s, t) that A does not query. We define a graph G′ where
we replace the edge uv by ut with weight δ < d(s, t) − d(s, u). The distance between s and t in G′ is then
d(s, u) + δ < d(s, t). However, the algorithm does not query this edge. Since the rest of the graph is exactly the
same, the algorithm thus returns the same answer on both G and G′ which implies that the algorithm is not
correct.

5 Instance Optimality in Weighted Graphs
Now we give an instantiation of the bidirectional search meta-algorithm that we later prove is instance-optimal.
As the selection rule that chooses between the two executions, we use the perhaps simplest possible rule in which

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited206

D
ow

nl
oa

de
d

04
/0

6/
25

 to
 1

09
.8

1.
82

.1
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

we alternate one edge relaxation in the forward algorithm with one edge relaxation of the backward algorithm.
This way, we make sure that at any point in time, each of the two executions has the same amount of work being
invested in it.

As the stopping condition, we use the classical stopping condition of Pohl [38] in Line 18. That is, we are
keeping track of the length µ of the currently shortest found path. Moreover, we are keeping track of the values
d(s, us), d(ut, t): distances of the vertices that are currently being explored from s and t. Once we know that
d(s, us) + d(ut, t) ≥ µ, we may terminate our search since all the paths between s and t we have not considered
yet have to consist of two disjoint parts of lengths at least d(s, us) and at least d(ut, t).

We present the algorithm formally in Algorithm 2.

Algorithm 2: Instance-Optimal Bidirectional Dijkstra’s Algorithm
Input: Graph G(V, E), source vertex s, target vertex t

1 µ← +∞ ; // Length of the shortest path that we have found so far
2 emid ← ⊥ ; // Middle edge of the shortest path that we have found so far
3 us ← s, ut ← t ; // Vertices currently being explored in the two executions

4 Initialize forward search from s on G and backward search from t on G with edges reversed;
5 while neither of the two executions has terminated do
6 Alternate between relaxing one edge in the Forward and Backward algorithm;
7 end

8 uv ← emid;
9 P ← “shortest su-path according to forward execution” + emid + “shortest vt-path according to backward

execution”;
10 return P ;

11 Function Forward_algorithm:
12 d̂(s, ·)← +∞; d̂(s, s)← 0;
13 Open s;
14 while an open vertex exists do
15 Let u be the open vertex with the smallest d̂(s, u);
16 Close u;
17 Set us ← u;
18 if d̂(s, us) + d̂(ut, t) ≥ µ then
19 terminate the whole algorithm;
20 end
21 for v a forward neighbor of u do
22 if v is not closed then
23 d̂(s, v)← min(d̂(s, v), d̂(s, u) + ℓ(uv));
24 end
25 if v is closed in the backward execution then
26 µ← min(µ, d̂(s, u) + ℓ(uv) + d̂(v, t));
27 emid ← uv

28 end
29 end
30 end
31 Function Backward_algorithm:
32 Analogous to Forward algorithm with the roles of forward and backward flipped;

Theorem 5.1. Algorithm 2 is an instance-optimal algorithm, under query complexity, for the shortest st-path
problem in both directed and undirected graphs with positive weights.

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited207

D
ow

nl
oa

de
d

04
/0

6/
25

 to
 1

09
.8

1.
82

.1
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

We prove the theorem next. The proof is conceptually similar to that of Theorem 4.1, but needs to handle some
additional issues.

Before the proof, let us recapitulate what we need to prove. First, we need to prove that the algorithm is
correct. Then, by Definition 1, we need to show that for any algorithm A′ that is correct with probability 0.9, any
input (directed or undirected) graph G, and any two vertices s, t, we have that the expected query complexity is
TAlg2(G, s, t) = O (TA′(G, s, t)).

Since our Algorithm 2 is slightly different than the variants of the bidirectional search that appeared before,
we also need to verify its correctness.

Proof. Correctness. By correctness of Dijkstra’s algorithm, the calculated shortest-path distance d̂(s, v) to any
closed vertex v equals the true distance d(s, v). Let ds, dt be the respective values of d(s, us) and d(ut, t) when we
stopped. The value of µ corresponds to the length of a (not necessarily simple) st-path. We will show it is in fact
a shortest st-path. Suppose there is an st-path with length µ′ < µ. There has to be an edge uv on this path such
that d(s, u) ≤ ds and d(v, t) ≤ dt, and at least one of those two inequalities is strict. Without loss of generality,
assume that d(s, u) < ds. Of all such edges uv, pick the one which is in the order on the path the closest to t.

