
Multi-dimensional Approximate Counting∗

Dingyu Wang
University of Michigan
wangdy@umich.edu

Abstract
The celebrated Morris counter uses log2 log2 n + O(log2 σ

−1) bits to count up to n with a relative error

σ, where if λ̂ is the estimate of the current count λ, then E|λ̂ − λ|2 < σ2λ2. The Morris counter was
proved to be optimal in space complexity by Nelson and Yu [14], even when considering the error tails. A
natural generalization is multi-dimensional approximate counting. Let d ≥ 1 be the dimension. The count
vector x ∈ Nd is incremented entry-wisely over a stream of coordinates (w1, . . . , wn) ∈ [d]n, where upon
receiving wk ∈ [d], xwk ← xwk + 1. A d-dimensional approximate counter is required to count d coordinates
simultaneously and return an estimate x̂ of the count vector x. Aden-Ali, Han, Nelson, and Yu [1] showed
that the trivial solution of using d Morris counters that track d coordinates separately is already optimal in
space, if each entry only allows error relative to itself, i.e., E|x̂j − xj |2 < σ2|xj |2 for each j ∈ [d]. However,
for another natural error metric—the Euclidean mean squared error E|x̂−x|2—we show that using d separate
Morris counters is sub-optimal.

In this work, we present a simple and optimal d-dimensional counter with Euclidean relative error σ, i.e.,

E|x̂− x|2 < σ2|x|2 where |x| =
√∑d

j=1 x
2
j , with a matching lower bound. We prove the following.

• There exists a (log2 log2 n+O(d log2 σ
−1))-bit d-dimensional counter with relative error σ.

• Any d-dimensional counter with relative error σ takes at least (log2 log2 n+Ω(d log2 σ
−1)) bits of space.

The upper and lower bounds are proved with ideas that are strikingly simple. The upper bound is constructed
with a certain variable-length integer encoding and the lower bound is derived from a straightforward
volumetric estimation of sphere covering.

1 Introduction

In 1978, Morris [13] invented the classic approximate counter which can count up to n with log2 log2 n+O(log2 σ
−1)

bits, returning an estimate of the current count with a relative error σ. Such approximate counters are invented
mainly to save space. However, it was noticed quite recently that approximate counters can also be much faster
on modern hardware in comparison to the deterministic counter due to their low write complexity [18, 17, 9].

In the original paper [13], Morris analyzed the mean and variance of the estimates. Flajolet [6] analyzed
the mean and variance of the index 1 of the Morris counter, from which a quantified space bound can be derived
with Chebyshev’s bound. Nelson and Yu [14] analyzed the tail of the index, obtaining a sharper dependence

on the failure probability. Specifically, for increments up to λ and ϵ, δ > 0, if an estimate λ̂ is produced with
P(|λ̂−λ| < ϵλ) ≥ 1− δ then the Morris counter needs O(log log n+log ϵ−1+log log δ−1) space, and this is proved
to be optimal [14].2

It is the common scenario in real-world applications that many different counters are maintained simultane-
ously. For example, the original motivation of Morris is to count the number of each trigram in texts [12, 14]
where d = 263 different trigrams are counted simultaneously. Aden-Ali, Han, Nelson, and Yu [1] showed that,
essentially, d independent counters cannot be compressed as long as each counter is required to report an esti-
mate with an error relative to itself. However, as we will later show, the space can be compressed if the error
metric is the d-dimensional Euclidean norm. While the per-entry relative error requirement considered in [1] is
reasonable when an approximation for each individual entry is needed, we remark that in applications where an
approximation of the whole count vector is needed, the Euclidean error metric is more natural.

∗This work was supported by NSF Grant CCF-2221980.
1Roughly speaking, Morris counter stores an index v to represent a count around 2v . Therefore, to count up to n, the index

increases to logn and thus it takes log logn to store the index.
2Technically, one needs to keep a separate deterministic counter for small λ = O(a) to obtain the optimal failure rate [14].

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited144

D
ow

nl
oa

de
d

04
/0

6/
25

 to
 1

09
.8

1.
82

.1
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

We now formally define the problem of d-dimensional counting in terms of Euclidean mean squared error.
Let (e1, e2, . . . , ed) be the standard basis of Rd where ek has its kth component being one and other components
being zero.

Definition 1.1. ((Euclidean) d-dimensional counting) Let n ≥ 1 be the maximum stream length, d ≥ 1 be
the dimension, and σ > 0 be the relative error. An (n, d, σ)-counter is a randomized data structure that, for any

input sequence (w1, . . . , wk) ∈ [d]k with k ≤ n, returns an estimate x̂ of x =
∑k

j=1 ewj with E|x̂ − x|2 < σ2|x|2,

where |x| =
√∑d

j=1 x
2
j is the Euclidean length. We denote the state space of the counter as Ω with |Ω| ≥ 1. One

counter thus uses log2 |Ω| bits of space.

Recall that the original Morris counter [13] with parameter a ≥ 1, denoted as Morris(a), returns an unbiased
estimate of the count with relative variance O(1/a). Thus by definition, Morris(a) is an (n, 1, O(

√
1/a))-counter.

The error here is measured by the mean squared error E|x̂ − x|2, which is equivalent to measure the variance if
the estimator is unbiased. We note that there are, of course, many other reasonable error metrics to consider,
depending on the specific applications. The mean squared error is a good starting point for a new algorithmic
problem due to its simple probabilistic/geometric structures.

One natural way to construct a d-dimensional counter is to simply use d separate Morris counters, which is
the original method that Morris used to count trigrams [12]. Suppose now we have d (n, 1, σ)-counters to count
x1, . . . , xd. Let the estimates be x̂1, . . . , x̂d respectively. Then we have

E|x̂− x|2 = E
d∑

j=1

|x̂j − xj |2 =

d∑
j=1

E|x̂j − xj |2

Since for any j, x̂j is an (n, 1, σ)-counter for xj , we have E|x̂j − xj |2 < σ2x2j . Thus,

E|x̂− x|2 <
d∑

j=1

σ2x2j = σ2|x|2.

We thus see d (n, 1, σ)-counters do form an (n, d, σ)-counter (Definition 1.1). Each (n, 1, σ)-counter can be
implemented with a Morris(O(σ−2)) counter, taking log2 log2 n+ O(log2 σ

−1) bits. Thus the total space needed
is d log2 log2 n+O(d log2 σ

−1) bits, which is sub-optimal for this task.
The main contribution of this work is the construction of a simple and optimal (n, d, σ)-counter, with a

matching lower bound.

Theorem 1.1. The following statements are true.

Upper bound For any n ≥ 2, d ≥ 1, and σ ∈ (0, 1/3), there exists an (n, d, σ)-counter with space size
log2 |Ω| = log2 log2 n+O(d log2 σ

−1).

Lower bound For any n ≥ e2, d ≥ 1, and σ ∈ (0, 1/16), if there is an (n, d, σ)-counter with state space Ω, then
log2 |Ω| ≥ log2 log2 n+Ω(d log2 σ

−1).

