
Listing 6-Cycles

Ce Jin∗ Virginia Vassilevska Williams† Renfei Zhou‡

Abstract
Listing copies of small subgraphs (such as triangles, 4-cycles, small cliques) in the input graph is an

important and well-studied problem in algorithmic graph theory. In this paper, we give a simple algorithm
that lists t (non-induced) 6-cycles in an n-node undirected graph in Õ(n2 + t) time. This nearly matches
the fastest known algorithm for detecting a 6-cycle in O(n2) time by Yuster and Zwick (1997). Previously, a
folklore O(n2 + t)-time algorithm was known for the task of listing 4-cycles.

1 Introduction
Listing (also called enumerating) cycles in a graph is an important algorithmic task with a variety of applications
(e.g. in computational biology [29] and social networks [25]). A line of works dating back to the 1970s developed
efficient algorithms for listing all simple cycles in a (directed or undirected) input graph [37, 28, 35, 33, 6, 7, 26],
and some of these algorithms have been engineered in practice [9]. These algorithms consider cycles of arbitrarily
large length; however, in many natural scenarios, one only cares about listing cycles whose length is a small given
constant, and this will be the focus of this paper.

Formally, we are given an undirected simple graph G of n nodes and m edges, and a small pattern graph H (in
our case, H is the k-cycle Ck for some small fixed k). The H-detection problem asks whether G contains a copy
of H as a (not necessarily induced) subgraph. In the H-listing problem, we are additionally given a parameter t,
and we need to output t distinct copies of H in G (if G contains fewer than t copies of H, then we need to output
all copies).

Known results on Ck-detection and Ck-listing. The simplest cycle is a triangle (C3). A long line of
works in graph algorithms and fine-grained complexity has led to a complete picture of triangle listing algorithms,
up to natural hardness hypotheses: [8] gave an algorithm for listing t triangles in Õ(min{n2+nt2/3,m4/3+mt1/3})
time1, assuming that the matrix multiplication exponent is ω = 2. This running time is likely to be optimal: for
t = 1 it matches the best known triangle detection algorithm in O(m2ω/(ω+1)) time [5], and when t is sufficiently
large in terms of n (or m) this running time is conditionally optimal under the 3SUM hypothesis [34, 30] and
even more believable hypotheses [39]. See also [22] for more fine-grained reductions between triangle listing and
other problems.

Now we review known results for cycle length k > 3. A common phenomenon is that finding even length
cycles appears to be easier than finding odd cycles. Finding a cycle of any fixed odd length in undirected graphs
is as difficult as the problem in directed graphs (see e.g. [38]), whereas finding even cycles is easier in undirected
graphs than in directed graphs. Bondy and Simonovits [10] showed that for any integer k ≥ 2, any n vertex
graph with at least 100kn1+1/k edges must contain a 2k-cycle. Meanwhile, the complete bipartite graph on n
nodes in each partition does not contain any cycles of odd length. This difference has been exploited to obtain
faster algorithms for finding a cycle of any given even length [41, 17] that are faster than the known algorithms
for detecting even the smallest length odd cycle, a triangle.

Let us review the previous works on the easier cycle detection problem in more detail. Yuster and Zwick
[41] gave an O(n2)-time algorithm that detects Ck in an undirected n-node graph for any fixed even integer k.
Detecting Ck when k = O(1) is odd can be done in Õ(nω) time (e.g. via color-coding [4]).

When graph sparsity is taken into account, and the running time is in the number of edges m, the
fastest running times are as follows. The fastest algorithms for Ck-detection for odd k in terms of m run

∗MIT. cejin@mit.edu. Partially supported by NSF Grant CCF-2129139.
†MIT. virgi@mit.edu. Supported by NSF Grants CCF-2129139 and CCF-2330048 and BSF Grant 2020356.
‡Tsinghua University. zhourf20@mails.tsinghua.edu.cn.
1We use Õ(f) to denote O(f · polylog(f)).

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited19

D
ow

nl
oa

de
d

01
/2

9/
24

 to
 1

95
.1

13
.1

7.
25

2
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

cejin@mit.edu
virgi@mit.edu
zhourf20@mails.tsinghua.edu.cn

in O(mω(k+1)/(2ω+k−1)) time [19] and O(m2− 2
k+1) time [5], where the former is faster than the latter if

ω ≤ 2 + 2/(k − 1); for the current best value of ω [21, 40] this is the case for k ≤ 5. For even k ≥ 4, the
best known running time for detecting Ck is O(m2− 4

k+2) [17, 5]; this running time was shown to be conditionally
optimal for k ≡ 2 (mod 4) for algorithms that do not use fast matrix multiplication [32, 17].