We claim that the other inequality has to also be strict: d(v, t) < dt. Since the algorithm has finished,
we know that d(s, us) + d(ut, t) = d̂(s, us) + d̂(ut, t) ≥ µ. At the same time, we are assuming that
d(s, u) + ℓ(uv) + d(v, t) = µ′ < µ. Assume for the sake of contradiction that d(v, t) = dt. We then have

ds + dt > d(s, u) + ℓ(uv) + d(v, t)

and thus by our assumption
ds + dt > d(s, u) + ℓ(uv) + dt .

But this means that ds > d(s, u) + ℓ(uv). This is in contradiction with our choice of uv as the edge closest to t on
the path that satisfies d(s, u) < ds and d(v, t) ≤ dt.

Since d(s, u) < ds and d(v, t) < dt, the vertex u is closed in the forward execution and v is closed in the
backward execution. Consider the one of u, v that has been closed later. When closing this vertex, we also explored
uv. We updated µ to d(s, u) + ℓ(uv) + d(v, t) = µ′ < µ on Line 26, a contradiction with the assumption that we
returned a path of length µ.

Instance optimality. We seek to prove that no algorithm for the shortest st-path problem can use fewer
queries than Algorithm 2 by more than a constant factor. In the following argument, we argue that no algorithm
can be faster for the problem of computing the s-t distance (instead of the shortest st-path problem). This implies
the claim because any algorithm that computes the path can be easily modified to also calculate the distance
without increasing its complexity.

Let Es and Et be the sets of the edges that our algorithm explored using the two executions of Dijkstra’s
algorithm. Note that we have |Et| ≤ |Es| ≤ |Et|+ 1 by the definition of Algorithm 2.

First, note that the query complexity of Algorithm 2 is proportional to |Es|+ |Et| ≤ 2|Es|. On the other hand,
suppose that an algorithm A explores at most |Et|/4 edges in expectation; here, we say that A explores an edge if
it queries it via the operation Neighbor described in Section 3 from any of its endpoints. We will prove that
under this assumption, the algorithm A is incorrect with a probability of at least 1/2.

To see this, note that in both Es and Et, there exists an edge that is accessed with probability at most 1/4 by
A: Otherwise, by the linearity of expectation, the expected number of edges visited by A would be more than
|Et|/4 which we assume is not the case. We call these two edges e1 = u1v1 and e2 = u2v2 (note that it could
happen that e1 = e2). In the undirected case, we without loss of generality assume that d(s, u1) ≤ d(s, v1) and
d(v2, t) ≤ d(u2, t).

We next claim that the shortest st-path has its length strictly larger than d(s, u1)+d(v2, t). To see this, consider
the point in time right before the condition d̂(s, us) + d̂(ut, t) ≥ µ starts being true. At this point, both e1 and e2
have already been accessed. We claim that u1 is closed in the forward execution. In the directed case, this is easy
to see, since any edge uv is only ever accessed after u is closed. In the undirected case, either v1 is not closed and
then u1 must be closed by the same argument, or v1 is closed and then u1 must be also closed since we are assuming
d(s, u1) ≤ d(s, v1). Thus, we conclude that u1 is closed in the forward execution, and analogously, v2 is closed in the
backward execution. Now, since us and ut are the most recently closed vertices in their respective executions, we
have d(s, u1) ≤ d(s, us) and d(v2, t) ≤ d(ut, t). Thus, d(s, u1)+d(v2, t) ≤ d(s, us)+d(ut, t) = d̂(s, us)+ d̂(ut, t) < µ.

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited208

D
ow

nl
oa

de
d

04
/0

6/
25

 to
 1

09
.8

1.
82

.1
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Next, let us define δ = d(s, t)− d(s, u1)− d(v2, t); note that δ > 0 by our previous claim. We now construct a
graph G′ with a different distance between s and t than in G with the property that A returns the same answer
on both G and G′ with large probability.

We start with the case e1 ̸= e2. In this case, we define G′ by replacing e1, e2 in G by two edges u1v2 and v1u2
where the first edge has length δ′ for arbitrary 0 < δ′ < δ and the second edge has arbitrary weight. Note that the
degrees of all vertices are the same in the two graphs, and they also have the same number of vertices, although
G′ may contain parallel edges and self-loops even if G did not.

Furthermore, note that the only queries that would return different answers on the two graphs are the
neighborhood queries that would access either of the edges e1, e2 on G but they would access the edges u1v2, v1u2
on G′. However, we assumed that with probability at least 1/2, A accesses neither e1 nor e2 when run on G.
This also implies that A does not access the edges u1v2, v1u2 on G′ with that probability, since until those edges
are accessed, the runs of A on G and G′ perform the exact same queries (assuming they use same source of
randomness).

We conclude that with probability at least 1/2, A returns the same answer on both graphs G and G′. We will
next argue that the correct answers are different on the two graphs.

