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We show that for any natural number k ≥ 1, any oriented graph D of minimum semidegree 
at least (3k − 2)/4 contains an antidirected path of length k.
In fact, a slightly weaker condition on the semidegree sequence of D suffices, and as a 
consequence, we confirm a weakened antidirected path version of a conjecture of Addario-
Berry, Havet, Linhares Sales, Thomassé and Reed.
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1. Introduction

In undirected graphs, a large minimum degree is very helpful for finding long paths. For instance, if we wish to ensure 
that an n-vertex graph G contains a path of length k (i.e., with k edges), a simple greedy embedding argument shows that 
it is enough to assume G has minimum degree at least k. Although in general, this bound on the minimum degree is best 
possible, there is room for improvement if k is large compared to n, or if G is assumed to be connected. Dirac [2] showed 
that a minimum degree of at least n/2 is enough to find a Hamilton cycle in an n-vertex graph, and with a minimum 
degree exceeding (n − 2)/2 we can find a Hamilton path, i.e., a path of length n − 1. With a similar proof, one can show 
that every connected graph on at least k + 1 vertices that has minimum degree strictly greater than (k − 1)/2 contains a 
path of length k.

It would be interesting to find extensions of these results to digraphs. We will focus on oriented graphs here (see 
Section 5 for some remarks on the general digraph case). We have to decide which parameter will play the role of the 
minimum degree, and the widespread notion of the minimum semidegree δ0(D), which is defined as the minimum over all 
out-and in-degrees of all vertices of the oriented graph D , seems a natural choice. In the same way as in the undirected case, 
we can use a greedy embedding strategy to see that any oriented graph D with δ0(D) ≥ k must contain each orientation of 
the k-edge path. And as before, it seems reasonable to ask whether this bound can be lowered if the underlying graph G
of D (i.e., the graph we obtain by omitting directions) has a sufficiently large connected component. Note that the condition 
δ0(D) ≥ k/2 alone already implies that G has a connected component with at least k + 1 vertices.

There are many results for Hamilton cycles in oriented graphs. As a Hamilton cycle of an n-vertex oriented graph D
contains a path of length n −1, these results shed some light on our problem. In 1960, Ghoulia-Houri [4] proved a minimum 
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semidegree of n/2 guarantees a directed Hamilton cycle in any n-vertex digraph D , and in the 1970’s, Thomassen [14]
asked for an analogous result for oriented graph, with a weaker condition on the minimum semidegree. Häggkvist [5]
conjectured this to be δ0(D) ≥ (3n − 4)/8, which he showed to be best possible, and which, after previous results in [6,11], 
was confirmed by Keevash, Kühn and Osthus in [9] for all large oriented graphs. Häggkvist and Thomassen [7] conjectured 
that for all α > 0, all sufficiently large oriented graphs D with δ0(D) ≥ (3/8 + α)n contain any orientation of a Hamilton 
cycle, and this was confirmed by Kelly [10]. In particular, it follows that for 3n/4 + o(n) ≤ k < n, every oriented graph on n
vertices and of minimum semidegree at least k/2 contains each orientation of the k-edge path.

A corresponding result for oriented paths of length below 3n/4 is still missing, except in the case of directed paths: 
Jackson [8] showed in 1981 that for every � ∈ N , every oriented graph D with δ0(D) ≥ � contains the directed path on 2�

edges. In [12], the second author suggested that something similar might be true for all orientations of the k-edge path.

Conjecture 1. [12] For each k ∈N , every oriented graph D with δ0(D) > k/2 contains each orientation of the path of length k.

Conjecture 1 is sharp in the following sense. The bound on the minimum semidegree could not be lower than k/2, 
as one can see by considering the disjoint union of regular tournaments on k vertices, if k is odd. For antidirected paths
(i.e., oriented paths that alternate edge directions), one can also consider the blow-up of a directed cycle of length �, where 
each vertex v of C� is replaced by an independent set S v of size k/2, and S v , S w span a complete bipartite graph whenever 
v w ∈ E(C�). Any largest antidirected path in this graph has length k − 1, and the minimum semidegree of the graph is k/2.