While the listing variant of the problem is well understood for triangles (C3), there isn’t very much known for
larger k. The problem of C4-listing was very recently independently studied by [3] and [27], who gave an algorithm
in Õ(min{n2 + t,m4/3 + t}) time. For t = 1 this matches the known C4-detection algorithms in O(n2) time [41]
and O(m4/3) time [5]. It was also shown to be conditionally optimal under 3SUM hypothesis independently by
[1] and [27] (building on [2]), and later shown to be conditionally optimal under the Exact Triangle hypothesis
(which is weaker than 3SUM hypothesis and APSP hypothesis) [15].

Our results. Given the previous works on the fine-grained complexity of listing triangles and 4-cycles, a
natural question is to investigate the fine-grained complexity of Ck-listing for larger k. In this paper, we make
the first step by considering k = 6, the smallest even number after 4. Our result is summarized in the following
theorem.

Theorem 1.1. (List t 6-Cycles) There is a deterministic algorithm that lists t copies of C6 in an n-node
undirected simple graph in Õ(n2 + t) time.

The running time of our algorithm nearly matches the algorithm of Yuster and Zwick [41] for detecting a C6 in
O(n2) time, for any t ≤ O(n2).

At a high level, our algorithm for listing 6-cycles follows a similar idea as in the folklore 4-cycle detection/listing

algorithm (e.g., [41, 27, 3]), where a 4-cycle a c
b1

b2
is formed by pasting together two paths a − b1 − c and

a−b2−c (where b1 ̸= b2) which are stored in a table indexed by (a, c). Analogously, our algorithm forms a 6-cycle

a d
b1

b2

c1

c2
by pasting together two paths a− b1 − c1 − d and a− b2 − c2 − d, but the new challenge here is to

avoid wasting time on degenerate cases b1 = b2 or c1 = c2 which do not produce valid 6-cycles.
We leave it as an open question to extend Theorem 1.1 from C6 to C2k for larger k.
Further related works. The problem of listing short cycles was also studied in restricted graph classes such

as low-arboricity graphs [16] and planar graphs [31].
Another way to generalize the classical triangle listing results is to consider k-cliques of larger size k. A very

recent work [18] considered the problem of listing k-cliques for small k.
More generally, enumeration algorithms are widely studied in database theory, and recently there is growing

interest in the fine-grained complexity of enumeration algorithms; see e.g., [24, 36, 23, 13, 12, 11, 20, 14].
In the literature of enumeration algorithms, it is common to study the delay between outputting two

consecutive answers. For example, the 4-cycle listing algorithm of [27] actually achieves O(1) delay after
O(min{n2,m4/3})-time preprocessing; this is stronger than listing t 4-cycles in O(min{n2,m4/3} + t) time.
Whether our 6-cycle listing algorithm (Theorem 1.1) can be upgraded to an enumeration algorithm with
poly log(n)-delay after Õ(n2)-time preprocessing is left for future investigation.

2 Algorithm for Listing All 6-Cycles
Let G = (V,E) be an undirected graph with n nodes. We first focus on a slightly easier variant of the 6-cycle
listing problem which asks to list all 6-cycles in G. Our algorithm for this variant is summarized in the following
theorem.

Theorem 2.1. (List All 6-Cycles) There is a deterministic algorithm that lists all 6-cycles of the n-node
input graph G in O

(
(n2 + t) log n

)
time, where t denotes the total number of 6-cycles in G.

We will show how Theorem 2.1 implies our main Theorem 1.1 (which has a given parameter t possibly much
smaller than the total cycle count) in Section 3.

To prove Theorem 2.1, we consider a color-coded version of the problem: each node in G receives one out of
four possible colors, and thus the node set is partitioned into four color classes V = A ⊔B ⊔ C ⊔D.

Then, our task is to list all 6-cycles a d
b1

b2

c1

c2
, where a ∈ A, b1 ̸= b2 ∈ B, c1 ̸= c2 ∈ C, and d ∈ D.

Solving this task is the main part of our algorithm, as summarized by the following lemma:

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited20

D
ow

nl
oa

de
d

01
/2

9/
24

 to
 1

95
.1

13
.1

7.
25

2
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Lemma 2.1. Given a 4-partite undirected graph G = (V,E) where V = A ⊔ B ⊔ C ⊔D, we can list all 6-cycles
whose 6 nodes are in A,B,C,D,C,B respectively in the order they appear on the cycle, in O(n2 + t) total time,
where t denotes the total number of 6-cycles in G.

We stress that in the statement of Lemma 2.1, t is the total number of all 6-cycles in G, not just those following
the specified color pattern A,B,C,D,C,B.