A related data structure is the Count-Min sketch [3] by Cormode and Muthukrishnan. Given a count vector

x ∈ Nd with
∑d

j=1 xj = n, Count-Min is able to return an estimate x̂j of xj , for any j ∈ [d], such that

x̂j ∈ [xj , xj+ϵn] with probability 1−δ, using only O(ϵ−1 log δ−1 log n) bits of space. It may seem that Count-Min
with the power of hash functions has a chance to beat the lower bound in Theorem 1.1 by combining the estimates
for each coordinate. However, it is hopeless to use Count-Min as a d-dimensional counter unless ϵ = O(1/d), in
which case it still lies above the lower bound in Theorem 1.1. Indeed, suppose x̂j ∈ [xj , xj + ϵn] holds for all j.
The vector estimate x̂ = (x̂1, . . . , x̂d) has error

|x̂− x|2 ≤ dϵ2n2 ≤ d2ϵ2|x|2,

where we use the bound |x|2 ≥ (
∑d

j=1 xj)
2/d = n2/d. Therefore ϵ has to be O(1/d) for x̂ to be a multiplicative

estimate of x.

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited145

D
ow

nl
oa

de
d

04
/0

6/
25

 to
 1

09
.8

1.
82

.1
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

1.1 Technical Overview

1.1.1 Upper Bound The upper bound in Theorem 1.1 uses the natural idea of maintaining a common scale
counter U for all d dimensions and tracking the relative magnitude of each coordinate with a vector V ∈ Nd. The
estimate x̂ is equal to 2UV . For demonstration, we will first describe a very simple but sub-optimal solution and
then discuss how to modify it to reach optimal space-accuracy tradeoff. The transition of the states is designed
similarly with the design of the Morris counter, in which the estimate is maintained unbiased at any moment
(E2UV = x). Initially we set U = 0 and V = (0, . . . , 0).

• When the jth coordinate is incremented (i.e., xj ← xj + 1), we update Vj ← Vj + 1 with probability 2−U ,
ensuring the unbiasedness of the estimate.

• Each coordinate Vj is restricted to the range [0, a], so that the space to store V is d log2(1 + a). Whenever
some Vj exceeds a, we have to scale up to keep Vj in range. Again, we want to maintain the property that
E2UV = x. Thus, the scale-up should be done as follows.

– U ← U + 1. The scale counter is increased by 1.

– For the estimate to be unbiased, Vj should become Vj/2 for every j. Here we also want Vj to always
be an integer. Therefore, if Vj is even, then Vj ← Vj/2. If Vj is odd, then Vj ← (Vj + ξ)/2 where
ξ ∈ {−1, 1} is a freshly sampled Rademacher random variable.

The algorithm above is unbiased by design. However, the memory-accuracy tradeoff is not optimal. There is a
fundamental problem of the design above that the parameter a has to be Ω(

√
d) (with σ = O(1)) for it to be

a d-dimensional counter. Instead of analyzing the algorithm in details, this problem can be identified by simply
checking the set of all possible estimates that are produced by the algorithm:

D = {2U (V1, . . . , Vd) : U ∈ N,∀j ∈ [d], Vj ∈ [0, a]}.

It turns out that D is not dense enough for estimating some input x. Indeed, we choose

x = 2s(a, . . . , a︸ ︷︷ ︸
r

, 1/2, . . . , 1/2︸ ︷︷ ︸
d−r

),

for some r ∈ [0, d] so that both y1 = 2s(a, . . . , a, 1, . . . , 1) and y2 = 2s−1(a, . . . , a, 1, . . . , 1) are far from x. By
construction, the nearest estimate of x in D has to be either y1 or y2.

3 We choose r so that the two choices have
equal distances to x. A simple calculation shows that we need to set r = d/(1+4a2).4 Assume now a <

√
d/3 and

then r > 1. Thus miny∈D |x− y|2 = 22s da2

1+4a2 , while |x|2 = 22s · 2a2d/(1 + 4a2). Therefore, if the algorithm is an

(n, d, σ)-counter, then E|x̂− x|2 < σ2|x|2, which means there is at least one x∗ ∈ D such that |x∗ − x|2 < σ2|x|2.
This suggests that 22sa2d/(1+4a2) < σ222s ·2a2d/(1+4a2) and therefore σ > 1/

√
2. In other words, if a <

√
d/3,

then any (n, d, σ)-counter must have σ > 1/
√
2. We conclude that a needs to be Ω(

√
d) when σ ≤ 1/

√
2, indicating

an additional O(d log d) space overhead in comparison to the optimal space.
From the discussion above, we see that one has to have a dense enough set of estimates D for a correct

(n, d, σ)-counter. Roughly speaking, one wants to spend more bits on large coordinates and fewer bits on small
coordinates. This can be done with a simple and natural algorithmic idea: variable-length integer encoding. The
usual binary encoding of non-negative integers automatically uses more bits on large numbers and fewer bits on
small numbers. We will prove the following set of estimates is dense enough.

Dcompressed = {2U (V1, . . . , Vd) : U ∈ N, the encoding length of V is at most O(d log2 σ
−1)},

This leads to our upper bound in Theorem 1.1. One may observe how this encoding idea better handles the
previous counterexample x = 2s(a, . . . , a, 1/2, . . . , 1/2). An estimate of 2s−1(2a, . . . , 2a, 1, . . . , 1) can now be
returned because though each entry with value 2a needs above average space to encode, each entry with value 1
uses less than average space to encode, saving the memory space for the large entries.

3Note that y1 is one possible probabilistic rounding of x. Other roundings {2s(a, . . . , a, z1, . . . , zd−r) | zj ∈ {0, 1}} all have the

same distance to x. By symmetry, we only need to consider y1. The vector y2 is produced by decreasing the scale to 2s−1, so the
smaller entries can be represented precisely with the cost of underestimating the large entries.

4For simplicity, we only require r > 1 and omit the details of rounding r to an integer.

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited146

D
ow

nl
oa

de
d

04
/0

6/
25

 to
 1

09
.8

1.
82

.1
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

1.1.2 Lower Bound As we have discussed above, the set of all estimates produced by the counter has to be
dense enough for the task of d-dimensional counting to be possible. The lower bound in Theorem 1.1 thus arises
from estimating the size of multiplicative space coverings.

Definition 1.2. (multiplicative space covering) For any subsets A,R ⊂ Rd and σ > 0, we say R is a
σ-multiplicative covering of A if for any x ∈ A there exists y ∈ R such that |x− y| < σ|x|.

Clearly, the set of all estimates of an (n, d, σ)-counter will form a σ-multiplicative space covering of X = {x ∈ Nd |
x1 + · · · + xd ≤ n}. The lower bound is thus proved by estimating the covering size of X , which can be further
reduced to the classic problem of covering spheres with smaller spheres [16].

1.2 Related Work There have been many variants and analysis of Morris counters before [10, 11, 8, 7, 14].
Nevertheless, they have only considered the one-dimensional case. Tracking a multi-dimensional count vector
(with a vector norm) is a new problem to the best of our knowledge.

In the one-dimensional case (d = 1), our algorithm is equivalent to the variant—floating-point counter—by
Csűrös [4], except for that the floating-point counter restricts a to be a power of two so no probabilistic rounding is
needed when halving. Nevertheless, when d ≥ 2, probabilistic rounding is inevitable. In comparison to the classic
Morris counter, the floating-point variant is much more convenient to implement on binary machines, where only
simple integer operations and bit operations are needed [4]. Another advantage is that the number of random
bits needed per increment is at most 2 in expectation, since the probability 2−U can be simulated by generating
random bits sequentially, looking for U consecutive ones [4] (stop generating random bits when a zero shows up).
Such advantages are inherited by our d-dimensional counter as well.