As noted above, Conjecture 1 is true for n-vertex oriented graphs and k ≥ 3n/4 + o(n) by the results of [10], and it is 
also true for directed paths [8]. It has been verified for all k ≤ 5 [3]. Zárate-Guerén and the second author showed in [13]
that an approximate version of Conjecture 1 holds for antidirected paths in large oriented graphs D , if k is linear in n.

We will focus here on a variant of Conjecture 1 for antidirected paths. We show, with a much easier proof than the 
one from [13], and for any k ∈N+ , that every oriented graph D with δ0(D) ≥ (3k − 2)/4 contains each antidirected path.3

Actually, we will prove a slightly stronger statement. We define the minimum pseudo-semidegree δ̄0(D) of a digraph D as 
follows: δ̄0(D) = 0 if D has no edges, and otherwise δ̄0(D) is the maximum d ∈ N such that each vertex in V (D) has 
out-degree either 0 or ≥ d, and in-degree either 0 or ≥ d. Clearly δ̄0(D) ≥ δ0(D) for each digraph D . Our main result is the 
following.

Theorem 2. Let k ∈ N with k ≥ 3 and let D be an oriented graph with δ̄0(D) ≥ (3k − 2)/4. Then D contains each antidirected path 
of length k.

Note that the case k = 2 needs to be excluded from our theorem, because the bound δ̄0(D) ≥ (6 − 2)/4 = 1 is below the 
bound from Conjecture 1 and not sufficient to guarantee an antipath of length two (as D could be a directed cycle).

In a similar vein as Conjecture 1, Addario-Berry, Havet, Linhares Sales, Thomassé and Reed conjectured the following in 
2013.

Conjecture 3 (Addario-Berry et al. [1]). Every digraph D with more than (k − 1)|V (D)| edges contains each antidirected tree with 
k + 1 vertices.

For symmetric digraphs, this conjecture is equivalent to the Erdős-Sós conjecture; and in oriented graphs, Conjecture 3
implies Burr’s conjecture for antidirected trees (see [1] for details). Conjecture 3 is proved in [1] for trees of diameter at 
most 3, and an approximate version for large balanced antidirected trees in dense oriented graphs is given in [13].

It is also shown in [1, Theorem 17] that every digraph D with more than 4(m −1)|V (D)| edges contains each antidirected 
tree whose largest partition class has at most m vertices. This implies that every digraph D with more than 4(�(k + 1)/2� −
1)|V (D)| (that is, roughly 2k|V (D)|) edges contains each antidirected k-edge path. We improve this bound to roughly 
3k|V (D)|/2.

Theorem 4. For each k ∈ N+ , every oriented graph D with more than (3k − 4)|V (D)|/2 edges contains each antidirected path of 
length k.

2. Notation

A digraph has directed edges, at most one for each direction between each pair of vertices u, v . For brevity we write edge
instead of directed edge, and let uv denote an edge going from vertex u to vertex v . For the endvertices of such an edge, 
we say that v is an out-neighbour of u, and u is an in-neighbour of v . We write d−(v) and d+(v) for the in-degree and the 
out-degree of vertex v: this is the number of out-neighbours, or in-neighbours of v , respectively. As already mentioned in 

3 Note that if k is odd, there is only one antidirected path of length k (unless we specify a starting vertex). If k is even, there are two distinct antidirected 
paths.
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the introduction, the minimum semidegree of a digraph D is δ0(D) = min{d−(v), d+(v) : v ∈ V (D)}, and the minimum pseudo-
semidegree δ̄0(D) of a digraph D is the minimum of min{d−(v) : v ∈ V (D), d−(v) > 0} and min{d+(v) : v ∈ V (D), d+(v) > 0}, 
unless D has no edges, in which case δ̄0(D) = 0.

In an oriented graph, for each pair of vertices u, v , at most one of the edges uv , vu is present. We say an oriented path 
or cycle has length k if it has k edges. An antidirected path (antidirected cycle, antidirected tree) is an oriented path (cycle, tree) 
where every vertex has either out-degree 0 or in-degree 0. We also write antipath (anticycle, antitree) for short. Note that 
each anticycle has even length. In particular, any anticycle in an oriented graph has length at least 4.