Note that Lemma 2.1 implies Theorem 2.1 by the standard color-coding technique [4]: if we color each
node in G with one of the four colors chosen independently at random, then any fixed 6-cycle in G satisfies the
specified color pattern (and hence will be reported by Lemma 2.1) with probability ≥ 4−6 = Ω(1), so repeating
O(log n) rounds suffices to report all 6-cycles of G with 1− 1/ poly(n) success probability and total running time
O
(
(n2 + t) log n

)
. This color-coding can also be derandomized using the perfect hashing technique described in

[4, Section 4], with the same asymptotic time complexity.
The rest of this section is devoted to the proof of Lemma 2.1. Our algorithm runs in two stages: in the first

stage (Section 2.1) we preprocess several tables, and in the second stage (Section 2.2) we report 6-cycles based on
the information in these tables. Then Section 2.3 contains the key argument for bounding the time complexity of
the algorithm.

2.1 Stage I: Compute Tables. We are given an input graph G = (V,E) where V = A⊔B ⊔C ⊔D. We use t
to denote the total number of 6-cycles in G. By convention, we will use lowercase letters a, b, c, d to denote nodes
in A,B,C,D respectively, if not otherwise stated. We use Nx := {u : (u, v) ∈ E} to denote the set of neighbors
of node x ∈ V .

We define the following tables:

• Na,c is the set of common neighbors b ∈ B of a and c. Formally, Na,c := Na ∩Nc ∩B. Similarly, we define
another table Nb,d := Nb ∩Nd ∩ C.

• Let Pa,d be the set of b ∈ Na ∩ B such that |Nb,d| ≥ 2, that is, the set of b that can form the shape

a b d
c1

c2
. Similarly, let Qa,d be the set of c ∈ Nd ∩C such that |Na,c| ≥ 2, that is, the set of c that can

form a d
b1

b2
c .

• Let Ra,d be the set of edges (b, c) ∈ E ∩ ((B ∩ Na) × (C ∩ Nd)) such that |Na,c| = |Nb,d| = 1. In other
words, there is a path a − b − c − d without replacements of b and c (there does not exist any other path
a− b′ − c− d or a− b− c′ − d with b′ ̸= b or c′ ̸= c).

Each of these tables N,P,Q,R consists of O(n2) entries, where each entry is a set of nodes (or node pairs).
We say the size of the table is the total number of nodes (or node pairs) in all its entries. The first stage of our
algorithm is to compute all these tables in O(n2 + table size) time, shown in Algorithm 1. (Later in Section 2.3
we will show that the total size of the tables is also O(n2 + t).)

It is straightforward to verify that Algorithm 1 correctly computes all the tables N,P,Q,R according to their
definitions. To analyze its time complexity, we only need to notice that every time Lines 5, 7, 9, 11 and 16 are
executed, there will be a new element inserted to some table entry, so the running time of these lines add up to
O(table size). The time consumed by Lines 13 and 14 is bounded by the number of paths a− b− c and b− c− d
in the graph, which equals the total size of the tables Na,c and Nb,d, which is again O(table size). The other lines
of Algorithm 1 take O(|E|) = O(n2) time.

2.2 Stage II: Report 6-Cycles. In the second stage, we use the precomputed tables N,P,Q,R to help us

report all 6-cycles of the form a d
b1

b2

c1

c2
, where a ∈ A, b1 ̸= b2 ∈ B, c1 ̸= c2 ∈ C, and d ∈ D.

We think of each element b ∈ Pa,d as representing a collection of paths a− b− (?)− d that share the same b
(where the ? mark can be any node in Nb,d), and similarly each c ∈ Qa,d represents a collection of paths sharing
c, and each (b, c) ∈ Ra,d represents a single path from a to d. Every possible path a− b− c− d is contained in at
least one of these three tables: if there is a replacement for b or c, then this path appears in Qa,d and/or Pa,d;

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited21

D
ow

nl
oa

de
d

01
/2

9/
24

 to
 1

95
.1

13
.1

7.
25

2
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Algorithm 1: Compute the tables
1 Let Na,c = Nb,d = ∅ for all a ∈ A, b ∈ B, c ∈ C, d ∈ D
2 Let Pa,d = Qa,d = Ra,d = ∅ for all a ∈ A, d ∈ D
3 for (b, c) ∈ E ∩ (B × C) do ▷ Compute tables N,P,Q
4 for a ∈ Nb ∩A do
5 Insert b to Na,c ▷ b is a common neighbor of a and c
6 if |Na,c| = 2 then ▷ Found two paths a− b− c, a− b′ − c (b′ ̸= b)
7 Insert c to Qa,d for all d ∈ Nc ∩D