To see this, we will verify that dG′(s, u1) ≤ dG(s, u1) and dG′(v2, t) ≤ dG(v2, t).4 We show the first inequality
since the second inequality can be proven in the same way. Specifically, we will prove that no shortest su1-path
uses e1 or e2, which implies the desired inequality. We will assume that G is undirected as the directed case is
similar and, in fact, easier.

We start with e1. We recall our assumption that d(s, u1) ≤ d(s, v1). Together with the fact that all edge
weights are positive, this implies that no shortest su1-path can use the edge e1 in the direction from v1 to u1. The
edge is clearly not used in the opposite direction.

We continue with e2. If it lied on the shortest path from s to u1, we would have d(s, v2) ≤ d(s, u1). Moreover,
there would be a path from s to t of length at most d(s, v2) + d(v2, t) ≤ d(s, u1) + d(v2, t). However, we have
proven that the distance d(s, t) is strictly larger than this quantity.

We conclude that dG′(s, u1) ≤ dG(s, u1). Finally, we recall the equality dG(s, t) = dG(s, u1) + dG(v2, t) + δ to
conclude that

dG′(s, t) ≤ dG′(s, u1) + dG′(v2, t) + δ′ < dG(s, u1) + dG(v2, t) + δ = dG(s, t).

In particular, dG(s, t) ̸= dG′(s, t) and we conclude that A is incorrect with probability at least 1/2 on either G or
G′, a contradiction.

Finally, it remains to consider the easier case that e1 = e2. In this case, the only difference between G and G′

is that we set the length of e1 = e2 in G′ to be δ′ for arbitrary 0 < δ′ < δ. We then have

dG′(s, t) ≤ d(s, u1) + δ′ + d(v2, t) < d(s, t) .

By an analogous argument as above, it can be argued that A is incorrect with probability at least 1/4 on either G
or G′.

5.1 Remarks regarding our setup We make a few remarks regarding our setup and our proof of instance
optimality.

Flexibility in our algorithm First, we note that there is flexibility in Algorithm 2: instead of alternating
between edges, it suffices to make sure that the total number of edges explored in either execution is the same, up
to constant factors.

Zero-length edges Next, we remark that it is crucial that we assume that edge-weights are positive reals.
In the case when we allow zero-length edges, instance optimality is no longer possible: Just imagine a large graph
where all the edges have weight zero. An algorithm taylored to a particular graph G can start with an advice
constituting of a path between s and t; it suffices to walk along that path and confirm that d(s, t) = 0 while
algorithms without such advice have to dutifully explore G.

Formally, nonexistence of instance-optimal algorithms in the case when 0-weight edges are allowed can be
proven by considering the graph G0 that consists of two complete binary trees rooted at s and t. Moreover, select
random i and connect by an edge the i-th vertices on the last layer of the two binary trees. One can notice that

4In fact, it holds that those distances are the same, but we will not need to argue this.

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited209

D
ow

nl
oa

de
d

04
/0

6/
25

 to
 1

09
.8

1.
82

.1
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

any algorithm has to make Ω(n) queries in expectation on a randomly sampled G0, while for any sample, there
exists a fixed fast algorithm tailored to it that only makes O(log n) queries before finishing.5

Positive lower bound on edge-weights It is also crucial that as weights, we allow arbitrarily small positive
numbers: In the proof, we define a certain quantity δ and construct a graph G′ with edge-weight 0 < δ′ < δ.
This assumption is again necessary; we will see in Section 6 that even on unweighted graphs (where there is
a minimum edge-weight of 1), instance optimality is achievable only approximately. We note that even in the
unweighted setting, we could prove that bidirectional search is instance-optimal, if we changed the task of finding
the st-distance (or one shortest st-path) to the task of finding all shortest st-paths.

Accessing directed edges from both endpoints In our proof, it is also crucial that each (directed) edge
can be accessed not only from the source, but also from its target. If it could be accessed only from the source,
one could see that the standard Dijkstra’s algorithm is instance-optimal (under the assumption of strictly positive
real edge-weights).

Computing s-t distance vs computing a shortest st-path Our proof actually shows a somewhat stronger
statement. Namely, it show that no algorithm for the easier problem of computing the s-t distance can be faster
on any instance than Algorithm 2, which solves the harder problem of computing an actual shortest path.

6 Approximate Instance Optimality in Unweighted Graphs
In this section, we prove that the bidirectional search is approximately instance-optimal also on unweighted
graphs. See Figure 1 for the intuition behind the O(∆) term that we have to lose in the analysis. We will use
the same algorithm, Algorithm 2, for the proof. We note that in the unweighted case, no heap is needed for the
implementation and the query complexity and the time complexity are equal. We also call this adapted algorithm
the bidirectional BFS algorithm.6

Theorem 6.1. The bidirectional BFS algorithm for the shortest st-path problem in unweighted graphs is instance-
optimal, under both query and time complexity, up to the factor of O(∆).