1.3 Organization We will construct the upper bound in §2 and prove the lower bound in §3. The main
theorem (Theorem 1.1) follows directly from Corollary 2.1 and 3.2. We have included a sample run in Appendix
A to help illustrate the patterns of the new algorithm.

2 Upper Bound: Variable-length Integer Encoding

We consider a specific integer encoding which is carefully designed to simplify the analysis later.

Definition 2.1. (variable-length integer encoding) Let the symbol set be {0, 1, |} where | is used as a
separator. We encode 0 as |, 1 as 0|. For k ≥ 2, we encode k as [k − 1]2|, where [k − 1]2 is the binary
representation of k − 1. See the following table.

integer code integer code
0 | 4 11|
1 0| 5 100|
2 1| 6 101|
3 10| 7 110|

For any k ∈ N, we define ψ(k) to be the length of its encoding above. An integer vector V ∈ Nd is encoded by
concatenating the codes for each of its component. For example V = (3, 0, 4, 0, 1) is encoded as 10||11||0|. The

code length of the vector V is denoted by ψ(V) =
∑d

j=1 ψ(Vj).

Remark 2.1. For clarity, the code here uses an alphabet of size 3, including a separator. If it is encoded with
bits, then the length will increase by a log2 3 factor. See [15, 5] for techniques that encode m∗ {0, 1, |}-symbols
using ⌈m∗ log2 3⌉ bits with constant querying time for each entry.

We now formally describe the new algorithm. The algorithm stores a scale counter U ∈ N and a relative
vector V = (V1, . . . , Vd) ∈ Nd. The estimator is x̂ = 2UV = (2UV1, . . . , 2

UVd). As discussed in the introduction,
we will use the variable-length encoding in Definition 2.1 to store the vector V . Let M∗ be the memory budget
for V . Recall that ψ(V) is the encoding length of V .

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited147

D
ow

nl
oa

de
d

04
/0

6/
25

 to
 1

09
.8

1.
82

.1
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Initialization (V1, . . . , Vd)← (0, . . . , 0) and U ← 0.

Increment(j) With probability 2−U , Vj ← Vj + 1. If ψ(V) > M∗, then execute Scale-up.

Scale-up U ← U + 1 and for k ∈ {1, . . . , d},

• if Vk is even, then Vk ← Vk/2;

• if Vk is odd, then Vk ← (Vk + ξ)/2 where ξ ∈ {−1, 1} is a freshly sampled
Rademacher random variable.

Query Return 2U (V1, . . . , Vd).

Since the algorithm will execute Scale-up whenever the space ψ(V) of storing V exceeds the budget M∗, the
behavior of the algorithm will depend on the way that V is encoded. The codes in Definition 2.1 are constructed
so that the space ψ(V) increases by at most one during Increment and decreases by at least one during Scale-up.
This guarantees that the memory space to encode V is always bounded by M∗. We now list and prove all the
properties of the encoding in Definition 2.1 that we will use in the analysis.

Lemma 2.1. For any V ∈ Nd, the following statements are true.

• ψ(V) ≤ 2d+
∑d

j=1 log2(1 + Vj). (Space bound.)

• For any j ∈ [d], ψ(V + ej) ≤ ψ(V) + 1. (An increment increases the space by at most 1.)

• ψ(⌊V/2⌋) ≥ ψ(V)− 2d. (Halving the relative vector will decrease the space by at most 2d.)

• If there exists j ∈ [d] such that Vj ≥ 3, then ψ(⌈V/2⌉) ≤ ψ(V)− 1. (The space will decrease by at least one
if not all Vjs are small.)

Remark 2.2. ⌊V/2⌋ and ⌈V/2⌉ are evaluated entry-wisely.

Proof. Recall that for the usual binary encoding, an integer k has length 1+⌊log2 k⌋ if k ≥ 1. Thus, by Definition
2.1, if k ≥ 2, then 2 + ⌊log2(k − 1)⌋ symbols are needed to store the code [k − 1]2|. It requires one symbol to
encode 0 and two symbols to encode 1. We bound the length for encoding k by 2 + log2(1 + k), which holds for

all k ∈ N. We then have ψ(V) =
∑d

j=1 ψ(Vj) ≤ 2d+
∑d

j=1 log2(1 + Vj).
The second statement is true by construction.
For the third statement, it suffices to prove that ψ(⌊k/2⌋) ≥ ψ(k) − 2 for any k ∈ N. One may check that

this is true for k = 1, 2, 3, 4. Now assume k ≥ 5. Note that ψ(⌊k/2⌋)−ψ(k) = ⌊log2(⌊k/2⌋− 1)⌋− ⌊log2(k− 1)⌋ =
−2+⌊log2(4⌊k/2⌋−4)⌋−⌊log2(k−1)⌋. It suffices to prove that 4⌊k/2⌋−4 ≥ k−1. Indeed, 4⌊k/2⌋−4 ≥ 2k−6 ≥ k−1
since k ≥ 5.

For the fourth statement, since ∥V ∥∞ ≥ 3, there exists j ∈ [d], such that Vj ≥ 3. If Vj is even,
then Vj ≥ 4 and ψ(Vj/2) = 2 + ⌊log2(Vj/2 − 1)⌋ = 1 + ⌊log2(Vj − 2)⌋ ≤ ψ(Vj) − 1. If Vj is odd, then
ψ(⌈Vj/2⌉) = ψ((Vj + 1)/2) = 2 + ⌊log2((Vj + 1)/2 − 1)⌋ = 1 + ⌊log2(Vj − 1)⌋ = ψ(Vj) − 1. Note that ψ is
non-decreasing and thus we conclude that ψ(⌈V/2⌉) ≤ ψ(V)− 1.

Next, we analyze the variance of the algorithm. Similar to the analysis of the Morris counter [13], the basic
idea is to analyze the change in variance caused by each Increment, including a possible Scale-up step, and
then compute the final variance by summing up the changes at time k = 1, . . . , n. Recall that for any r ∈ [d], er
is the rth standard base vector of Rd.

Theorem 2.1. Fix any input sequence (w1, . . . , wn) ∈ [d]n. Let (U, V) be the final state of the algorithm and
x =

∑n
j=1 ewj be the final count vector. Define x̂ = 2UV . If the memory budget is M∗ = 4d+ 2d log2(1 + a) with

a ≥ 1, then

Ex̂ = x,

E|x̂− x|2 ≤ 5

6a− 2
|x|2.

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited148

D
ow

nl
oa

de
d

04
/0

6/
25

 to
 1

09
.8

1.
82

.1
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Furthermore for any r ≥ 1,

P
(
U ≥ r + log2

(n
ad

+ 1
))
≤ 2−r.

Proof. Ex̂ = x is true by construction, since both Increment and Scale-up are designed to keep x̂ = 2UV
unbiased. The challenge is to analyze the variance E|x̂ − x|2. We start by proving the following lemma that
bounds the final variance by the distributional properties of the scale counter U at time k = 1, . . . , n.