8 for d ∈ Nc ∩D do ▷ Symmetric to the above
9 Insert c to Nb,d

10 if |Nb,d| = 2 then
11 Insert b to Pa,d for all a ∈ Nb ∩A

12 for (b, c) ∈ E ∩ (B × C) do ▷ Compute table R
13 Compute Sa := {a ∈ Nb ∩A : |Na,c| = 1}
14 Compute Sd := {d ∈ Nc ∩D : |Nb,d| = 1}
15 for (a, d) ∈ Sa × Sd do
16 Insert (b, c) to Ra,d

otherwise, this path is included in Ra,d. For a desired 6-cycle a d
b1

b2

c1

c2
, we make a case distinction according

to which tables the two paths a− b1 − c1 − d and a− b2 − c2 − d belong to:

1. One path belongs to P , and the other path belongs to Q.

2. Both paths belong to P (or both paths belong to Q).

3. Both paths belong to R.

4. One path belongs to P (or Q), while the other belongs to R.

In the following, we separately consider each case and describe our algorithm for listing all the 6-cycles in that
case. (These cases are not disjoint, but this will only cause each cycle to be reported O(1) times, which effectively
blows up the total time complexity by a constant factor.)

Case 1. For every a and d, we want to report all 6-cycles formed by pasting together two paths a−b1−c1−d
and a− b2 − c2 − d that belong to P and Q respectively. To do this, we iterate over all b1 ∈ Pa,d and c2 ∈ Qa,d,
and report all possible choices of c1 ∈ Nb1,d and b2 ∈ Na,c2 such that c1 ̸= c2 and b1 ̸= b2. The pseudocode is
given in Algorithm 2. It is clear that Algorithm 2 correctly lists all desired 6-cycles of Case 1.

Algorithm 2: Report 6-Cycles of Case 1
1 for each a ∈ A, d ∈ D such that |Pa,d| ≥ 1 and |Qa,d| ≥ 1 do
2 for each b1 ∈ Pa,d and c2 ∈ Qa,d do
3 for each c1 ∈ Nb1,d and b2 ∈ Na,c2 do ▷ List cycles given a, d, b1, c2
4 if b1 ̸= b2 and c1 ̸= c2 then

5 Report cycle a d
b1

b2

c1

c2

Next, we analyze the time complexity of Algorithm 2. First, the number of iterations of the for-loop on Line 1
is bounded by O(n2). We then show that, for every O(1) time we spend on the for-loop on Line 3 to 5, we can
report one 6-cycle, thus the time complexity for this part is O(t). At every time we enter this inner for-loop on

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited22

D
ow

nl
oa

de
d

01
/2

9/
24

 to
 1

95
.1

13
.1

7.
25

2
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Line 3, the time we spend equals O(|Nb1,d| · |Na,c2 |), and the number of 6-cycles we report equals the number of
(c1, b2) ∈ Nb1,d ×Na,c2 such that b1 ̸= b2, c1 ̸= c2, which is

∣∣(Nb1,d \ {c2}
)
×
(
Na,c2 \ {b1}

)∣∣ ≥ (|Nb1,d| − 1)(|Na,c2 | − 1) ≥ 1

4
|Nb1,d| · |Na,c2 |,

where the last inequality uses the fact that |Nb1,d|, |Na,c2 | ≥ 2 due to the definition of P,Q. This implies the
desired time complexity O(n2 + t).

Case 2. The algorithm for Case 2 is similar, see Algorithm 3. (We only give the pseudocode for cycles whose
both paths belong to P ; the case for Q is symmetric.)

Algorithm 3: Report 6-Cycles of Case 2
1 for each a ∈ A, d ∈ D such that |Pa,d| ≥ 2 do
2 for each b1, b2 ∈ Pa,d where b1 ̸= b2 do
3 for each c1 ∈ Nb1,d and c2 ∈ Nb2,d do ▷ List cycles given a, d, b1, b2
4 if c1 ̸= c2 then

5 Report cycle a d
b1

b2

c1

c2

Similar to Case 1, the correctness is clear, and we only need to show that every O(1) time spent on Line 3
to 5 will report a 6-cycle. At every time we enter the inner for-loop, we spend O(|Nb1,d| · |Nb2,d|) time, and the
number of reported cycles equals the number of (c1, c2) ∈ Nb1,d ×Nb2,d such that c1 ̸= c2, which is

|Nb1,d| · |Nb2,d| − |Nb1,d ∩Nb2,d| ≥ |Nb1,d| · (|Nb2,d| − 1) ≥ 1

2
|Nb1,d| · |Nb2,d|,

where we again used the fact that |Nb2,d| ≥ 2 due to the definition of P . Therefore, the time consumption on the
inner loop is O(t), and the total time complexity is the same as Case 1, O(n2 + t).