We note that the following proof mostly follows the proof of Theorem 5.1.

Proof. We have already shown correctness in Theorem 5.1. It thus remains to prove the instance-optimality.
Just like in the proof of Theorem 5.1, we prove that no faster algorithm can be correct for the easier problem of
computing the distance from s to t. Just like in that proof, this implies the claim. We note that in the unweighted
setting, once a node u is opened with some value d̂(s, u), we know that d̂(s, u) = d(s, u). We may thus use d̂ and d
values interchangeably.

Consider the step in Algorithm 2 in which we redefined the value µ to its final value (i.e., the length of the
shortest path) for the first time. We will use µ0 = d(s, t) to denote this final value. Without loss of generality, we
assume that this happened during the forward run.

We use u0, v0, w0 to denote the following three nodes. The node u0 is the node that is being explored
during the step in the forward run that defined µ0. The node v0 is its neighbor that was used to define µ0 as
µ0 = d̂(s, u0) + ℓ(u0, v0) + d̂(v0, t). Finally, w0 is the node such that v0 was opened by w0 in the backward run.

We will use ds, dt to denote the distances d(s, u0) and d(w0, t). Note that we have

µ0 = ds + 2 + dt

where the additive term +2 is for the two edges u0v0 and v0w0.
We let Es be the set of edges that are outgoing from any vertex u with d(s, u) ≤ ds and let Et be the set of

edges ingoing to any u such that d(u, t) ≤ dt; in the undirected case, replace “outgoing/ingoing” by “adjacent”.
For the sake of contradiction, let us assume the existence of an algorithm A′ that, in expectation, explores

at most min(|Es|, |Et|)/4 edges. Then, using the linearity of expectation, we conclude that there are two edges

5This construction implicitly assumes that vertices have unique identifiers – otherwise we cannot construct the suitable advice.
However, the need for unique identifiers can be easily removed by adding to each vertex a neighbor (center of a star) with degree equal
to the identifier.

6We note that Algorithm 2 could be further sped up if we also terminate the search once we encounter an edge uv where u was
seen in the execution from s and v from t. However, this more practical algorithm is not o(∆)-instance-optimal, so we focus on the
conceptually simpler Algorithm 2.

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited210

D
ow

nl
oa

de
d

04
/0

6/
25

 to
 1

09
.8

1.
82

.1
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

e1 = u1v1 ∈ Es and e2 = u2v2 ∈ Et, such that with probability at least 1/2, neither edge is queried by A′. In the
undirected case, we assume without loss of generality that d(s, u1) ≤ d(s, v1) and similarly that d(v2, t) ≤ d(u2, t).
This implies d(s, u1) ≤ ds and d(v2, t) ≤ dt.

We observe that e1 ̸= e2. Otherwise, we would have that

d(s, t) ≤ d(s, u1) + 1 + d(v1, t) ≤ ds + 1 + dt

which would be in contradiction with d(s, t) = ds + 2 + dt.
We define a new multigraph G′ by replacing the edges u1v1, v2u2 by u1u2 and v1v2. Note that G′ may contain

self-loops and parallel edges even if G did not contain those. We observe that the only queries that distinguish G
from G′ correspond to accessing u1v1 or u2v2 in G. Thus, A behaves differently on G and G′ with probability at
most 1/2. We argue below that dG(s, t) ̸= dG′(s, t); this implies that the success probability of A is at most 1/2
which in turn proves that any correct algorithm has to have query complexity at least Ω(min(|Es|, |Et|)) on G.

We now need to argue that dG(s, t) ̸= dG′(s, t). We first claim that dG′(s, u1) ≤ dG(s, u1) and dG′(v2, t) ≤
dG(v2, t); we will argue only for the first inequality as the second proof is the same. Specifically, we will prove that
no shortest su1-path uses e1 and e2 which implies our claim since then any shortest su1-path in G also exists in
G′. We will assume that G is undirected as the directed case is similar and, in fact, easier.

We start with e1. We recall our assumption that d(s, u1) ≤ d(s, v1). This implies that any su1-path that uses
the edge e1 in the direction from v1 to u1 has length at least d(s, v1) + 1 ≥ d(s, u1) + 1 and is thus not a shortest
path. The edge is clearly not used in the opposite direction.

We continue with e2. If it lied on a shortest path from s to u1, we would have d(s, v2) ≤ d(s, u1)− 1 ≤ ds − 1.
Moreover, we have d(v2, t) ≤ dt. This implies d(s, t) ≤ d(s, v2) + d(v2, t) ≤ ds + dt − 1 which is in contradiction
with the fact that d(s, t) = ds + dt + 2.