Lemma 2.2. (variance decomposition) For any k ≤ n, let (U (k), V (k)) be the memory state at time k (i.e.,

after seeing w1, . . . , wk) and x
(k) =

∑k
j=1 ewj

be the count vector at time k. Let x̂(k) = 2U
(k)

V (k) to be the estimate
at time k. Then

E|x̂(n)|2 − |x(n)|2 ≤
n−1∑
k=0

E(2U
(k)

− 1) +
d

3
E(22U

(n)

− 1).

Proof. We define Y (k) to be the intermediate vector after Increment before Scale-up at time k. By construction,

we know Y (k) = V (k) + ewk+1
with probability 2−U(k)

; otherwise Y (k) = V (k). For simplicity, we now fix k ≥ 0

and write U (k), V (k), x(k), wk+1, Y
(k) as U, V, x, w, Y and U (k+1), V (k+1), x(k+1) as U ′, V ′, x′ respectively. By the

definition of Increment, we have

E(|2UY |2 − |2UV |2 | U, V) = 2−U · 22U (2Vw + 1) = 2U (2Vw + 1).(2.1)

Now if ψ(Y) ≤M∗, then we have (U ′, V ′) = (U, Y) where no Scale-up is executed. If ψ(Y) > M∗, then we must
have ψ(Y) = M∗ + 1 because by Lemma 2.1, ψ(Y) ≤ ψ(V + ew) ≤ ψ(V) + 1 and ψ(V) ≤ M∗. By construction,
M∗ ≥ 3d and thus there exists j ∈ [d] such that Yj ≥ 3. By Lemma 2.1, we know ψ(⌈Y/2⌉) ≤ ψ(Y) − 1 = M∗.
Therefore, after the Scale-up step, the space will be at most M∗. When Scale-up is executed, U ′ = U + 1 and

V ′ = Y/2 +
∑d

k=1 ξk1 [2 ∤ Yk]. Here, ξ1, . . . , ξd are i.i.d. Rademacher random variables. Thus we have

E(|2U
′
V ′|2 − |2UY |2 | U, Y)

= 1 [ψ(Y) > M∗]

d∑
k=1

E

[(
22U+2

(
Yk + ξk1 [2 ∤ Yk]

2

)2

− 22UY 2
k

) ∣∣∣∣∣ U, Y
]
,

note that Eξk = 0 and ξ2k = 1

= 1 [ψ(Y) > M∗]

d∑
k=1

(
22U (Y 2

k + 1 [2 ∤ Yk])− 22UY 2
k

)
= 1 [ψ(Y) > M∗] 2

2U
d∑

k=1

1 [2 ∤ Yk]

≤ 1 [ψ(Y) > M∗] 2
2U · d.(2.2)

Take the total expectation and by Equation (2.1) and (2.2) we have,

E(|2U
′
V ′|2 − |2UV |2) = EE(|2UY |2 − |2UV |2 | U, V) + EE(|2U

′
V ′|2 − |2UY |2 | U, Y)

≤ E(2U (2Vw + 1)) + E(1 [ψ(Y) > M∗] 2
2Ud).(2.3)

Recall that |x′|2 − |x|2 = (xw +1)2 − x2w = 2xw +1 and E2UVw = xw. This implies E2UVw = (|x′|2 − |x|2 − 1)/2.
Thus by Equation (2.3) we have,

E(|2U
′
V ′|2 − |2UV |2) ≤ |x′|2 − |x|2 + E(2U − 1) + E(d22U1 [ψ(Y) > M∗]).(2.4)

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited149

D
ow

nl
oa

de
d

04
/0

6/
25

 to
 1

09
.8

1.
82

.1
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Sum up the differences and we have

E|2U
(n)

V (n)|2 =

n−1∑
k=0

E(|2U
(k+1)

V (k+1)|2 − |2U
(k)

V (k)|2)

Recall that U ′, V ′, U, V are short for U (k+1), V (k+1), U (k), V (k). By Equation (2.4),

≤
n−1∑
k=0

(
|x(k+1)|2 − |x(k)|2 + E(2U

(k)

− 1) + E
(
d22U

(k)

1

[
ψ(Y (k)) > M∗

]))
= |x(n)|2 +

n−1∑
k=0

E(2U
(k)

− 1) + dE

[
n−1∑
k=0

22U
(k)

1

[
ψ(Y (k)) > M∗

]]
.

Note that 1
[
ψ(Y (k)) > M∗

]
is the indicator whether Scale-up is executed when processing wk+1. Therefore

n−1∑
k=0

22U
(k)

1

[
ψ(Y (k)) > M∗

]
=

U(n)−1∑
j=0

22j =
4U

(n) − 1

4− 1
=

22U
(n) − 1

3

We conclude that

E|2U
(n)

V (n)|2 − |x(n)|2 ≤
n−1∑
k=0

E(2U
(k)

− 1) +
d

3
E(22U

(n)

− 1),

which gives the stated variance decomposition.

The next step is to estimate E(2U − 1) and E(22U − 1). The idea is to relate them with E2UV = x and
E|2UV |2 = E|x̂|2.

Lemma 2.3. If U ≥ 1, then |V |2 ≥
∑d

j=1 Vj ≥ ad.

Proof. Since Vjs are integer, we automatically have |V |2 =
∑d

j=1 V
2
j ≥

∑d
j=1 Vj . Thus it suffices to prove∑d

j=1 Vj ≥ ad. Note that if U ≥ 1, then the algorithm has executed at least one Scale-up. Note that by
Lemma 2.1, the space ψ(V) increases at most by one per Increment and decreases at most by 2d per Scale-up.
Therefore, after the first Scale-up, the memory usage ψ(V) is between M∗ + 1 − 2d and M∗. Note that M∗ is
set to 4d+ d log2(1 + a). Thus we have

ψ(V) ≥M∗ + 1− 2d ≥ 2d+ d log2(1 + a).

On the other hand, by Lemma 2.1 (encoding space bound), we have

ψ(V) ≤ 2d+

d∑
j=1

log2(1 + Vj).

The bounds above imply that
∑d

j=1 log2(1 + Vj) ≥ d log2(1 + a). Since log2(1 + r) is convex in r, we conclude
that

d log2(1 + a) ≤
d∑

j=1

log2(1 + Vj) ≤ d log2

1 +

d∑
j=1

Vj/d

 ,

and thus
∑d

j=1 Vj ≥ ad.

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited150

D
ow

nl
oa

de
d

04
/0

6/
25

 to
 1

09
.8

1.
82

.1
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Note that if U = 0, then 2U − 1 = 0. With the lemma above, we now have

adE(2U − 1) ≤ E(2U − 1)

d∑
j=1

Vj ≤ E2U
d∑

j=1

Vj =

d∑
j=1

xj = k,

where k is the current time, i.e., the total number of increments so far. This implies E(2U−1) ≤ k/(ad). Similarly,
we have

adE(22U − 1) ≤ E(22U − 1)

d∑
j=1

V 2
j ≤ E22U

d∑
j=1

V 2
j = E|x̂|2,

which implies E(22U − 1) ≤ E|x̂|2/(ad). Inserting the estimates back into Lemma 2.2, we have

E|x̂(n)|2 − |x(n)|2 ≤
n−1∑
k=0

E(2U
(k)

− 1) +
d

3
E(22U

(n)

− 1)

≤
n−1∑
k=0

k/(ad) +
d

3
E|x̂(n)|2/(ad)

Note that
∑n−1

k=0 k ≤ n2/2 ≤ d|x(n)|2/2 since
∑d

j=1 x
(n)
j = n and d|x(n)|2 ≥ (

∑d
j=1 x

(n)
j)2.