Case 3. For Case 3, where both paths belong to R, we use a straightforward enumeration as shown in
Algorithm 4.

Algorithm 4: Report 6-Cycles of Case 3
1 for each a ∈ A, d ∈ D such that |Ra,d| ≥ 2 do
2 for each (b1, c1), (b2, c2) ∈ Ra,d where (b1, c1) ̸= (b2, c2) do

3 Report cycle a d
b1

b2

c1

c2

We need to show that the cycles reported by Algorithm 4 are valid. Suppose to the contrary that b1 = b2,
then c1 ̸= c2, and hence |Nb1,d| ≥ 2. Since (b1, c1) ∈ Ra,d, this contradicts the definition of Ra,d. Hence, we must
have b1 ̸= b2, and similarly c1 ̸= c2, so the reported 6-cycle is valid. Clearly, the running time of Algorithm 4 is
also O(n2 + t).

Case 4. Case 4 is similar to Case 3 where we use the fact that paths in R have no replacements for nodes b
and c, thus b1 = b2 or c1 = c2 will never happen in the straightforward enumeration. We omit the pseudocode.
The time complexity of this case is O(n2 + t) as before.

To summarize, we have shown that our stage 2 algorithm lists all desired 6-cycles in O(n2 + t) total time.

2.3 Bounding the Total Table Size. We have shown that stage 1 runs in O(n2 + table size) time and stage
2 runs in O(n2 + t) time. To bound the total running time, it remains to show that the total size of the tables
P,Q,R,N does not exceed O(n2 + t).

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited23

D
ow

nl
oa

de
d

01
/2

9/
24

 to
 1

95
.1

13
.1

7.
25

2
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

First, we argue that the sizes of tables P,Q,R are O(n2 + t). For any fixed a, d, when the set Pa,d contains
x ≥ 2 elements, it produces at least

(
x
2

)
≥ x−1 valid 6-cycles as we have seen in Case 2 of the proof in Section 2.2.

So t ≥
∑

a,d(|Pa,d| − 1) ≥ (
∑

a,d |Pa,d|)− n2. A similar argument applies to tables Q (Case 2 in Section 2.2) and
R (Case 3 in Section 2.2) as well. Hence, the total size of P,Q,R is O(n2 + t).

It remains to analyze the size of table N . Our analysis on the sizes of Na,c (and symmetrically, Nb,d) relies
on the following lemma:

Lemma 2.2. If node a ∈ A satisfies
∑

c∈C |Na,c| ≥ 100n + k, then G contains at least k 6-cycles in which a is
the only node in A.

Proof. 2 For any fixed a ∈ A, we consider the subgraph Ga of G defined by taking the union of the edges
in all paths a − b − c where c ∈ C and b ∈ Na,c. Since these paths have distinct (b, c) edges, we know
|E(Ga)| ≥

∑
c∈C |Na,c| ≥ 100n+ k. In the following, we first prove that there exists at least one 6-cycle provided

|E(Ga)| ≥ 100n.
We iteratively remove nodes in Ga whose current degree is less than 3, and denote the resulting graph by G′

a,
with number of edges |E(G′

a)| ≥ |E(Ga)| − 2n ≥ 98n. As shown in Fig. 1, G′
a is composed of a bipartite graph

between V (G′
a)∩B and V (G′

a)∩C, and edges connecting a with every node in V (G′
a)∩B. We know a itself is not

removed, since otherwise |V (G′
a)∩B| ≤ 2 and the graph G′

a can only have at most
∑

b∈V (G′
a)∩B deg(b) ≤ 2n < 98n

edges.
Next, we find a 6-cycle in G′

a of the form a − b1 − c1 − b2 − c2 − b3 − a in a greedy fashion: starting from
an arbitrary b1 ∈ V (G′

a) ∩ B, in each step we go to an arbitrary unvisited neighbor of the current node (which
must exist since every node has degree ≥ 3 in G′

a) as the next node on the cycle. Hence, we have found a 6-cycle
containing a in Ga.

b1 b2 b3 b4 b5

a

c1 c2 c3 c4 c5

Figure 1: An example of G′
a. We are guaranteed that every node including a has degree at least 3, so we can find

a 6-cycle step-by-step (drawn in thick purple lines).

Take the edge (b1, c1) from the 6-cycle that we have just found, and remove (b1, c1) from Ga, so that this
6-cycle no longer appears in the new Ga. Then, the number of edges |E(Ga)| decreases by 1; if it is still ≥ 100n,
we can repeat the above argument to find a second 6-cycle. This process is repeated for k times as the initial Ga

has 100n+ k edges, and k cycles are reported in total, which proves the lemma.

