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1. Introduction

In undirected graphs, a large minimum degree is very helpful for finding long paths. For instance, if we wish to ensure
that an n-vertex graph G contains a path of length k (i.e., with k edges), a simple greedy embedding argument shows that
it is enough to assume G has minimum degree at least k. Although in general, this bound on the minimum degree is best
possible, there is room for improvement if k is large compared to n, or if G is assumed to be connected. Dirac [2] showed
that a minimum degree of at least n/2 is enough to find a Hamilton cycle in an n-vertex graph, and with a minimum
degree exceeding (n — 2)/2 we can find a Hamilton path, i.e., a path of length n — 1. With a similar proof, one can show
that every connected graph on at least k + 1 vertices that has minimum degree strictly greater than (k — 1)/2 contains a
path of length k.

It would be interesting to find extensions of these results to digraphs. We will focus on oriented graphs here (see
Section 5 for some remarks on the general digraph case). We have to decide which parameter will play the role of the
minimum degree, and the widespread notion of the minimum semidegree 5°(D), which is defined as the minimum over all
out-and in-degrees of all vertices of the oriented graph D, seems a natural choice. In the same way as in the undirected case,
we can use a greedy embedding strategy to see that any oriented graph D with §°(D) > k must contain each orientation of
the k-edge path. And as before, it seems reasonable to ask whether this bound can be lowered if the underlying graph G
of D (i.e., the graph we obtain by omitting directions) has a sufficiently large connected component. Note that the condition
89(D) > k/2 alone already implies that G has a connected component with at least k + 1 vertices.

There are many results for Hamilton cycles in oriented graphs. As a Hamilton cycle of an n-vertex oriented graph D
contains a path of length n — 1, these results shed some light on our problem. In 1960, Ghoulia-Houri [4] proved a minimum
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semidegree of n/2 guarantees a directed Hamilton cycle in any n-vertex digraph D, and in the 1970’s, Thomassen [14]
asked for an analogous result for oriented graph, with a weaker condition on the minimum semidegree. Haggkvist [5]
conjectured this to be §°(D) > (3n — 4)/8, which he showed to be best possible, and which, after previous results in [6,11],
was confirmed by Keevash, Kithn and Osthus in [9] for all large oriented graphs. Haggkvist and Thomassen [7] conjectured
that for all o > 0, all sufficiently large oriented graphs D with °(D) > (3/8 4+ a)n contain any orientation of a Hamilton
cycle, and this was confirmed by Kelly [10]. In particular, it follows that for 3n/4 + o(n) < k < n, every oriented graph on n
vertices and of minimum semidegree at least k/2 contains each orientation of the k-edge path.

A corresponding result for oriented paths of length below 3n/4 is still missing, except in the case of directed paths:
Jackson [8] showed in 1981 that for every £ € N, every oriented graph D with §°(D) > ¢ contains the directed path on 2¢
edges. In [12], the second author suggested that something similar might be true for all orientations of the k-edge path.

Conjecture 1. [12] For each k € N, every oriented graph D with 8°(D) > k/2 contains each orientation of the path of length k.

Conjecture 1 is sharp in the following sense. The bound on the minimum semidegree could not be lower than k/2,
as one can see by considering the disjoint union of regular tournaments on k vertices, if k is odd. For antidirected paths
(i.e., oriented paths that alternate edge directions), one can also consider the blow-up of a directed cycle of length ¢, where
each vertex v of C, is replaced by an independent set S, of size k/2, and S,, Sy, span a complete bipartite graph whenever
vw € E(Cy). Any largest antidirected path in this graph has length k — 1, and the minimum semidegree of the graph is k/2.

As noted above, Conjecture 1 is true for n-vertex oriented graphs and k > 3n/4 + o(n) by the results of [10], and it is
also true for directed paths [8]. It has been verified for all k <5 [3]. Zarate-Guerén and the second author showed in [13]
that an approximate version of Conjecture 1 holds for antidirected paths in large oriented graphs D, if k is linear in n.

We will focus here on a variant of Conjecture 1 for antidirected paths. We show, with a much easier proof than the
one from [13], and for any k € N*, that every oriented graph D with §°(D) > (3k — 2)/4 contains each antidirected path.?
Actually, we will prove a slightly stronger statement. We define the minimum pseudo-semidegree 5°(D) of a digraph D as
follows: §°(D) =0 if D has no edges, and otherwise 3°(D) is the maximum d € N such that each vertex in V(D) has
out-degree either 0 or > d, and in-degree either 0 or > d. Clearly §°(D) > §9(D) for each digraph D. Our main result is the
following.