3. Proof of Theorem 2

We show Theorem 2 by combining three auxiliary lemmas, namely Lemmas 6, 7 and 8, which are stated and proved 
below. The proofs of these lemmas make use of different variants of a well-known argument that appears in the proof of 
Dirac’s theorem. For convenience, we state this tool now, as Fact 5, and include its short proof for completeness.

Given a set F of edges in an undirected graph, we write dF (v, S) for the number of edges between a vertex v and a set 
S that belong to F .

Fact 5. Let m ∈N+ , let 1 ≤ � ≤ m and let G be a graph. Let X, Y ⊆ V (G), with X = {x0, x1, . . . , xm−1} and Y = {y1, y2, . . . , ym}, and 
let F0, Fm ⊆ E(G). If dF0 (x0, Y ) + dFm (ym, X) ≥ m + �, then there is an index i with � ≤ i ≤ m such that x0 yi ∈ F0 and xi−� ym ∈ Fm.

Proof. Otherwise, 1x0 yi∈F0 + 1xi−� ym∈Fm ≤ 1 for each i = �, . . . , m, and therefore,

m + � ≤ dF0(x0, Y ) + dFm (ym, X) ≤ 2(� − 1) +
m∑

i=�

(1x0 yi∈F0 + 1xi−� ym∈Fm ) ≤ m + � − 1,

a contradiction. �
The usual application of this argument in the proof of Dirac’s theorem is setting � = 1, and, given a maximum length path 

P = x0x1 . . . xm , setting yi := xi for i = 1, . . . , m, while letting F0, Fm be the set of edges going from x0 or xm , respectively, 
to other vertices of P . Then the two edges x0xi and xi−1xm given by Fact 5 are used to find a cycle in V (P ).

We are ready for the first auxiliary lemma.

Lemma 6. Let k ∈N and let D be an oriented graph of minimum pseudo-semidegree δ̄0(D) ≥ k/2. Let P = v0 v1 . . . vm be a longest 
antipath in D. If m < k then m is odd.

Proof. Assume otherwise, that is, suppose m < k and m is even. We may assume that m 	= 0 (because m = 0 means that 
the longest antipath is trivial, implying that δ̄0(D) = 0 and thus k = 0). Then m fulfils 3 ≤ m + 1 ≤ k. By symmetry, we may 
assume that

v0 v1, vm vm−1 ∈ E(D), (1)

that is, the first edge of P is directed towards v1, and that the last edge of P is directed towards vm−1.
Note that by the maximality of P , all out-neighbours of v0 lie on P , and the same is true for vm . By (1), each of v0, 

vm has at least one out-neighbour, and therefore, by our assumption on the minimum pseudo-semidegree of D , each has at 
least k/2 ≥ (m + 1)/2 out-neighbours.

Let G be the underlying graph of D , and let F0, Fm ⊆ E(G) be the sets of all edges of G corresponding to edges of D
that are leaving v0 or leaving vm , respectively. Then we can calculate

dF0(v0, V (P − v0)) + dFm (vm, V (P − vm)) ≥ (m + 1)/2 + (m + 1)/2 = m + 1.

Let xi = yi = vi for i = 1, . . . , m. We now use Fact 5 with � = 1 in G to see that there is an index i ∈ {1, . . . , m} such that 
v0 vi ∈ F0 and vi−1 vm ∈ Fm . So v0 vi and vm vi−1 are edges (in these directions) in D .

We may assume that vi vi−1 is an edge (and thus i 	= 1), as otherwise we could reverse P , interchanging the roles of v0
and vm , and of vi and vi−1, and thus obtain the desired direction. So also vi vi+1 is an edge (unless i = m).

Consider the two antipaths

P ′ = vi vi+1 . . . vm vi−1 vi−2 . . . v1 v0

and

P ′′ =
{

vi v0 v1 . . . vi−1 vm vm−1 . . . vi+1 if i 	= m

vi v0 v1 . . . vi−1 if i = m.
(2)
3
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Both antipaths P ′ and P ′′ have the same vertex set as P (and hence maximum length) and start with vertex vi . In P ′ , the 
first edge is directed away from vi , while in P ′′ , the first edge is directed towards vi . Therefore, and by the maximality of 
the antipath P , all in-neighbours and all out-neighbours of vertex vi lie on P .

