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Let G be a finite, simple, and undirected graph of order n and average degree d. Up to terms 
of smaller order, we characterize the minimal intervals I containing d that are guaranteed 
to contain some vertex degree. In particular, for d+ ∈

(√
dn,n − 1

]
, we show the existence 

of a vertex in G of degree between d+ −
(

(d+−d)n

n−d++
√

d2+−dn

)
and d+.

© 2023 Elsevier B.V. All rights reserved.

1. Introduction

An obvious observation concerning finite, simple, and undirected graphs is that every such graph G with n vertices and 
average degree d has a vertex of degree at most d as well as a vertex of degree at least d, that is, there are vertex degrees 
in the two intervals [0, d] and [d, n − 1]. In the present note we study minimal intervals I containing d for which every 
such graph G necessarily contains some vertex u whose degree dG (u) lies in I . Surely, which intervals have this property is 
implicit in characterizations of degree sequences such as the well-known Erdős-Gallai characterization [1,2]. Our goal here 
is to specify such intervals explicitly, and our motivation originally came from embedding problems that rely on special 
cases of the results presented here [3,4].

Our first result specifies a natural interval of length about half the order around the average degree that is guaranteed 
to contain some vertex degree. Some of the estimates in its proof, cf. (6) and (7) below, correspond to inequalities from the 
Erdős-Gallai characterization [1].

Theorem 1. If G is a graph with n vertices and m edges, then there is a vertex u in G with

d − n − 2

2(n − 1)
d ≤ dG(u) ≤ d + n − 2

2(n − 1)
d, (1)

where d = 2m
n is the average degree of G and d = n − 1 − d is the average degree of the complement G of G.

Furthermore, if G has no vertex u with d − n−2
2(n−1)

d < dG(u) < d + n−2
2(n−1)

d, then

• the vertex set of G is the disjoint union of two sets V+ and V− ,
• V+ is a clique of order dn

n−1 ,

• V− is an independent set of order dn
n−1 ,

* Corresponding author.
E-mail addresses: johannes.pardey@uni-ulm.de (J. Pardey), dieter.rautenbach@uni-ulm.de (D. Rautenbach).
https://doi.org/10.1016/j.disc.2023.113599
0012-365X/© 2023 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.disc.2023.113599
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/disc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.disc.2023.113599&domain=pdf
mailto:johannes.pardey@uni-ulm.de
mailto:dieter.rautenbach@uni-ulm.de
https://doi.org/10.1016/j.disc.2023.113599


J. Pardey and D. Rautenbach Discrete Mathematics 346 (2023) 113599
Fig. 1. The three plots show �min(d+)
n as a function of d+

n ∈
(√

d
n ,1

]
for d

n ∈ {0.25,0.5,0.81}.

• every vertex in V+ is adjacent to exactly half the vertices in V−, and
• every vertex in V− is adjacent to exactly half the vertices in V+.

Theorem 1 gives a rather precise answer in a specific setting, where the interval depends on n and d; allowing for the 
characterization of the corresponding extremal graphs. Our second result applies in a more general setting; it gives the 
precise answer up to terms of smaller order.

Theorem 2. If G is a graph of order n and average degree d with 0 < d < n − 1, and d+ ∈
(√

dn,n − 1
]

, then there is a vertex u in G
with

d+ − (d+ − d)n

n − d+ +
√

d2+ − dn
≤ dG(u) ≤ d+.

Let d− denote the lower bound for dG (u) specified in Theorem 2. For d+ ≤ √
dn, Lemma 3 below indicates that nothing 

really non-trivial can be said about d− , more precisely, in this case, d− will be 0. Theorem 2 gives an estimate for d−
that is best possible up to terms of smaller order; one can construct suitable almost extremal graphs approximating the 
values in (17) below. Applying Theorem 2 to the complement of G yields a symmetric result, where one first specifies the 
lower bound d− for dG(u) and then determines the upper bound d+ accordingly, that is, in this case, d+ is considered as a 
function of n, d, and d− . For given n and d as in Theorem 2, the length