Theorem 2. Let k € N with k > 3 and let D be an oriented graph with §°(D) > (3k — 2)/4. Then D contains each antidirected path
of length k.

Note that the case k =2 needs to be excluded from our theorem, because the bound §°(D) > (6 — 2)/4 =1 is below the
bound from Conjecture 1 and not sufficient to guarantee an antipath of length two (as D could be a directed cycle).

In a similar vein as Conjecture 1, Addario-Berry, Havet, Linhares Sales, Thomassé and Reed conjectured the following in
2013.

Conjecture 3 (Addario-Berry et al. [1]). Every digraph D with more than (k — 1)|V (D)| edges contains each antidirected tree with
k + 1 vertices.

For symmetric digraphs, this conjecture is equivalent to the Erdds-S6s conjecture; and in oriented graphs, Conjecture 3
implies Burr’s conjecture for antidirected trees (see [1] for details). Conjecture 3 is proved in [1] for trees of diameter at
most 3, and an approximate version for large balanced antidirected trees in dense oriented graphs is given in [13].

It is also shown in [1, Theorem 17] that every digraph D with more than 4(m—1)|V (D)| edges contains each antidirected
tree whose largest partition class has at most m vertices. This implies that every digraph D with more than 4([(k+1)/2] —
1)|V(D)| (that is, roughly 2k|V(D)|) edges contains each antidirected k-edge path. We improve this bound to roughly
3k|V(D)|/2.

Theorem 4. For each k € N, every oriented graph D with more than (3k — 4)|V (D)|/2 edges contains each antidirected path of
length k.

2. Notation

A digraph has directed edges, at most one for each direction between each pair of vertices u, v. For brevity we write edge
instead of directed edge, and let uv denote an edge going from vertex u to vertex v. For the endvertices of such an edge,
we say that v is an out-neighbour of u, and u is an in-neighbour of v. We write d~(v) and d*(v) for the in-degree and the
out-degree of vertex v: this is the number of out-neighbours, or in-neighbours of v, respectively. As already mentioned in

3 Note that if k is odd, there is only one antidirected path of length k (unless we specify a starting vertex). If k is even, there are two distinct antidirected
paths.
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the introduction, the minimum semidegree of a digraph D is 8°(D) = min{d~(v),d*(v) : v € V(D)}, and the minimum pseudo-
semidegree §°(D) of a digraph D is the minimum of min{d~(v) : v € V(D),d~(v) > 0} and min{d* (v) : v € V(D),d* (v) > 0},
unless D has no edges, in which case §°(D) = 0.

In an oriented graph, for each pair of vertices u, v, at most one of the edges uv, vu is present. We say an oriented path
or cycle has length k if it has k edges. An antidirected path (antidirected cycle, antidirected tree) is an oriented path (cycle, tree)
where every vertex has either out-degree 0 or in-degree 0. We also write antipath (anticycle, antitree) for short. Note that
each anticycle has even length. In particular, any anticycle in an oriented graph has length at least 4.

3. Proof of Theorem 2

We show Theorem 2 by combining three auxiliary lemmas, namely Lemmas 6, 7 and 8, which are stated and proved
below. The proofs of these lemmas make use of different variants of a well-known argument that appears in the proof of
Dirac’s theorem. For convenience, we state this tool now, as Fact 5, and include its short proof for completeness.

Given a set F of edges in an undirected graph, we write dr (v, S) for the number of edges between a vertex v and a set
S that belong to F.

Fact5.letm e N¥,let 1 <¢ <mandlet G be agraph. Let X, Y C V(G), with X = {x0, X1, ..., Xm—1}and Y = {y1, ¥2, ..., ym}, and
let Fo, Fin € E(G). Ifdfy(x0, Y) +dF,,(Ym, X) = m+ ¢, then there is an index i with £ <i < m such that xoy; € Fo and Xi_¢ym € Fm.