Also note that vi has both in- and out-neighbours (namely, v0 and vi−1). So, since by assumption δ̄0(D) ≥ k/2, we 
know that vi has at least k/2 in-neighbours and at least k/2 out-neighbours, and thus, k = k/2 + k/2 ≤ |V (P − vi)| = m, in 
contradiction to our assumption that m < k. �

Our second auxiliary lemma turns the maximum length antipath into an anticycle on the same number of vertices. For 
this lemma (and only for this lemma) we need a minimum pseudo-semidegree of δ̄0(D) ≥ (3k − 2)/4.

Lemma 7. Let k ∈ N , let D be an oriented graph of minimum pseudo-semidegree δ̄0(D) ≥ (3k − 2)/4, and let m be the maximum 
length of an antipath in D. If 1 < m < k, then D contains an anticycle of length m + 1.

Proof. Let P = v0 v1 v2 . . . vm be an antipath of maximum length in D . Assume 1 < m < k. In particular, (3k − 2)/4 ≥ k/2
and Lemma 6 implies that m is odd.

By symmetry, and since m is odd, we may assume that v0 v1, vm−1 vm ∈ E(D), that is, the first edge is directed towards 
v1, and the last edge is directed towards vm . Observe that all edges on P are directed from their endvertex of even index 
towards their endvertex of odd index. Also observe that by maximality of P , all out-neighbours of v0 and all in-neighbours 
of vm lie on P .

Let G be the underlying graph of D . We set xi := v2i and yi+1 := v2i+1 for all i = 0, . . . , m′ − 1, where m′ = (m + 1)/2. 
Let X = {x0, x1, . . . , xm′−1} and Y = {y1, y2, . . . , ym′ }. Note that X ∪ Y is a partition of V (P ).

Next, define F0 as the set of all edges of G that correspond to an edge of D leaving v0 and ending at a vertex from Y . 
Further, let Fm be the set of all edges of G corresponding to edges of D that start at a vertex from X and end at vm . As by 
assumption k ≥ m + 1, we know that

dF0(v0, Y ) + dFm (vm, X) = d+(v0) − |X \ {v0}| + d−(vm) − |Y \ {vm}|
≥ (3k − 2)/2 − (|V (P )| − 2)

≥ (3m + 1)/2 − m + 1

≥ m′ + 1.

Now, applying Fact 5 with � = 1 in G we find an index i ∈ {1, . . . , m′} such that x0 yi = v0 v2i−1 ∈ F0 and xi−1 ym′ =
v2i−2 vm ∈ Fm . So,

v0 v1 v2 . . . v2i−3v2i−2vm vm−1 . . . v2i v2i−1v0

is an anticycle of length m + 1, which is as desired. �
Our last auxiliary lemma uses the anticycle found in the previous lemma, and turns it into an antipath on more vertices.

Lemma 8. Let k ∈N and let D be an oriented graph of minimum pseudo-semidegree δ̄0(D) > k/2, and let C be an anticycle of length 
m + 1 in D. If m < k, then D has an antipath of length m + 1.

Proof. Let C = v0 v1 v2 . . . vm v0. By symmetry, we may assume that v0 v1, v0 vm ∈ E(D). Observe that we may assume the 
following for all i = 0, 1, . . . , m:

If i is even, then all out-neighbours of vi lie on C ; and (3)

if i is odd, then all in-neighbours of vi lie on C , (4)

as any such out- or in-neighbour could be added to C to obtain an antipath of length m + 1 in D , and then we would be 
done.

In particular, (3) and (4) imply that all out-neighbours of v0 and all in-neighbours of vm lie on the anticycle C . Set 
xi = yi = vi for i = 0, . . . , m, and consider the underlying graph G of D . Let F0 comprise of all edges of G corresponding to 
edges of D that start at v0 and end on C . Let Fm contain all edges of G corresponding to edges of D that start on C and 
end at vm . Since δ̄0(D) > k/2, and k ≥ m + 1 by assumption, we have that

dF0(v0, {v1 . . . , vm}) + dFm (vm, {v0 . . . , vm−1}) ≥ k + 1 ≥ m + 2.