We conclude that dG′(s, u1) ≤ dG(s, u1) and analogously dG′(v2, t) ≤ dG(v2, t). We can now use this to
compute that

dG′(s, t) ≤ dG′(s, u1) + dG′(v2, t) + 1
≤ dG(s, u1) + dG(v2, t) + 1
≤ ds + dt + 1 .

On the other hand, we have by definition that

dG(s, t) = µ = ds + dt + 2

and we thus have dG(s, t) ̸= dG′(s, t).
It remains to argue that the time complexity of the algorithm is at most O(∆ ·min(|Es|, |Et|)). To see this,

we first observe that the forward search in our algorithm closes at most one vertex of distance at least ds + 2
from s. At the point in time when such a node u is first closed, we have d̂(s, us) ≥ ds + 2. However, we would
also have d̂(ut, t) ≥ dt since the node w0 was closed by the backward algorithm, by definition of w0. Thus, we
have d̂(s, us) + d̂(ut, t) ≥ ds + dt + 2 = µ0; this however triggers the condition on Line 18 and the algorithm
terminates. We conclude that our algorithm closes at most |Es| + 1 vertices and hence it explores O(|Es| ·∆)
edges. An analogous argument can be made for the backward search. We conclude that our algorithm makes
O(min(|Es|, |Et|) ·∆) queries, as needed.

6.1 Lower bound Next, we prove that the factor of O(∆) in Theorem 6.1 cannot be improved. We prove this
in a slightly more general setup where the set of allowed positive weights, W, is bounded away from zero.

Theorem 6.2. Assume the shortest st-path problem when the allowed graph weights come from a set W with
ν := min(W) > 0 and we restrict the class of input graphs to those of degree at most ∆. Then there is no algorithm
that is instance optimal, under both query and time complexity, for the problem up to a factor of o(∆).7

7We do not regard ∆ as a constant in the o notation.

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited211

D
ow

nl
oa

de
d

04
/0

6/
25

 to
 1

09
.8

1.
82

.1
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Complete ∆-ary tree
of depth D

∆ vertex groups of
size ∆D−2 each

Degrees 1 Degrees 2 · · · Degrees ∆ + 1

s

t

Figure 1: The lower bound instance from Theorem 6.2: There are ∆ groups of vertices and one of them contains a
hidden edge connecting s to t. If we know which group contains the hidden edge, we only need to search one of
the groups, otherwise we have to search all of them. Note that this counterexample crucially uses that the hidden
edge has the smallest possible weight; otherwise, all the groups need to be searched as they could contain an edge
with even smaller weight.

Proof. Consider the following graph G1 illustrated in Figure 1. All edges in G1 have weight ν. To construct G1,
we first construct a tree as follows. Consider a complete ∆-ary tree of depth D rooted in s – for convenience, we
use ∆ to be the arity of the tree, resulting in maximum degree of ∆ + 1. Remove some of the vertices in the last
layer so that the first ∆D−2 vertices on the penultimate layer have degree ∆ + 1, the next ∆D−2 vertices have
degree ∆, and so on. We then construct a second, isomorphic tree rooted in t. Next, for some value i, we consider
the i-th edge in the last layer in both of these trees, we remove the two edges, and connect the corresponding two
vertices on the penultimate layer with a new edge.

If i is chosen uniformly randomly, any algorithm with a constant success probability has to visit, in expectation,
a constant fraction of all vertices on the last level before it finds the connecting edge. Hence, its expected complexity
is Ω(∆D). On the other hand, for any fixed graph, we will now describe an algorithm that is correct and runs in
time O(∆D−1).

Consider an instance of the graph G1 where the connecting edge connects vertices with degree k. Next,
consider an algorithm that first runs a bidirectional BFS taylored to G1 and k that works as follows. The algorithm
explores the vertices from s and t until the penultimate layer. Then, it explores the vertices with degree k. If it
finds an edge of length ν between the two components containing s and t, the algorithm finishes. If such an edge
is not found, or if the algorithm finds that the input graph is not G1, the algorithm disposes of the run and runs
any correct algorithm such as Dijkstra’s algorithm to compute the result.

We claim that this algorithm is correct on all inputs. This follows from the fact that once the two subtrees are
explored, any shortest path has to have length at least (2D − 1) · ν; it is thus not necessary to explore the rest of
the graph when a path of this length is found.

Next, we consider the time complexity of the algorithm on G1. The algorithm explores all vertices except
those on the last layer where it only opens some of them. On the last layer, it explores vertices adjacent to vertices
with degrees k. The number of vertices on all layers except the last is O(∆D−1). The number of vertices seen on
the last layer is at most ∆ ·∆D−2 = ∆D−1. Overall, the complexity is thus O(∆D−1).