�min(d+) = d+ − d− = (d+ − d)n

n − d+ +
√

d2+ − dn
=

⎛
⎜⎜⎝

d+
n − d

n

1 − d+
n +

√(
d+
n

)2 − d
n

⎞
⎟⎟⎠n

of the specified interval satisfies min
{
�min(d+) : d+ ∈

(√
dn,n − 1

]}
≤ n

2 for every d ∈ (0, n − 1). Up to terms of smaller 

order, Theorem 1 corresponds to the choice d+
n = n+d

2n = 1
2 + d

2n , in which case �min(d+) = n
2 , that is, up to terms of smaller 

order, Theorem 2 implies Theorem 1. For d �= n
2 and suitable choices of d+ , Theorem 2 guarantees a vertex degree within a 

smaller interval around d than Theorem 1, cf. Fig. 1.
Applying our results repeatedly to a given graph, each time removing a vertex of degree close to the current average 

degree, yields several vertices whose degrees are guaranteed to lie in slowly changing intervals around the original average 
degree.

The proofs are given in the following section.

2. Proofs

We proceed to the proofs of our two results.

Proof of Theorem 1. Let G , n, m, d, and d be as in the statement. Since the statement is trivial for d ∈ {0, n − 1}, we may 
assume that 0 < d < n − 1. Let

V− =
{

u ∈ V (G) : dG(u) ≤ d − n − 2

2(n − 1)
d

}
and V+ =

{
u ∈ V (G) : dG(u) ≥ d + n − 2

2(n − 1)
d

}
.

2
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In view of the desired statements, we may assume that V (G) is the disjoint union of V+ and V− . Since G has average 
degree d, the sets V+ and V− are both non-empty, and, hence, we have 1

n ≤ x ≤ 1 − 1
n for x = |V+|

n . The degree sum ∑
u∈V+

dG(u) of the vertices in V+ is at most the sum of the following two terms:

• Twice the number of edges in G between vertices in V+ . This is at most xn(xn − 1) with equality if and only if V+ is a 
clique.

• The number of edges in G between V+ and V− . This is at most 
∑

u∈V−
dG(u) with equality if and only if V− is an 

independent set.

This implies

dn =
∑

u∈V+
dG(u) +

∑
u∈V−

dG(u)

≤ xn(xn − 1) + 2
∑

u∈V−
dG(u) (2)

≤ xn(xn − 1) + 2 (1 − x)n︸ ︷︷ ︸
=|V−|

(
d − n − 2

2(n − 1)
d

)
︸ ︷︷ ︸

≥dG (u) f or u∈V−

. (3)

Applying exactly the same counting argument to G implies

(n − 1 − d)n =
∑

u∈V−
dG(u) +

∑
u∈V+

dG(u)

≤ (1 − x)n((1 − x)n − 1) + 2
∑

u∈V+
(n − 1 − dG(u)) (4)

≤ (1 − x)n((1 − x)n − 1) + 2xn

(
n − 1 − d − n − 2

2(n − 1)
d

)
︸ ︷︷ ︸

≥dG (u) f or u∈V+

. (5)

By (3) and (5), we have

f1(x) := x(xn − 1) + 2(1 − x)

(
d − n − 2

2(n − 1)
d

)
− d = (xn − 1)(x(n − 1) − d)

n − 1
≥ 0 and (6)

f2(x) := (1 − x)((1 − x)n − 1) + 2x

(
n − 1 − d − n − 2

2(n − 1)
d

)
− (n − 1 − d)

= (x(n − 1) − d)((x − 1)n + 1)

n − 1
≥ 0. (7)

Recall that x ∈ [ 1
n ,1 − 1

n

]
. Since f1

( 1
n

) = 0, f2
(
1 − 1

n

) = 0, f1

(
d

n−1

)
= f2

(
d

n−1

)
= 0, and f1(x) as well as f2(x) are both 

strictly convex, we have min{ f1(x), f2(x)} < 0 for x ∈ [ 1
n ,1 − 1

n

] \
{

1
n , d

n−1 ,1 − 1
n

}
. By (6) and (7), this implies

x ∈
{

1

n
,

d

n − 1
,1 − 1

n

}
and min

{
f1(x), f2(x)

}
= 0.

In order to show the existence of a vertex u in G that satisfies (1), we suppose, for a contradiction, that no vertex in V+
has degree d + n−2

2(n−1)
d and that no vertex in V− has degree d − n−2

2(n−1)
d. Since V+ and V− are both non-empty, the two 

inequalities (3) and (5) become strict, which implies the contradiction min{ f1(x), f2(x)} > 0. Hence, some vertex u in G
satisfies (1).