According to Lemma 2.2, for any fixed a ∈ A,
∑

c∈C |Na,c| − 100n is a lower bound on the number of 6-cycles
in G in which a is the only node in A. Thus,

∑
a∈A

∑
c∈C |Na,c| − 100n2 is a lower bound on the total number of

6-cycles in G. In other words, the total size of Na,c over all a, c is O(n2 + t). A symmetric argument shows that
the total size of Nb,d over all b, d is also O(n2 + t). Hence, the total size of all tables N,P,Q,R is bounded by
O(n2 + t). So our algorithm in stage 1 also takes O(n2 + table size) ≤ O(n2 + t) time. This finishes the proof of
Lemma 2.1.

2We thank an anonymous reviewer for suggesting this simpler proof; our original proof had to invoke a lemma from [41] and [10].

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited24

D
ow

nl
oa

de
d

01
/2

9/
24

 to
 1

95
.1

13
.1

7.
25

2
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

3 Algorithm for Listing t 6-Cycles
It remains to show how our algorithm for listing all 6-cycles (Theorem 2.1) can be modified into an algorithm for
listing t 6-cycles in Õ(n2 + t) time, for any given t.3

Let the nodes of G = (V,E) be v1, v2, . . . , vn in arbitrary order. Let Gi be the subgraph of G induced
by the first i nodes v1, . . . , vi. Note that we can decide whether the number of 6-cycles in Gi is at least t,
in Õ(|V (Gi)|2 + t) ≤ Õ(n2 + t) time: we simply attempt to list all 6-cycles in Gi using the algorithm from
Theorem 2.1, and we terminate the algorithm if the running time is too long. This allows us to use binary search
to find the largest index 1 ≤ i ≤ n such that the number of 6-cycles in Gi is at most t, in Õ(n2 + t) time. Now
there are three cases:

• Case 1: i = n.

This means the total number of 6-cycles in G is at most t, and can be listed by Theorem 2.1 in Õ(n2 + t)
time.

• Case 2: i < n.

This means Gi+1 contains more than t 6-cycles. We then decide whether Gi+1 has at most 2t 6-cycles, in
Õ(n2 + t) time. Based on the outcome there are two cases:

– Case 2(1): Gi+1 has at most 2t 6-cycles.
In this case we can list all 6-cycles in Gi+1 in Õ(n2 + t) time, and output t of them as the answer.

– Case 2(2): Gi+1 has more than 2t 6-cycles.
Since Gi has at most t 6-cycles, we know vi+1 is contained in more than 2t− t = t 6-cycles.
In this case, we simply apply the following standard lemma to vi+1, and output t 6-cycles containing
vi+1 in Õ(m+ t) = Õ(n2 + t) time.

Lemma 3.1. (Simple Adaptation of [4, Lemma 3.1]) For fixed k, given an n-node m-edge graph G with a
special node v, and a parameter t, we can list t k-cycles in G containing v in O((m+ t) log n) time.

Proof Sketch. Using the color coding technique [4], we can assume the nodes in G are partitioned as V (G) =
{v} ⊔ V1 ⊔ V2 ⊔ · · · ⊔ Vk−1, and we only need to list k-cycles with nodes v, v1 ∈ V1, . . . , vk−1 ∈ Vk−1 in order. By
a dynamic-programming-like procedure in O(m) time, we can compute all the vertices vi ∈ Vi that are reachable
from v, as well as all their parents vi−1 ∈ Vi−1 reachable from v and adjacent to vi. To report k-cycles, we start
with every neighbor of v in Vk−1, and follow the parent pointers to go back to v using DFS. In this way we output
t k-cycles in O(kt) = O(t) time.

References
[1] A. Abboud, K. Bringmann, and N. Fischer, Stronger 3-sum lower bounds for approximate distance

oracles via additive combinatorics, in Proceedings of the 55th Annual ACM Symposium on Theory of
Computing, STOC 2023, Orlando, FL, USA, June 20-23, 2023, ACM, 2023, pp. 391–404.

[2] A. Abboud, K. Bringmann, S. Khoury, and O. Zamir, Hardness of approximation in P via short cycle
removal: cycle detection, distance oracles, and beyond, in STOC ’22: 54th Annual ACM SIGACT Symposium
on Theory of Computing, Rome, Italy, June 20 - 24, 2022, ACM, 2022, pp. 1487–1500.

[3] A. Abboud, S. Khoury, O. Leibowitz, and R. Safier, Listing 4-cycles, CoRR, abs/2211.10022 (2022).

[4] N. Alon, R. Yuster, and U. Zwick, Color-coding, J. ACM, 42 (1995), p. 844–856.