Open problems
It would be interesting to see whether the A* algorithm or some of its bidirectional variants [31] allow similarly
strong guarantees as the bidirectional search.

Our proof of Theorem 1.1 works for multigraphs that allow parallel edges and self-loops. While we believe
that the possibility of self-loops can be avoided, we are not sure whether the same holds for parallel edges: We
believe that whether Theorem 1.1 holds in the setting of simple graphs is an interesting open question.

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited212

D
ow

nl
oa

de
d

04
/0

6/
25

 to
 1

09
.8

1.
82

.1
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Acknowledgments
BH, RH, VR, and JT were partially funded by the Ministry of Education and Science of Bulgaria’s support for
INSAIT as part of the Bulgarian National Roadmap for Research Infrastructure. BH and RH were partially
funded through the European Research Council (ERC) under the European Union’s Horizon 2020 research and
innovation program (ERC grant agreement 949272). VR was partially funded through the European Research
Council (ERC) under the European Union’s Horizon 2020 research and innovation program (ERC grant agreement
853109) RH and JT were supported by the VILLUM Foundation grant 54451. Part of this work was done while
JT was working at and RH was visiting BARC at the University of Copenhagen. RH would like to thank Rasmus
Pagh for hosting him there. RT’s research at Princeton was partially supported by a gift from Microsoft. Part of
this work was done during RT’s visits to INSAIT and to the Simons Institute for the Theory of Computing.

References
[1] Peyman Afshani, Jérémy Barbay, and Timothy M. Chan. “Instance-Optimal Geometric Algorithms”. In: J.

ACM 64.1 (Mar. 2017). issn: 0004-5411. doi: 10.1145/3046673. url: https://doi.org/10.1145/3046673.
[2] Noga Alon, Allan Grønlund, Søren Fuglede Jørgensen, and Kasper Green Larsen. “Sublinear time shortest

path in expander graphs”. In: arXiv preprint arXiv:2307.06113 (2023).
[3] Ilya Baran and Erik D Demaine. “Optimal adaptive algorithms for finding the nearest and farthest point

on a parametric black-box curve”. In: Proceedings of the twentieth annual symposium on Computational
geometry. 2004, pp. 220–229.

[4] Sabyasachi Basu, Nadia Kōshima, Talya Eden, Omri Ben-Eliezer, and C. Seshadhri. A Sublinear Algorithm
for Approximate Shortest Paths in Large Networks. 2024. arXiv: 2406.08624 [cs.DS]. url: https://arxiv.
org/abs/2406.08624.

[5] Richard Bellman. “On a routing problem”. In: Quarterly of applied mathematics 16.1 (1958), pp. 87–90.
[6] Thomas Bläsius, Cedric Freiberger, Tobias Friedrich, Maximilian Katzmann, Felix Montenegro-Retana, and

Marianne Thieffry. “Efficient shortest paths in scale-free networks with underlying hyperbolic geometry”. In:
ACM Transactions on Algorithms (TALG) 18.2 (2022), pp. 1–32.

[7] Thomas Bläsius and Marcus Wilhelm. “Deterministic Performance Guarantees for Bidirectional BFS on
Real-World Networks”. In: International Workshop on Combinatorial Algorithms. Springer. 2023, pp. 99–110.

[8] Michele Borassi and Emanuele Natale. “KADABRA is an adaptive algorithm for betweenness via random
approximation”. In: Journal of Experimental Algorithmics (JEA) 24 (2019), pp. 1–35.

[9] Nairen Cao and Jeremy T Fineman. “Parallel exact shortest paths in almost linear work and square root
depth”. In: Proceedings of the 2023 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA). SIAM.
2023, pp. 4354–4372.

[10] Nairen Cao, Jeremy T Fineman, and Katina Russell. “Improved work span tradeoff for single source
reachability and approximate shortest paths”. In: 2020, pp. 511–513.

[11] Nairen Cao, Jeremy T. Fineman, and Katina Russell. “Efficient Construction of Directed Hopsets and Parallel
Approximate Shortest Paths”. In: Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of
Computing. STOC 2020. Chicago, IL, USA: Association for Computing Machinery, 2020, pp. 336–349. isbn:
9781450369794. doi: 10.1145/3357713.3384270. url: https://doi.org/10.1145/3357713.3384270.

[12] Lijie Chen and Jian Li. “Open problem: Best arm identification: Almost instance-wise optimality and the
gap entropy conjecture”. In: Conference on Learning Theory. PMLR. 2016, pp. 1643–1646.

[13] Lijie Chen, Jian Li, and Mingda Qiao. “Towards instance optimal bounds for best arm identification”. In:
Conference on Learning Theory. PMLR. 2017, pp. 535–592.