≤ 1

2a
|x(n)|2 + 1

3a
E|x̂(n)|2.

Reorganizing the inequality above, we have

E|x̂(n)|2 − |x(n)|2 ≤ 5

6a− 2
|x(n)|2.

Note that since the estimate is unbiased, we have E|x̂(n)|2 − |x(n)|2 = E|x̂(n) − x(n)|2. Thus we conclude that
E|x̂(n) − x(n)|2 ≤ 5

6a−2 |x
(n)|2.

Finally we estimate the tail of U . We already know that E(2U(k) − 1) ≤ k/(ad) and thus E2U(k) ≤ 1+ k/(ad).
Then for any z > 0, by Markov,

P(2U
(k)

≥ z) ≤ E2U(k)

z
≤
(
k

ad
+ 1

)
/z

Setting z = 2r(k/(ad) + 1) and we have

P
(
U (k) ≥ r + log2

(
k

ad
+ 1

))
≤ 2−r.

We thus have proved the tail bound for U .

Theorem 2.1 characterizes the mean and variance of the estimator. We now analyze the space. The vector
V is encoded with length at most M∗ by construction. We are left to analyze the memory space needed for the
scale counter U .

Corollary 2.1. For σ ∈ (0, 1/3), there exists an (n, d, σ)-counter with state space size log2 |Ω| = log2 log2 n +
O(d log2 σ

−1).

Proof. If n ≤ σ−1, we may use d deterministic counters taking d log2 n ≤ d log2 σ
−1 space which surely form a

(n, d, σ)-counter. We thus assume n > σ−1.
With a fixed space budget for storing the scale counter U , there is a chance that U grows too large to be

stored. In such case, the algorithm simply enters a fail state and returns (0, . . . , 0) upon query. For τ > 0, we

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited151

D
ow

nl
oa

de
d

04
/0

6/
25

 to
 1

09
.8

1.
82

.1
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

store U only up to U∗ = log2(τ
−1) + log2(n/(ad) + 1). By design U is non-decreasing in time and it suffices to

analyze U at the end of the stream. By Theorem 2.1, we know P(U ≥ U∗) ≤ τ. The estimate x̂ can be written as
1 [U < U∗] 2

UV . Its mean squared error is

E
∣∣1 [U < U∗] 2

UV − x
∣∣2 = E

(
1 [U < U∗] |2UV − x|2 + 1 [U ≥ U∗] |x|2

)
≤ E|2UV − x|2 + P(U ≥ U∗)|x|2

Note that E|2UV − x|2 ≤ 5
6a−2 |x|

2 by Theorem 2.1 and P(U ≥ U∗) ≤ τ by construction.

≤
(

5

6a− 2
+ τ

)
|x|2

We set τ = σ2/2 and a = 2σ−2 and have

5

6a− 2
+ τ =

5

12σ−2 − 2
+ σ2/2 ≤ σ2,

since σ < 1. In this setting, we have E|1 [U < U∗] 2
UV − x|2 ≤ σ2|x|2 which implies the algorithm is

an (n, d, σ)-counter. We now compute its space usage. By construction, the space used by U is at most
log2(log2(τ

−1) + log2(n/(da) + 1))) ≤ log2 log2 n + O(1) bits since we assumed τ−1 < n. The space used by
the vector V is by construction M∗ = 4d+ d log2(1 + a) = O(d log σ−1). Note that V is encoded with a alphabet
set of size 3 ({0, 1, |}) and M∗ is the maximum number of symbols. One may encode V using bits by adding
an additional log2 3 factor to the leading constant. We conclude that the total space needed to store (U, V) is
log2 log2 n+O(d log σ−1).

3 Lower Bound: Multiplicative Space Covering

Recall that by Definition 1.2, for any subset A,R ⊂ Rd and σ > 0, we say R is an σ-multiplicative covering of A
if for any x ∈ A there exists y ∈ R such that |x− y| < σ|x|.

We now prove that any correct (n, d, σ)-counter will induce an O(σ)-multiplicative covering of the space.
The proof here will be slightly more complicated than what we described in §1.1.2. Previously we assumed the
algorithm returns a fixed estimate for a given state and therefore the set of estimates naturally form a covering.
In general, a probabilistic algorithm is allowed to produce a randomized answer even if the final memory state is
fixed. We show that even when estimates are randomized for a given state, an (n, d, σ)-counter will still induce a
covering of the space.

Lemma 3.1. If Ω is the state space of an (n, d, σ)-counter with σ < 1/3, then there exists a 4σ-multiplicative
covering R of {x ∈ Rd

+ |
√
dσ−1 ≤ |x| ≤ n/

√
d} with |R| ≤ |Ω|.

Proof. Let g : Ω → Rd be the randomized function that returns the estimate x̂ = g(S) based on the final state

S ∈ Ω. Let X = {x ∈ Nd |
∑d

j=1 xj ≤ n} be the space of all possible count vectors. By definition of the
(n, d, σ)-counter, for any x ∈ X , we have

E|g(S)− x|2 < σ2|x|2.

For any x ∈ X , define sx = argmins∈Ω E|g(s)− x|2. Thus we have

E|g(sx)− x|2 ≤ E|g(S)− x|2 < σ2|x|2.(3.5)

This implies E|g(sx) − x| ≤
√
E|g(sx)− x|2 < σ|x|. Suppose for some y ∈ X with sy = sx. By using the same

randomness for g(sx) and g(sy), we have

|x− y| = |g(sx)− x− (g(sy)− y)| ≤ |g(sx)− x|+ |(g(sy)− y)|(3.6)

By Equation (3.5), we know E|g(sx) − x| < σ|x|2 and E|g(sy) − y| < σ|y|2. Take expectation on both sides of
Equation (3.6) and we have

|x− y| ≤ E|g(sx)− x|+ E|(g(sy)− y)| < σ(|x|+ |y|).(3.7)

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited152

D
ow

nl
oa

de
d

04
/0

6/
25

 to
 1

09
.8

1.
82

.1
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

We now group the count vectors x by the value sx. For any s ∈ Ω, let As = {x ∈ X | sx = s} and {As|s ∈ Ω} form
a partition of X . For each s that As ̸= ∅, we choose a representation x

(s)
∗ ∈ As according to the lexicographic

order. Next we are going to show that R = {x(s)∗ | s ∈ Ω, As ̸= ∅} forms a good multiplicative covering of
{x ∈ Rd

+ | dσ−1 < |x| < n/d}.
For any x ∈ Rd

+, denote ⌊x⌋ = (⌊x1⌋, . . . , ⌊xd⌋). We have |x− ⌊x⌋| <
√
d. Note that

d∑
j=1

⌊xj⌋ ≤
√
d|⌊x⌋| ≤

√
d|x|.

If |x| ≤ n/
√
d, then

∑d
j=1⌊xj⌋ ≤

√
d|x| ≤ n, which implies that ⌊x⌋ ∈ X . Set y = x

(s⌊x⌋)
∗ ∈ R. Since sy = s⌊x⌋,

we have by Equation (3.7),

|y − ⌊x⌋| < σ(|y|+ |⌊x⌋|) ≤ σ(|⌊x⌋|+ |y − ⌊x⌋|+ |⌊x⌋|)

Reorganizing,

|y − ⌊x⌋| < 2σ

1− σ
|⌊x⌋|.