Proof. Otherwise, 1y, y;cr, + 1x_yymeFn <1 for each i=¢,...,m, and therefore,

m
m+£ <dpy(x0,Y) +dp, (Yym, X) <2(£ = 1) + Z(lxoyieFo + 1y yymeFn) <m+4£—1,
i=¢

a contradiction. O

The usual application of this argument in the proof of Dirac’s theorem is setting £ = 1, and, given a maximum length path
P = Xoxq ...Xm, setting y; :=x; for i =1, ..., m, while letting Fg, F;; be the set of edges going from x¢ or xp, respectively,
to other vertices of P. Then the two edges xox; and x;_1xy given by Fact 5 are used to find a cycle in V(P).

We are ready for the first auxiliary lemma.

Lemma 6. Let k € N and let D be an oriented graph of minimum pseudo-semidegree 5°(D) > k/2. Let P = voVv1 ... v be a longest
antipath in D. If m < k then m is odd.

Proof. Assume otherwise, that is, suppose m <k and m is even. We may assume that m # 0 (because m = 0 means that
the longest antipath is trivial, implying that §°(D) =0 and thus k = 0). Then m fulfils 3 <m + 1 < k. By symmetry, we may
assume that

VoV1, VmVm—1 € E(D), (1)

that is, the first edge of P is directed towards vq, and that the last edge of P is directed towards v;,,_1.

Note that by the maximality of P, all out-neighbours of v lie on P, and the same is true for vp. By (1), each of vo,
vm has at least one out-neighbour, and therefore, by our assumption on the minimum pseudo-semidegree of D, each has at
least k/2 > (m 4+ 1) /2 out-neighbours.

Let G be the underlying graph of D, and let Fg, F; C E(G) be the sets of all edges of G corresponding to edges of D

that are leaving vq or leaving vy, respectively. Then we can calculate

dry(vo, V(P = Vo)) +df, (Vm, V(P —vm)) > (m+1)/2+ (m+1)/2=m+ 1.

Let x; = y; =v; for i=1,...,m. We now use Fact 5 with £ =1 in G to see that there is an index i € {1,...,m} such that
voVi € Fg and vi_1vpy € Fy. So vov; and v, vi_q1 are edges (in these directions) in D.

We may assume that v;v;_1 is an edge (and thus i # 1), as otherwise we could reverse P, interchanging the roles of v
and vy, and of v; and v;_1, and thus obtain the desired direction. So also v;v;4+1 is an edge (unless i =m).

Consider the two antipaths

/
P = ViVit1...VmVi—1Vi—2...V1Vo
and

P ViVoVi...Vic1VmVm—1...Viy1 ifi#m
VivVoVi... Vi1 ifi=m.

(2)
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Both antipaths P’ and P” have the same vertex set as P (and hence maximum length) and start with vertex v;. In P’, the
first edge is directed away from v;, while in P”, the first edge is directed towards v;. Therefore, and by the maximality of
the antipath P, all in-neighbours and all out-neighbours of vertex v; lie on P.

Also note that v; has both in- and out-neighbours (namely, vo and v;_;). So, since by assumption §°(D) > k/2, we
know that v; has at least k/2 in-neighbours and at least k/2 out-neighbours, and thus, k =k/2 +k/2 < |V(P — v;)| =m, in
contradiction to our assumption that m <k. O

Our second auxiliary lemma turns the maximum length antipath into an anticycle on the same number of vertices. For
this lemma (and only for this lemma) we need a minimum pseudo-semidegree of §°(D) > (3k — 2)/4.

Lemma 7. Let k € N, let D be an oriented graph of minimum pseudo-semidegree §°(D) > (3k — 2)/4, and let m be the maximum
length of an antipath in D. If 1 <m <k, then D contains an anticycle of length m + 1.

Proof. Let P = vgVvqV;...V,; be an antipath of maximum length in D. Assume 1 < m < k. In particular, 3k — 2)/4 > k/2
and Lemma 6 implies that m is odd.

By symmetry, and since m is odd, we may assume that vgv{, vim—1Vm € E(D), that is, the first edge is directed towards
v1, and the last edge is directed towards v;;. Observe that all edges on P are directed from their endvertex of even index
towards their endvertex of odd index. Also observe that by maximality of P, all out-neighbours of v and all in-neighbours
of vy, lie on P.