[14] George B. Dantzig. Linear Programming and Extensions. Princeton: Princeton University Press, 1963. isbn:
9781400884179. doi: doi:10.1515/9781400884179. url: https://doi.org/10.1515/9781400884179.

[15] Rina Dechter and Judea Pearl. “Generalized best-first search strategies and the optimality of A*”. In: Journal
of the ACM (JACM) 32.3 (1985), pp. 505–536.

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited213

D
ow

nl
oa

de
d

04
/0

6/
25

 to
 1

09
.8

1.
82

.1
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

https://doi.org/10.1145/3046673
https://doi.org/10.1145/3046673
https://arxiv.org/abs/2406.08624
https://arxiv.org/abs/2406.08624
https://arxiv.org/abs/2406.08624
https://doi.org/10.1145/3357713.3384270
https://doi.org/10.1145/3357713.3384270
https://doi.org/doi:10.1515/9781400884179
https://doi.org/10.1515/9781400884179

[16] Erik D Demaine, Alejandro López-Ortiz, and J Ian Munro. “Adaptive set intersections, unions, and differences”.
In: Proceedings of the eleventh annual ACM-SIAM symposium on Discrete algorithms. 2000, pp. 743–752.

[17] E. W. Dijkstra. “A note on two problems in connexion with graphs”. In: Numerische Mathematik 1 (1959),
pp. 269–271.

[18] Edsger W Dijkstra. “A note on two problems in connexion with graphs”. In: Edsger Wybe Dijkstra: his life,
work, and legacy. 2022, pp. 287–290.

[19] Stuart E Dreyfus. “An appraisal of some shortest-path algorithms”. In: Operations research 17.3 (1969),
pp. 395–412.

[20] Ran Duan, Jiayi Mao, Xinkai Shu, and Longhui Yin. “A Randomized Algorithm for Single-Source Shortest
Path on Undirected Real-Weighted Graphs”. In: arXiv preprint arXiv:2307.04139 (2023).

[21] Jürgen Eckerle, Jingwei Chen, Nathan Sturtevant, Sandra Zilles, and Robert Holte. “Sufficient conditions
for node expansion in bidirectional heuristic search”. In: Proceedings of the International Conference on
Automated Planning and Scheduling. Vol. 27. 2017, pp. 79–87.

[22] Ronald Fagin, Amnon Lotem, and Moni Naor. “Optimal Aggregation Algorithms for Middleware”. In:
Proceedings of the Twentieth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database
Systems. PODS ’01. Santa Barbara, California, USA: Association for Computing Machinery, 2001, pp. 102–
113. isbn: 1581133618. doi: 10.1145/375551.375567. url: https://doi.org/10.1145/375551.375567.

[23] Juan A Garay, Shay Kutten, and David Peleg. “A sublinear time distributed algorithm for minimum-weight
spanning trees”. In: SIAM Journal on Computing 27.1 (1998), pp. 302–316.

[24] Mohsen Ghaffari and Goran Zuzic. “Universally-optimal distributed exact min-cut”. In: Proceedings of the
2022 ACM Symposium on Principles of Distributed Computing. 2022, pp. 281–291.

[25] Oded Goldreich. Introduction to property testing. Cambridge University Press, 2017.
[26] Bernhard Haeupler, Richard Hladík, John Iacono, Václav Rozhoň, Robert Tarjan, and Jakub Tětek. Fast

and Simple Sorting Using Partial Information. 2024. arXiv: 2404.04552 [cs.DS].
[27] Bernhard Haeupler, Richard Hladík, Václav Rozhoň, Robert Tarjan, and Jakub Tětek. Universal Optimality

of Dijkstra via Beyond-Worst-Case Heaps. 2023. arXiv: 2311.11793 [cs.DS].
[28] Bernhard Haeupler, Harald Räcke, and Mohsen Ghaffari. “Hop-constrained expander decompositions,

oblivious routing, and distributed universal optimality”. In: Proceedings of the 54th Annual ACM SIGACT
Symposium on Theory of Computing. 2022, pp. 1325–1338.

[29] Bernhard Haeupler, David Wajc, and Goran Zuzic. “Universally-optimal distributed algorithms for known
topologies”. In: Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing. 2021,
pp. 1166–1179.

[30] Peter E Hart, Nils J Nilsson, and Bertram Raphael. “A formal basis for the heuristic determination of
minimum cost paths”. In: IEEE transactions on Systems Science and Cybernetics 4.2 (1968), pp. 100–107.

[31] Robert C Holte, Ariel Felner, Guni Sharon, Nathan R Sturtevant, and Jingwei Chen. “MM: A bidirectional
search algorithm that is guaranteed to meet in the middle”. In: Artificial Intelligence 252 (2017), pp. 232–266.