Thus we have

|y − x| ≤ |y − ⌊x⌋|+ |x− ⌊x⌋|

<
2σ

1− σ
|⌊x⌋|+

√
d

≤ 2σ

1− σ
|x|+

√
d,

If |x| ≥ σ−1
√
d, then

√
d ≤ σ|x|. Thus we have

|y − x| < 2σ

1− σ
|x|+ σ|x| = 3σ − σ2

1− σ
|x|.

Since σ < 1/3, we have 3σ−σ2

1−σ ≤ 4σ. Thus |y − x| < 4σ|x|. Note that the above argument holds for any x with

|x| ∈ [σ−1
√
d, n/

√
d]. Therefore R is a 4σ-multiplicative cover of {x ∈ Rd

+ | σ−1
√
d ≤ |x| ≤ n/

√
d}. Finally, note

that the covering R = {x(s)∗ | s ∈ Ω, As ̸= ∅} has size at most |Ω|.

Lemma 3.1 shows that the state space of an (n, d, σ)-counter will be at least the size of an optimal 4σ-
multiplicative covering of the shell5 {x ∈ Rd

+ |
√
dσ−1 ≤ |x| ≤ n/

√
d}. We now bound the size of the shell

covering. The first step is to bound the size of the sphere covering. Covering a sphere with smaller spheres is a
classic problem [16]. We prove the following lemma based on [2].

Lemma 3.2. For any σ ∈ (0, 1/3), if R ⊂ Rd is an σ-multiplicative cover of {x ∈ Rd
+ | |x| = 1}, then

|R| ≥ 2−dσ−(d−1).

Proof. We first consider the case d = 1. The target set {x ∈ R+ | |x| = 1} = {1} has size 1 and thus |R| = 1 > 2−1.
We now assume d ≥ 2.

Let Sd−1 be the unit sphere in Rd. Let |Sd−1| be the surface area of the sphere. Let the maximum area on
Sd−1 that can be covered by a single ball with radius σ be ησ. By Corollary 3.2 in [2],

|Sd−1|
ησ

≥
√
2π(d− 1)

√
1− σ2

σ(d−1)
,

if
√
1− σ2 ≥ 1/

√
d, which is true since we assumed σ < 1/3 and d ≥ 2.

5Technically, the shell intersected with the positive cone.

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited153

D
ow

nl
oa

de
d

04
/0

6/
25

 to
 1

09
.8

1.
82

.1
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

On the other hand, by symmetry, |Sd−1 ∩ Rd
+| = 2−d|Sd−1|. Therefore, the number of points in R is at least

|Sd−1 ∩ Rd
+|

ησ
≥ 2−d

√
2π(d− 1)

√
1− σ2

σ(d−1)
≥ 2−dσ−(d−1),

since d ≥ 2 and
√
2π(1− 1/9) ≥ 1.

With the bound for the sphere covering in hand, the next step is to count the number of layers in the shell
so that the coverings for different layers are disjoint. Define Sd−1

+ = Sd−1 ∩Rd
+, αS

d−1
+ = {x ∈ Rd

+ | |x| = α}, and
[α, β]Sd−1

+ = {x ∈ Rd
+ | |x| ∈ [α, β]}.

Corollary 3.1. For 0 < α < β and σ ∈ (0, 1/3), if R is an σ-multiplicative cover of [α, β]Sd−1
+ , then

|R| ≥ 1
32

−dσ−d log(β/(eα)).

Proof. For any x ∈ Rd, if |x− y| < σ|x|, then |y| ∈ ((1− σ)|x|, (1 + σ)|x|). Now define bk = (1 + 3σ)k for k ∈ N.
Define

Rk = R ∩ {x ∈ Rd
+ : |x| ∈ ((1− σ)bk, (1 + σ)bk)}

for any k ∈ N. It is straightforward to check that bk(1 + σ) < bk+1(1 − σ) since σ < 1/3. Therefore Rks
are disjoint for different ks. By construction, if bk ∈ [α, β], then Rk covers bkSd−1

+ . By Lemma 3.2, we know

|Rk| ≥ 2−dσ−(d−1) (the multiplicative covering of a sphere does not depend on the radius.) Thus

|R| ≥
∑

k:bk∈[α,β]

|Rk| ≥ 2−dσ−(d−1)
∑

k:bk∈[α,β]

1,

and we only need to count the number of bks that are in [α, β]. Note that

bk ∈ [α, β] ⇐⇒ k log(1 + 3σ) ∈ [logα, log β] ⇐⇒ k ∈ [
logα

log(1 + 3σ)
,

log β

log(1 + 3σ)
].

We conclude that

|R| ≥ 2−dσ−(d−1)(
log β − logα

log(1 + 3σ)
− 1)

relaxing 1 + 3σ < e3σ and 1 ≤ 1/(3σ)

> 2−dσ−(d−1)(
1

3σ
log(β/α)− 1

3σ
)

=
1

3
2−dσ−d log(β/(eα)),

which lower bounds the size of σ-multiplicative covers of [α, β]Sd−1
+ .

We now finish the proof of the space lower bound of (n, d, σ)-counters.

Corollary 3.2. If Ω is the state space of an (n, d, σ)-counter with σ < 1/3, then

|Ω| ≥ 1

3
2−d(4σ)−d log(n/(eσ−1d)).

This implies that for n ≥ e2, d ≥ 1, and σ < 1/16,

log2 |Ω| = log2 log2 n+Ω(d log σ−1).

Proof. By Lemma 3.1, we know there exists a 4σ-multiplicative covering R of [
√
dσ−1, n/

√
d] with |R| ≤ |Ω|.

By Corollary 3.1, we know |R| ≥ 1
32

−d(4σ)−d log(n/(edσ−1)). This proves the first statement. For the second
statement, note that

log2 |Ω| ≥ d log2 σ−1 − 3d− log2 3 + log2 log(n/(eσ
−1d)).

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited154

D
ow

nl
oa

de
d

04
/0

6/
25

 to
 1

09
.8

1.
82

.1
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

If σ < 1/16 then log2 σ
−1 > 4 and thus 3 ≤ 3

4 log2 σ
−1. This implies that d log2 σ

−1 − 3d ≥ 1
4d log2 σ

−1.

Furthermore, if σ−1 ≥ n1/6 or d ≥ n1/6, then log2 log2 n = o(d log σ−1). Otherwise, we have n/(dσ−1) ≥ n1/3.
Note that e ≤ n1/2 by assumption. Thus we have log2 log(n/(eσ

−1d)) ≥ log2 log n
1/6 = log2 log2 n+ log2(

1
6 log 2).

We conclude that

log2 |Ω| = log2 log2 n+Ω(d log σ−1)−O(1)

= log2 log2 n+Ω(d log σ−1),

when n ≥ e2, d ≥ 1, and σ < 1/16.

References

[1] Ishaq Aden-Ali, Yanjun Han, Jelani Nelson, and Huacheng Yu. On the amortized complexity of approximate
counting. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (AP-
PROX/RANDOM 2024), pages 33:1–33:17, 2024.