Let G be the underlying graph of D. We set x; := vy; and y;1 :=vyiyq1 for all i=0,...,m' — 1, where m’ = (m + 1)/2.
Let X = {xo,X1,...,Xpv—1} and Y ={y1,y2,..., Ym}. Note that X UY is a partition of V (P).

Next, define Fg as the set of all edges of G that correspond to an edge of D leaving vo and ending at a vertex from Y.
Further, let F, be the set of all edges of G corresponding to edges of D that start at a vertex from X and end at vp,. As by
assumption k > m+ 1, we know that

dry (v, Y) +dF, (Vin, X) =d* (vo) — |X \ {vo}| +d~ (vin) — [Y \ {vi}]|
= (Bk—2)/2—-(V(P)|-2)
>@Bm+1)/2-m+1
>m + 1.
Now, applying Fact 5 with £ =1 in G we find an index i € {1,...,m’} such that xoy; = voVvai_1 € Fo and Xi_1ymw =
V2i_2Vm € Fp. So,
VoV1V2...V2i-3V2i-2VmVm-1...V2iV2i-1V0

is an anticycle of length m + 1, which is as desired. O
Our last auxiliary lemma uses the anticycle found in the previous lemma, and turns it into an antipath on more vertices.

Lemma 8. Let k € N and let D be an oriented graph of minimum pseudo-semidegree §°(D) > k/2, and let C be an anticycle of length
m+ 1in D. Ifm <k, then D has an antipath of length m + 1.

Proof. Let C = vgVviVvy...VpVo. By symmetry, we may assume that vovq, vovm € E(D). Observe that we may assume the
following for all i =0,1,...,m:

If i is even, then all out-neighbours of v; lie on C; and 3)
if i is odd, then all in-neighbours of v; lie on C, (4)

as any such out- or in-neighbour could be added to C to obtain an antipath of length m + 1 in D, and then we would be
done.

In particular, (3) and (4) imply that all out-neighbours of v and all in-neighbours of v, lie on the anticycle C. Set
xi=yi=v; fori=0,...,m, and consider the underlying graph G of D. Let Fo comprise of all edges of G corresponding to
edges of D that start at vg and end on C. Let F;; contain all edges of G corresponding to edges of D that start on C and
end at v,,. Since §°(D) > k/2, and k > m + 1 by assumption, we have that

dro(Vo, {(V1...,Vm}) +dr, (Vm, {Vo..., Vm—1) 2 k+1>m+ 2.

Now, we use Fact 5 with £ =2 to see that there is an index i € {2, ..., m} such that vov; and v;_,v; are edges of D, in
these directions.
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Let us first assume that i is even, that is, v;_2vi_1, vivi_1 € E(D). Since v; has both in-and out-neighbours in D (for
example vg and v;_1), and because of our assumption on the minimum pseudo-semidegree, we know that v; has at least
k/2 in-neighbours and k/2 out-neighbours. By (3), all out-neighbours of v; belong to V(C). So at most |V (C — v;)| —k/2 =
m—k/2 <k/2 —1 vertices of C are in-neighbours of v;, which means that v; has an in-neighbour x € V(D) \ V(C).

Since 5§°(D) > k/2, and since x has an out-neighbour (namely v;), we know that x has at least (k+1)/2 > (m+1)/2 out-
neighbours in D. These cannot all lie in V(C), as otherwise one of them would be a vertex v; with j odd, a contradiction
to (4). Thus vertex x has an out-neighbour y that does not lie on C.

Consider the antipath

P= YXvivoV1...Vi—3Vi2VmVm-1Vm-2 ... Vit1.

As x,y e V(P)\ V(C), and V(C)\ V(P) ={vi_1}, the antipath P has length m + 1, which is as desired.
If i is odd, we can find, in a similar way as above, vertices x and y such that

YXVi_2VmVim—1...VivVoV1...Vi_3

is an antipath of length m + 1. This finishes the proof. O
Now we are ready to prove Theorem 2.

Proof of Theorem 2. Let m be the length of a longest antipath P of D. It is easy to see that m > 2.

First assume m < k. Then by Lemma 7, D has an anticycle of length m + 1, and therefore, by Lemma 8 (which can be
used since (3k — 2)/4 > k/2 for k > 3), D has an antipath of length m + 1, a contradiction to the choice of m.