[32] Ivor van der Hoog, Eva Rotenberg, and Daniel Rutschmann. Simpler Optimal Sorting from a Directed Acyclic
Graph. 2024. arXiv: 2407.21591 [cs.DS].

[33] Ziyue Huang, Yuting Liang, and Ke Yi. “Instance-optimal mean estimation under differential privacy”. In:
Advances in Neural Information Processing Systems 34 (2021), pp. 25993–26004.

[34] Johannes Kirschner, Tor Lattimore, Claire Vernade, and Csaba Szepesvári. “Asymptotically optimal
information-directed sampling”. In: Conference on Learning Theory. PMLR. 2021, pp. 2777–2821.

[35] Tze Leung Lai and Herbert Robbins. “Asymptotically efficient adaptive allocation rules”. In: Advances in
applied mathematics 6.1 (1985), pp. 4–22.

[36] Zhaoqi Li, Lillian Ratliff, Kevin G Jamieson, Lalit Jain, et al. “Instance-optimal pac algorithms for contextual
bandits”. In: Advances in Neural Information Processing Systems 35 (2022), pp. 37590–37603.

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited214

D
ow

nl
oa

de
d

04
/0

6/
25

 to
 1

09
.8

1.
82

.1
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

https://doi.org/10.1145/375551.375567
https://doi.org/10.1145/375551.375567
https://arxiv.org/abs/2404.04552
https://arxiv.org/abs/2311.11793
https://arxiv.org/abs/2407.21591

[37] T Alastair J Nicholson. “Finding the shortest route between two points in a network”. In: The computer
journal 9.3 (1966), pp. 275–280.

[38] Ira Pohl. Bi-directional and heuristic search in path problems. Tech. rep. SLAC National Accelerator
Laboratory (SLAC), Menlo Park, CA (United States), 1969.

[39] Tim Roughgarden. Beyond the Worst-Case Analysis of Algorithms. Cambridge University Press, 2021. doi:
10.1017/9781108637435.

[40] Václav Rozhoň, Christoph Grunau, Bernhard Haeupler, Goran Zuzic, and Jason Li. “Undirected (1+eps)-
Shortest Paths via Minor-Aggregates: Near-Optimal Deterministic Parallel and Distributed Algorithms”. In:
Proceedings of the 54th Annual ACM SIGACT Symposium on Theory of Computing. STOC 2022. Rome, Italy:
Association for Computing Machinery, 2022, pp. 478–487. isbn: 9781450392648. doi: 10.1145/3519935.
3520074. url: https://doi.org/10.1145/3519935.3520074.

[41] Václav Rozhoň, Bernhard Haeupler, Anders Martinsson, Christoph Grunau, and Goran Zuzic. “Parallel
breadth-first search and exact shortest paths and stronger notions for approximate distances”. In: Proceedings
of the 55th Annual ACM Symposium on Theory of Computing. 2023, pp. 321–334.

[42] A Schrijver. “On the History of Combinatorial Optimization (till 1960)”. In: Handbook of Discrete
Optimization/Elsevier (2005).

[43] Eshed Shaham, Ariel Felner, Nathan R Sturtevant, and Jeffrey S Rosenschein. “Optimally Efficient
Bidirectional Search.” In: IJCAI. 2019, pp. 6221–6225.

[44] Nathan Sturtevant and Ariel Felner. “A brief history and recent achievements in bidirectional search”. In:
Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 32. 1. 2018.

[45] Gregory Valiant and Paul Valiant. “An automatic inequality prover and instance optimal identity testing”.
In: SIAM Journal on Computing 46.1 (2017), pp. 429–455.

[46] Gregory Valiant and Paul Valiant. “Instance optimal learning of discrete distributions”. In: Proceedings of
the forty-eighth annual ACM symposium on Theory of Computing. 2016, pp. 142–155.

[47] Goran Zuzic, Goramoz Goranci, Mingquan Ye, Bernhard Haeupler, and Xiaorui Sun. “Universally-Optimal
Distributed Shortest Paths and Transshipment via Graph-Based L1-Oblivious Routing”. In: Proceedings of
the 33rd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA). SIAM. 2022.

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited215

D
ow

nl
oa

de
d

04
/0

6/
25

 to
 1

09
.8

1.
82

.1
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

https://doi.org/10.1017/9781108637435
https://doi.org/10.1145/3519935.3520074
https://doi.org/10.1145/3519935.3520074
https://doi.org/10.1145/3519935.3520074

	Introduction
	Related work
	Preliminaries
	Warm-up: Unidirectional Search in Directed Graphs
	Instance Optimality in Weighted Graphs
	Remarks regarding our setup

	Approximate Instance Optimality in Unweighted Graphs
	Lower bound