[5] N. Alon, R. Yuster, and U. Zwick, Finding and counting given length cycles, Algorithmica, 17 (1997),
pp. 209–223.

3A natural attempt is to subsample the edges of G at some rate p and obtain a subgraph G′ whose expected C6 count (which
equals p6 times the original count) is close to t, and then apply Theorem 2.1 on G′. This does not directly work since the C6 count
of G′ can have high variance (for example, when some edge participates in many C6s in G) and can be far from t with very high
probability. Our approach here instead uses a binary search and is deterministic.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited25

D
ow

nl
oa

de
d

01
/2

9/
24

 to
 1

95
.1

13
.1

7.
25

2
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

[6] G. J. Bezem and J. van Leeuwen, Enumeration in graphs, Tech. Rep. RUU-CS-87-07, Utrecht University,
1987.

[7] E. Birmelé, R. A. Ferreira, R. Grossi, A. Marino, N. Pisanti, R. Rizzi, and G. Sacomoto,
Optimal listing of cycles and st-paths in undirected graphs, in Proceedings of the Twenty-Fourth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2013, New Orleans, Louisiana, USA, January 6-8,
2013, SIAM, 2013, pp. 1884–1896.

[8] A. Björklund, R. Pagh, V. Vassilevska Williams, and U. Zwick, Listing triangles, in Automata,
Languages, and Programming - 41st International Colloquium, ICALP 2014, Copenhagen, Denmark, July
8-11, 2014, Proceedings, Part I, vol. 8572 of Lecture Notes in Computer Science, Springer, 2014, pp. 223–234.

[9] J. Blanusa, P. Ienne, and K. Atasu, Scalable fine-grained parallel cycle enumeration algorithms, in SPAA
’22: 34th ACM Symposium on Parallelism in Algorithms and Architectures, Philadelphia, PA, USA, July 11
- 14, 2022, ACM, 2022, pp. 247–258.

[10] A. Bondy and M. Simonovits, Cycles of even length in graphs, J. Combin. Theory, Ser. B, 16 (1974),
pp. 97–105.

[11] K. Bringmann and N. Carmeli, Unbalanced triangle detection and enumeration hardness for unions of
conjunctive queries, CoRR, abs/2210.11996 (2022).

[12] K. Bringmann, N. Carmeli, and S. Mengel, Tight fine-grained bounds for direct access on join queries,
in PODS ’22: International Conference on Management of Data, Philadelphia, PA, USA, June 12 - 17, 2022,
ACM, 2022, pp. 427–436.

[13] N. Carmeli and M. Kröll, On the enumeration complexity of unions of conjunctive queries, ACM Trans.
Database Syst., 46 (2021), pp. 5:1–5:41.

[14] N. Carmeli and L. Segoufin, Conjunctive queries with self-joins, towards a fine-grained enumeration
complexity analysis, in Proceedings of the 42nd ACM SIGMOD-SIGACT-SIGAI Symposium on Principles
of Database Systems, PODS 2023, Seattle, WA, USA, June 18-23, 2023, ACM, 2023, pp. 277–289.

[15] T. M. Chan and Y. Xu, Simpler reductions from exact triangle, CoRR, abs/2310.11575 (2023). To appear
in SOSA 2024.

[16] N. Chiba and T. Nishizeki, Arboricity and subgraph listing algorithms, SIAM J. Comput., 14 (1985),
pp. 210–223.

[17] S. Dahlgaard, M. B. T. Knudsen, and M. Stöckel, Finding even cycles faster via capped k-walks,
in Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017, New
York, NY, USA, 2017, Association for Computing Machinery, p. 112–120.

[18] M. Dalirrooyfard, S. Mathialagan, V. Vassilevska Williams, and Y. Xu, Listing cliques from
smaller cliques, CoRR, abs/2307.15871 (2023).

[19] M. Dalirrooyfard, T.-D. Vuong, and V. Vassilevska Williams, Graph pattern detection: Hardness
for all induced patterns and faster noninduced cycles, SIAM J. Comput., 50 (2021), pp. 1627–1662.

[20] S. Deng, S. Lu, and Y. Tao, On join sampling and the hardness of combinatorial output-sensitive join
algorithms, in Proceedings of the 42nd ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database
Systems, PODS 2023, Seattle, WA, USA, June 18-23, 2023, ACM, 2023, pp. 99–111.

[21] R. Duan, H. Wu, and R. Zhou, Faster matrix multiplication via asymmetric hashing, in Proc. 64th IEEE
Symposium on Foundations of Computer Science (FOCS), 2023.