[2] Károly Böröczky and Gergely Wintsche. Covering the sphere by equal spherical balls. Discrete and Computational
Geometry: The Goodman-Pollack Festschrift, pages 235–251, 2003.

[3] Graham Cormode and Shan Muthukrishnan. An improved data stream summary: the count-min sketch and its
applications. Journal of Algorithms, 55(1):58–75, 2005.

[4] Miklós Csűrös. Approximate counting with a floating-point counter. In International Computing and Combinatorics
Conference, pages 358–367. Springer, 2010.

[5] Yevgeniy Dodis, Mihai Patrascu, and Mikkel Thorup. Changing base without losing space. In Proceedings of the
forty-second ACM Symposium on Theory of Computing (STOC), pages 593–602, 2010.

[6] Philippe Flajolet. Approximate counting: a detailed analysis. BIT Numerical Mathematics, 25(1):113–134, 1985.
[7] Michael Fuchs, Chung-Kuei Lee, and Helmut Prodinger. Approximate counting via the Poisson-Laplace-Mellin

method. Discrete Mathematics & Theoretical Computer Science, (Proceedings), 2012.
[8] André Gronemeier and Martin Sauerhoff. Applying approximate counting for computing the frequency moments of

long data streams. Theory of Computing Systems, 44:332–348, 2009.
[9] Rajesh Jayaram, David P Woodruff, and Samson Zhou. Streaming algorithms with few state changes. Proc. ACM

Manag. Data (PODS), 2(2):1–28, 2024.
[10] Joseph B Kruskal and Albert G. Greenberg. A flexible way of counting large numbers approximately in small registers.

Algorithmica, 6:590–596, 1991.
[11] Guy Louchard and Helmut Prodinger. Generalized approximate counting revisited. Theoretical Computer Science,

391(1):109–125, 2008. Combinatorics, Automata and Number Theory.
[12] Jérémie O Lumbroso. The story of HyperLogLog: How Flajolet processed streams with coin flips. arXiv preprint

arXiv:1805.00612, 2018.
[13] Robert Morris. Counting large numbers of events in small registers. Communications of the ACM, 21(10):840–842,

1978.
[14] Jelani Nelson and Huacheng Yu. Optimal bounds for approximate counting. In Proceedings of the 41st ACM

SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, pages 119–127, 2022.
[15] Mihai Puatracscu. Succincter. In 49th Annual IEEE Symposium on Foundations of Computer Science (FOCS) ,

Philadelphia, PA, USA, pages 305–313. IEEE Computer Society, 2008.
[16] CA Rogers. Covering a sphere with spheres. Mathematika, 10(2):157–164, 1963.
[17] Guy L Steele Jr and Jean-Baptiste Tristan. Adding approximate counters. ACM Transactions on Parallel Computing

(TOPC), 4(1):1–45, 2017.
[18] Jean-Baptiste Tristan, Joseph Tassarotti, and Guy L Steele Jr. Efficient training of LDA on a GPU by mean-for-mode

Gibbs sampling. In 32nd International Conference on Machine Learning, volume 37, 2015.

A Sample Runs

For demonstration, we run the d-dimension counter defined in §2 with d = 4 and memory budget M∗ = 12. The
input is generated randomly at each step with probability distribution (1/2, 1/4, 1/8, 1/8). The table below tracks
the state of the algorithm whenever (U, V) is changed. Recall that x is the input count vector, the estimator is
x̂ = 2UV , and the encoding of V is defined in Definition 2.1. We make the following remarks.

• When U = 0, V tracks x deterministically.

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited155

D
ow

nl
oa

de
d

04
/0

6/
25

 to
 1

09
.8

1.
82

.1
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

• When x is incremented, the encoding length ψ(V) of V increases by at most one. When ψ(V) reaches
M∗ +1, the encoding length decreases by at least 1 and at most 2d during the Scale-up. when U ≥ 1, i.e.,
after the first Scale-up, the encoding length is between M∗ +1− 2d and M∗. These are the key properties
we have used in the proof of Theorem 2.1.

• Since the rates for inserting the entries are skewed, the space used to encode each entry is different. Larger
entries are expected to take more space.

U | V | estimate | x | encoded V

-----+-----------+-----------------------+-----------------------+---------------