So m > k. Let P’ be an antipath of length k. If m > k, or if m =k and k is odd, then P contains P’ (possibly reverting
P). So we can assume m =k and k is even. Now, we can apply Lemma 6 with k' = 3k/2 — 1, because §°(D) > (3k — 2)/4
implies that §°(D) > k’/2, and furthermore, m =k < k’ since k > 2. So m is odd, a contradiction. O

4. Proof of Theorem 4

We will start by proving a lemma that allows us to rewrite the condition on the edge density as a condition on the
minimum pseudo-semidegree. This lemma also appears in [13], but for completeness, we include its short proof here.

Lemma 9. Let £ € N. If a digraph D has more than £|V (D)| edges, then it contains a digraph D’ with §°(D") > (£ + 1) /2.

Proof. Note that the vertices of D have, on average, in-degree greater than ¢ and out-degree greater than ¢. Consider the
following folklore construction of an auxiliary bipartite graph B associated to D: first, divide each vertex v € V(D) into two
vertices vip and vqy¢, letting vy, be adjacent to all edges ending at v, and letting v, be adjacent to all edges starting at v;
second, omit all directions on edges.

Then the average degree of B is greater than ¢, and a standard argument shows that B has a non-empty subgraph B’
of minimum degree exceeding ¢/2 (for this, it suffices to successively delete vertices of degree < ¢/2 and to calculate that
we have not deleted the entire graph). Translating B’ back to the digraph setting, we see that D has a subdigraph D’ with
minimum pseudo-semidegree exceeding £/2. O

Now we are ready to prove Theorem 4.

Proof of Theorem 4. Use Lemma 9 to find a subdigraph D’ of D with §°(D") > ((3k — 4)/2 4+ 1)/2 = (3k — 2)/4. As a subdi-
graph of D, also D’ is an oriented graph. So Theorem 2 can be applied to find each antipath of length k. O

5. Final remarks and open problems

A lower bound in Theorem 2. We believe the bound in Theorem 2 is not best possible. We think the lower bound
8%(D) > k/2 from Conjecture 1 should be closer to the truth, although we have not been able to improve our result in
that direction. We remark that if one could improve the bound from Lemma 7, then, following all steps of our proof, one
would automatically obtain an improved bound for Theorem 2.

Other orientations of the path. In Conjecture 1, all possible orientations of the k-edge path are considered. As a weakening
of the conjecture, we could ask the following.

Problem 10. Does Theorem 2 hold for other types of oriented paths?

5
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The fact that Problem 10 holds for the extreme opposites of possible orientations of paths - antipaths and directed
paths [8] - may induce some hope that Problem 10 is true, whether or not Conjecture 1 holds.

Antitrees. It seems natural to replace anti-paths with anti-trees in Conjecture 1. Together with Zarate-Guerén the second
author shows in [13] the following result, where an anti-tree is balanced if it has as many vertices of out-degree 0 as
vertices of in-degree 0.

Theorem 11. [13] For all €, ¢ > O there is an ng such that for alln > ng and all k > en, every oriented graph D with §°(D) > (1/2+¢€)k
contains each balanced anti-tree T with k edges and with maximum degree at most c logn.

The proof of Theorem 11 uses digraph regularity, but it might be possible to find a simpler proof and/or drop either the
approximation or the additional condition on the balancedness and the maximum degree of T if we only look for specific
anti-trees.

Problem 12. Does every oriented graph D with 8°(D) > k/2 (or §°(D) > (1/2 + €)k, or 8°(D) > 3k/4) contain each anti-tree
T with k edges, if we add some additional restriction on T (e.g. T is a caterpillar, spider, has small diameter,...)?

Digraphs. Analogous questions can be asked for digraphs. Observe that as for oriented graphs, a greedy embedding argu-
ment gives that §°(D) > k is enough to guarantee a copy of any oriented k-edge tree T in a digraph D. So it seems natural
to ask whether this bound can be lowered. However, in contrast to the situation in oriented graphs, it will now be nec-
essary to add an additional condition on the order of the largest connected component of the underlying graph of D, as
the minimum semidegree condition alone is not sufficient to ensure that |V (D)| > |V(T)| (since D could be the union of
complete digraphs of order 8°(D) + 1). For instance, one could ask whether every digraph D with §°(D) > k/2 (or some
other bound) having a component of size at least k + 1 contains each oriented k-edge path. For this question and further
comments see [12].
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