[22] L. Duraj, K. Kleiner, A. Polak, and V. Vassilevska Williams, Equivalences between triangle and
range query problems, in Proceedings of the 2020 ACM-SIAM Symposium on Discrete Algorithms, SODA
2020, Salt Lake City, UT, USA, January 5-8, 2020, SIAM, 2020, pp. 30–47.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited26

D
ow

nl
oa

de
d

01
/2

9/
24

 to
 1

95
.1

13
.1

7.
25

2
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

[23] A. Durand, Fine-grained complexity analysis of queries: From decision to counting and enumeration, in
Proceedings of the 39th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems,
PODS 2020, Portland, OR, USA, June 14-19, 2020, ACM, 2020, pp. 331–346.

[24] A. Durand and E. Grandjean, First-order queries on structures of bounded degree are computable with
constant delay, ACM Trans. Comput. Log., 8 (2007), p. 21.

[25] P. Giscard, P. Rochet, and R. C. Wilson, Evaluating balance on social networks from their simple
cycles, J. Complex Networks, 5 (2017), pp. 750–775.

[26] R. Grossi, Enumeration of paths, cycles, and spanning trees, in Encyclopedia of Algorithms, Springer, 2016,
pp. 640–645.

[27] C. Jin and Y. Xu, Removing additive structure in 3SUM-based reductions, in Proceedings of the 55th Annual
ACM Symposium on Theory of Computing, STOC 2023, Orlando, FL, USA, June 20-23, 2023, ACM, 2023,
pp. 405–418.

[28] D. B. Johnson, Finding all the elementary circuits of a directed graph, SIAM J. Comput., 4 (1975), pp. 77–
84.

[29] S. Klamt and A. von Kamp, Computing paths and cycles in biological interaction graphs, BMC Bioinform.,
10 (2009).

[30] T. Kopelowitz, S. Pettie, and E. Porat, Higher lower bounds from the 3SUM conjecture, in Proceedings
of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2016, Arlington, VA,
USA, January 10-12, 2016, SIAM, 2016, pp. 1272–1287.

[31] L. Kowalik, Short cycles in planar graphs, in Graph-Theoretic Concepts in Computer Science, 29th
International Workshop, WG 2003, Elspeet, The Netherlands, June 19-21, 2003, Revised Papers, vol. 2880
of Lecture Notes in Computer Science, Springer, 2003, pp. 284–296.

[32] A. Lincoln and N. Vyas, Algorithms and lower bounds for cycles and walks: Small space and sparse
graphs, in 11th Innovations in Theoretical Computer Science Conference, ITCS 2020, January 12-14, 2020,
Seattle, Washington, USA, vol. 151 of LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020,
pp. 11:1–11:17.

[33] P. Mateti and N. Deo, On algorithms for enumerating all circuits of a graph, SIAM J. Comput., 5 (1976),
pp. 90–99.

[34] M. Pǎtraşcu, Towards polynomial lower bounds for dynamic problems, in Proceedings of the 42nd ACM
Symposium on Theory of Computing, STOC 2010, Cambridge, Massachusetts, USA, 5-8 June 2010, ACM,
2010, pp. 603–610.

[35] R. C. Read and R. E. Tarjan, Bounds on backtrack algorithms for listing cycles, paths, and spanning
trees, Networks, 5 (1975), pp. 237–252.

[36] Y. Strozecki, Enumeration complexity, Bull. EATCS, 129 (2019).

[37] R. E. Tarjan, Enumeration of the elementary circuits of a directed graph, SIAM J. Comput., 2 (1973),
pp. 211–216.

[38] V. Vassilevska Williams, Efficient Algorithms for Path Problems in Weighted Graphs, PhD thesis,
Carnegie Mellon University, 2008.

[39] V. Vassilevska Williams and Y. Xu, Monochromatic triangles, triangle listing and APSP, in Proc. 61st
IEEE Annual Symposium on Foundations of Computer Science (FOCS), IEEE, 2020, pp. 786–797.

[40] V. Vassilevska Williams, Y. Xu, Z. Xu, and R. Zhou, New bounds for matrix multiplication: from
Alpha to Omega, in Proc. 35th ACM-SIAM Symposium on Discrete Algorithms (SODA), 2024. To appear.

[41] R. Yuster and U. Zwick, Finding even cycles even faster, SIAM Journal on Discrete Mathematics, 10
(1997), pp. 209–222.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited27

D
ow

nl
oa

de
d

01
/2

9/
24

 to
 1

95
.1

13
.1

7.
25

2
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

	Introduction
	Algorithm for Listing All 6-Cycles
	Stage I: Compute Tables.
	Stage II: Report 6-Cycles.
	Bounding the Total Table Size.

	Algorithm for Listing t 6-Cycles