0 | 0 0 0 0 | 0 0 0 0 | 0 0 0 0 | ||||

0 | 0 1 0 0 | 0 1 0 0 | 0 1 0 0 | |0|||

0 | 0 1 0 1 | 0 1 0 1 | 0 1 0 1 | |0||0|

0 | 1 1 0 1 | 1 1 0 1 | 1 1 0 1 | 0|0||0|

0 | 2 1 0 1 | 2 1 0 1 | 2 1 0 1 | 1|0||0|

0 | 2 1 0 2 | 2 1 0 2 | 2 1 0 2 | 1|0||1|

0 | 2 2 0 2 | 2 2 0 2 | 2 2 0 2 | 1|1||1|

0 | 3 2 0 2 | 3 2 0 2 | 3 2 0 2 | 10|1||1|

0 | 4 2 0 2 | 4 2 0 2 | 4 2 0 2 | 11|1||1|

0 | 4 3 0 2 | 4 3 0 2 | 4 3 0 2 | 11|10||1|

0 | 5 3 0 2 | 5 3 0 2 | 5 3 0 2 | 100|10||1|

0 | 5 3 1 2 | 5 3 1 2 | 5 3 1 2 | 100|10|0|1|

0 | 6 3 1 2 | 6 3 1 2 | 6 3 1 2 | 101|10|0|1|

0 | 6 4 1 2 | 6 4 1 2 | 6 4 1 2 | 101|11|0|1|

0 | 6 4 2 2 | 6 4 2 2 | 6 4 2 2 | 101|11|1|1|

1 | 3 3 1 1 | 6 6 2 2 | 6 5 2 2 | 10|10|0|0|

1 | 3 3 1 2 | 6 6 2 4 | 6 5 2 3 | 10|10|0|1|

1 | 4 3 1 2 | 8 6 2 4 | 7 5 2 3 | 11|10|0|1|

1 | 5 3 1 2 | 10 6 2 4 | 9 5 2 3 | 100|10|0|1|

1 | 6 3 1 2 | 12 6 2 4 | 11 5 2 3 | 101|10|0|1|

1 | 6 3 2 2 | 12 6 4 4 | 13 6 3 3 | 101|10|1|1|

1 | 7 3 2 2 | 14 6 4 4 | 14 6 3 3 | 110|10|1|1|

1 | 7 4 2 2 | 14 8 4 4 | 14 7 3 3 | 110|11|1|1|

1 | 8 4 2 2 | 16 8 4 4 | 15 7 3 3 | 111|11|1|1|

2 | 4 2 2 1 | 16 8 8 4 | 16 7 4 3 | 11|1|1|0|

2 | 4 3 2 1 | 16 12 8 4 | 19 11 4 4 | 11|10|1|0|

2 | 4 4 2 1 | 16 16 8 4 | 19 12 4 4 | 11|11|1|0|

2 | 4 5 2 1 | 16 20 8 4 | 23 13 6 5 | 11|100|1|0|

2 | 4 6 2 1 | 16 24 8 4 | 25 14 7 5 | 11|101|1|0|

3 | 3 3 1 0 | 24 24 8 0 | 29 14 7 5 | 10|10|0||

3 | 4 3 1 0 | 32 24 8 0 | 30 14 7 5 | 11|10|0||

3 | 5 3 1 0 | 40 24 8 0 | 31 14 7 5 | 100|10|0||

3 | 5 4 1 0 | 40 32 8 0 | 36 16 7 6 | 100|11|0||

3 | 5 4 2 0 | 40 32 16 0 | 45 20 9 7 | 100|11|1||

3 | 6 4 2 0 | 48 32 16 0 | 50 25 11 8 | 101|11|1||

3 | 7 4 2 0 | 56 32 16 0 | 52 28 12 8 | 110|11|1||

3 | 7 4 3 0 | 56 32 24 0 | 52 28 13 8 | 110|11|10||

3 | 8 4 3 0 | 64 32 24 0 | 57 33 14 12 | 111|11|10||

4 | 4 2 1 0 | 64 32 16 0 | 64 34 15 14 | 11|1|0||

4 | 5 2 1 0 | 80 32 16 0 | 76 43 17 17 | 100|1|0||

4 | 6 2 1 0 | 96 32 16 0 | 84 46 19 18 | 101|1|0||

4 | 7 2 1 0 | 112 32 16 0 | 90 49 20 18 | 110|1|0||

4 | 7 3 1 0 | 112 48 16 0 | 90 50 20 18 | 110|10|0||

4 | 8 3 1 0 | 128 48 16 0 | 93 51 22 19 | 111|10|0||

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited156

D
ow

nl
oa

de
d

04
/0

6/
25

 to
 1

09
.8

1.
82

.1
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

4 | 9 3 1 0 | 144 48 16 0 | 94 53 22 19 | 1000|10|0||

4 | 10 3 1 0 | 160 48 16 0 | 125 63 25 25 | 1001|10|0||

4 | 10 4 1 0 | 160 64 16 0 | 134 69 28 29 | 1001|11|0||

5 | 5 2 1 1 | 160 64 32 32 | 137 69 28 30 | 100|1|0|0|

5 | 5 3 1 1 | 160 96 32 32 | 139 73 29 30 | 100|10|0|0|

5 | 5 4 1 1 | 160 128 32 32 | 154 76 32 30 | 100|11|0|0|

5 | 5 4 2 1 | 160 128 64 32 | 216 102 52 44 | 100|11|1|0|

5 | 6 4 2 1 | 192 128 64 32 | 234 105 55 46 | 101|11|1|0|

5 | 7 4 2 1 | 224 128 64 32 | 236 105 55 46 | 110|11|1|0|

5 | 8 4 2 1 | 256 128 64 32 | 277 118 62 55 | 111|11|1|0|

6 | 4 2 1 0 | 256 128 64 0 | 279 118 63 55 | 11|1|0||

6 | 4 2 1 1 | 256 128 64 64 | 315 133 70 64 | 11|1|0|0|

6 | 5 2 1 1 | 320 128 64 64 | 322 139 73 65 | 100|1|0|0|

6 | 6 2 1 1 | 384 128 64 64 | 345 154 79 66 | 101|1|0|0|

6 | 6 2 1 2 | 384 128 64 128 | 374 176 88 76 | 101|1|0|1|

6 | 7 2 1 2 | 448 128 64 128 | 399 186 99 87 | 110|1|0|1|

6 | 8 2 1 2 | 512 128 64 128 | 435 195 105 90 | 111|1|0|1|

6 | 9 2 1 2 | 576 128 64 128 | 478 225 120 107 | 1000|1|0|1|

7 | 4 1 0 1 | 512 128 0 128 | 593 300 134 136 | 11|0||0|

7 | 5 1 0 1 | 640 128 0 128 | 599 302 139 138 | 100|0||0|

7 | 5 1 1 1 | 640 128 128 128 | 634 321 146 146 | 100|0|0|0|

7 | 6 1 1 1 | 768 128 128 128 | 686 351 153 156 | 101|0|0|0|

7 | 6 2 1 1 | 768 256 128 128 | 687 353 155 157 | 101|1|0|0|

7 | 6 3 1 1 | 768 384 128 128 | 732 377 170 174 | 101|10|0|0|

7 | 7 3 1 1 | 896 384 128 128 | 785 419 183 189 | 110|10|0|0|

7 | 7 4 1 1 | 896 512 128 128 | 869 464 203 216 | 110|11|0|0|

7 | 8 4 1 1 | 1024 512 128 128 | 969 522 235 236 | 111|11|0|0|

7 | 8 4 1 2 | 1024 512 128 256 | 994 536 244 240 | 111|11|0|1|

8 | 4 2 0 1 | 1024 512 0 256 | 1058 570 259 252 | 11|1||0|

8 | 4 3 0 1 | 1024 768 0 256 | 1102 596 269 262 | 11|10||0|

8 | 5 3 0 1 | 1280 768 0 256 | 1138 623 282 274 | 100|10||0|

8 | 6 3 0 1 | 1536 768 0 256 | 1217 660 304 295 | 101|10||0|

8 | 7 3 0 1 | 1792 768 0 256 | 1222 665 307 296 | 110|10||0|

8 | 7 4 0 1 | 1792 1024 0 256 | 1344 718 339 321 | 110|11||0|

8 | 7 5 0 1 | 1792 1280 0 256 | 1521 812 377 366 | 110|100||0|

8 | 7 5 0 2 | 1792 1280 0 512 | 1581 850 393 384 | 110|100||1|

9 | 3 3 0 1 | 1536 1536 0 512 | 1713 907 427 423 | 10|10||0|

9 | 4 3 0 1 | 2048 1536 0 512 | 1743 922 430 427 | 11|10||0|

9 | 5 3 0 1 | 2560 1536 0 512 | 1755 930 434 434 | 100|10||0|

9 | 5 4 0 1 | 2560 2048 0 512 | 1849 987 460 453 | 100|11||0|

9 | 6 4 0 1 | 3072 2048 0 512 | 2215 1195 572 548 | 101|11||0|

9 | 6 4 1 1 | 3072 2048 512 512 | 2451 1293 630 607 | 101|11|0|0|

9 | 7 4 1 1 | 3584 2048 512 512 | 2481 1311 640 615 | 110|11|0|0|

9 | 8 4 1 1 | 4096 2048 512 512 | 2663 1396 691 660 | 111|11|0|0|

9 | 8 4 2 1 | 4096 2048 1024 512 | 2751 1433 719 686 | 111|11|1|0|

10 | 4 2 1 1 | 4096 2048 1024 1024 | 2817 1458 733 695 | 11|1|0|0|

10 | 4 2 2 1 | 4096 2048 2048 1024 | 3437 1781 876 836 | 11|1|1|0|

10 | 4 2 2 2 | 4096 2048 2048 2048 | 4039 2071 1030 979 | 11|1|1|1|

10 | 4 3 2 2 | 4096 3072 2048 2048 | 4217 2145 1071 1021 | 11|10|1|1|

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited157

D
ow

nl
oa

de
d

04
/0

6/
25

 to
 1

09
.8

1.
82

.1
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

	Introduction
	Technical Overview
	Upper Bound
	Lower Bound

	Related Work
	Organization

	Upper Bound: Variable-length Integer Encoding
	Lower Bound: Multiplicative Space Covering
	Sample Runs