We proceed to the proof of the second part of the statement. Note that the hypothesis that G has no vertex u with 
d − n−2

2(n−1)
d < dG(u) < d + n−2

2(n−1)
d is equivalent to our assumption that V (G) is the disjoint union of V+ and V− . If V+ is 

not a clique, then

• twice the number of edges in G between vertices in V+ is strictly less than xn(xn − 1), which implies that (2) becomes 
a strict inequality, and
3
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• the number of edges in G between V+ and V− is strictly less than 
∑

u∈V+
dG(u), which implies that (4) becomes a strict 

inequality.

Symmetrically, if V− is not an independent set, then (2) and (4) become strict inequalities. Therefore, if V+ is not a 
clique or V− is not an independent set, then (2) and (4) become strict inequalities, and we obtain the contradiction 
min{ f1(x), f2(x)} > 0. Similarly, if some vertex in V+ has a degree strictly larger than d + n−2

2(n−1)
d and some vertex in 

V− has a degree strictly smaller than d − n−2
2(n−1)

d, then (3) and (5) become strict inequalities, and again we obtain the 
contradiction min{ f1(x), f2(x)} > 0. If V+ is a clique, V− is an independent set, all vertices in V− have degree exactly 
d − n−2

2(n−1)
d, and some vertex in V+ has degree strictly larger than d + n−2

2(n−1)
d, then

dn =
∑

u∈V+
dG(u) +

∑
u∈V−

dG(u)

>

(
d + n − 2

2(n − 1)
d

)
xn +

(
d − n − 2

2(n − 1)
d

)
(1 − x)n

= (n − 2)n

2
x + n2d

2(n − 1)

implies the contradiction x < d
n−1 . Hence, by symmetry between G and G , we may assume that V+ is a clique, V− is an 

independent set, all vertices in V− have degree exactly d − n−2
2(n−1)

d, and all vertices in V+ have degree exactly d + n−2
2(n−1)

d. 
As above, this implies x = d

n−1 , and it follows easily that every vertex in V+ is adjacent to exactly half the vertices in V−
and that every vertex in V− is adjacent to exactly half the vertices in V+ . This completes the proof. �

The interval[
d − n − 2

2(n − 1)
d,d + n − 2

2(n − 1)
d

]
from Theorem 1 always has the same length n−2

2 but it naturally shifts with changes of d. Now, for a given value of d+
from [d, n −1], we consider the largest d− from [0, d] such that the interval I = [d−, d+] around d necessarily contains some 
vertex degree, that is, we specify the upper end d+ of I and consider the lower end d− of I as a function of n, d, and d+ . 
Quite naturally, if d+ is close enough to d, then d− will have to be 0, which leads to the obvious observation at the very 
beginning of this note.

Now, let n and m be integers with 0 < m <
(n

2

)
, and let d = 2m

n .
For d+ ∈ (d, n − 1), let

d− = d−(n,d,d+)

be the smallest possible value of d− ∈ [0, d] such that there is some graph G of order n and average degree d whose vertex 
set V (G) is partitioned into the two sets

V− = {u ∈ V (G) : dG(u) ≤ d−} and V+ = {u ∈ V (G) : dG(u) ≥ d+} .

Clearly, the choices of d− and G imply that some vertex in G has degree d− , in particular, d− is an integer.
This definition implies that

• every graph of order n and average degree d has a vertex of degree in [d−, d+], while
• some such graph has no vertex of degree in (d−, d+),

that is, [d−, d+] is indeed a minimal interval with the desired property. Our goal is to estimate d− = d−(n, d, d+).
Let G be as above.
Similarly as in the proof of Theorem 1, the condition d+ > d implies that V− and V+ are both non-empty.
For the average degrees d± = 1

|V±|
∑

u∈V±
dG (u) within V− and V+ , respectively, we obtain

0 ≤ d− ≤ d− ≤ d < d+ ≤ d+ ≤ n − 1. (8)

For x = |V+|
n ∈ (0, 1), we have

(1 − x)nd− + xnd+ = dn. (9)
4
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Since the number of edges between V− and V+ is at least 
(

d+ − xn + 1
)

xn, we have the following Erdős-Gallai type 
inequality

(1 − x)nd− ≥
(

d+ − xn + 1
)

xn. (10)

It follows that

d−(n,d,d+) ≥ OPT(P ) (11)

for the following optimization problem (P ):

min d−
s.th. (1 − x)d− + xd+ = d (12)

(P ) (1 − x)d− ≥
(

d+ − xn
)

x (13)

0 ≤ d− ≤ d− (14)

d+ ≤ d+ ≤ n (15)

0 ≤ x ≤ 1 (16)

d−,d−,d+, x ∈ R.

Note that (P ) is obtained by relaxing some of the conditions in (8), (9), and (10) as well as the integrality of d− and the 
rationality of d− , d+ , and x. Since (P ) is a minimization problem, these relaxations do not affect the validity of (11).

Note that for the entire rest of the paper, the variables d− , d− , d+ , and x are considered to be real numbers as in (P ), 
and the values of n, d, and d+ are considered fixed parameters for (P ).

Lemma 3. In the above setting,

OPT(P ) =
⎧⎨
⎩

0 , if d+ ≤ √
dn

d+ − (d+−d)n

n−d++
√

d2+−dn
, if d+ >

√
dn.

Proof. Note that OPT(P ) ≥ 0 by (14).

If d+ ≤ √
dn, then 

(
d−,d−,d+, x

)
=
(

0,0,
√

dn,

√
d
n

)
is an optimal solution of (P ).

Now, let d+ >
√

dn.

Since 
(

d−,d−,d+, x
)

equal to

⎛
⎜⎝d+ − (d+ − d)n

n − d+ +
√

d2+ − dn
,d+ − (d+ − d)n

n − d+ +
√

d2+ − dn
,d+,

1

n

(
d+ −

√
d2+ − dn

)⎞⎟⎠ (17)

is a feasible solution of (P ), we have

OPT(P ) ≤ d+ − (d+ − d)n

n − d+ +
√

d2+ − dn
< d.

In fact, it will turn out that (17) is an optimal solution.

Let 
(

d−,d−,d+, x
)

be an optimal solution of (P ). In particular, d− < d. In view of the objective function, (14) implies 

d− = d− . Since d− < d < d+ , (12) and (16) imply 0 < x < 1. If d− = 0, then (13) implies d+ ≤ xn, and, using (12) and (15), 
this implies the contradiction d+ ≤ d+ ≤ √

dn. Hence, d− > 0. If (13) would not be satisfied with equality, then decreasing 
d− and d− both by some sufficiently small ε > 0, and increasing x by δ = (1−x)ε

d++ε−d−
≤ ε

d+−d leads to a better feasible solution, 

which is a contradiction. Hence, (13) is satisfied with equality. Together with (12), this implies d − xd+ = (d+ − xn)x. Solving 
this for x yields

x ∈
{

1
(

d+ +
√

d
2
+ − dn

)
,

1
(

d+ −
√

d
2
+ − dn

)}
.

n n

5
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By (13) satisfied with equality, we have d+ ≥ xn, and, hence, x = 1
n

(
d+ −

√
d

2
+ − dn

)
.

Now, substituting this value for x, (12) can be solved for d− , which yields

d− = d+ −
(
d+ − d

)
n

n − d+ +
√

d
2
+ − dn

= n

(
z − z − z0

1 − z +
√

z2 − z0

)
for z = d+

n and z0 = d
n .

Since d+ >
√

dn, we have z ≥ d+
n >

√
z0.

For the function,

f : (√z0,1
]→ R : z 	→ z − z − z0

1 − z +
√

z2 − z0

,

we obtain

f ′(z) = (1 − z)
(
2z2 − z0 − 2z

√
z2 − z0

)
√

z2 − z0
(
1 − z +

√
z2 − z0

)2
.

Since f ′(z) ≥ 0 for z ∈ (√
z0, 1

]
, the smallest possible value of d− = nf (z) with z ∈

[
d+
n ,1

]
is achieved for z = d+

n , which 
implies

d− = d+ − (d+ − d)n

n − d+ +
√

d2+ − dn
.

Altogether, it follows that 
(

d−,d−,d+, x
)

is exactly as in (17), which completes the proof. �
Now, (11) and Lemma 3 imply Theorem 2.
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