Now, we use Fact 5 with � = 2 to see that there is an index i ∈ {2, . . . , m} such that v0 vi and vi−2 vm are edges of D , in 
these directions.
4
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Let us first assume that i is even, that is, vi−2 vi−1, vi vi−1 ∈ E(D). Since vi has both in-and out-neighbours in D (for 
example v0 and vi−1), and because of our assumption on the minimum pseudo-semidegree, we know that vi has at least 
k/2 in-neighbours and k/2 out-neighbours. By (3), all out-neighbours of vi belong to V (C). So at most |V (C − vi)| − k/2 =
m − k/2 ≤ k/2 − 1 vertices of C are in-neighbours of vi , which means that vi has an in-neighbour x ∈ V (D) \ V (C).

Since δ̄0(D) > k/2, and since x has an out-neighbour (namely vi ), we know that x has at least (k + 1)/2 > (m + 1)/2 out-
neighbours in D . These cannot all lie in V (C), as otherwise one of them would be a vertex v j with j odd, a contradiction 
to (4). Thus vertex x has an out-neighbour y that does not lie on C .

Consider the antipath

P = yxvi v0 v1 . . . vi−3 vi−2 vm vm−1 vm−2 . . . vi+1.

As x, y ∈ V (P ) \ V (C), and V (C) \ V (P ) = {vi−1}, the antipath P has length m + 1, which is as desired.
If i is odd, we can find, in a similar way as above, vertices x and y such that

yxvi−2 vm vm−1 . . . vi v0 v1 . . . vi−3

is an antipath of length m + 1. This finishes the proof. �
Now we are ready to prove Theorem 2.

Proof of Theorem 2. Let m be the length of a longest antipath P of D . It is easy to see that m ≥ 2.
First assume m < k. Then by Lemma 7, D has an anticycle of length m + 1, and therefore, by Lemma 8 (which can be 

used since (3k − 2)/4 > k/2 for k ≥ 3), D has an antipath of length m + 1, a contradiction to the choice of m.
So m ≥ k. Let P ′ be an antipath of length k. If m > k, or if m = k and k is odd, then P contains P ′ (possibly reverting 

P ). So we can assume m = k and k is even. Now, we can apply Lemma 6 with k′ = 3k/2 − 1, because δ0(D) ≥ (3k − 2)/4
implies that δ0(D) ≥ k′/2, and furthermore, m = k < k′ since k > 2. So m is odd, a contradiction. �
4. Proof of Theorem 4

We will start by proving a lemma that allows us to rewrite the condition on the edge density as a condition on the 
minimum pseudo-semidegree. This lemma also appears in [13], but for completeness, we include its short proof here.

Lemma 9. Let � ∈N . If a digraph D has more than �|V (D)| edges, then it contains a digraph D ′ with δ̄0(D ′) ≥ (� + 1)/2.

Proof. Note that the vertices of D have, on average, in-degree greater than � and out-degree greater than �. Consider the 
following folklore construction of an auxiliary bipartite graph B associated to D: first, divide each vertex v ∈ V (D) into two 
vertices vin and vout , letting vin be adjacent to all edges ending at v , and letting vout be adjacent to all edges starting at v; 
second, omit all directions on edges.

Then the average degree of B is greater than �, and a standard argument shows that B has a non-empty subgraph B ′
of minimum degree exceeding �/2 (for this, it suffices to successively delete vertices of degree ≤ �/2 and to calculate that 
we have not deleted the entire graph). Translating B ′ back to the digraph setting, we see that D has a subdigraph D ′ with 
minimum pseudo-semidegree exceeding �/2. �

Now we are ready to prove Theorem 4.

Proof of Theorem 4. Use Lemma 9 to find a subdigraph D ′ of D with δ̄0(D ′) ≥ ((3k − 4)/2 + 1)/2 = (3k − 2)/4. As a subdi-
graph of D , also D ′ is an oriented graph. So Theorem 2 can be applied to find each antipath of length k. �
5. Final remarks and open problems

A lower bound in Theorem 2. We believe the bound in Theorem 2 is not best possible. We think the lower bound 
δ0(D) > k/2 from Conjecture 1 should be closer to the truth, although we have not been able to improve our result in 
that direction. We remark that if one could improve the bound from Lemma 7, then, following all steps of our proof, one 
would automatically obtain an improved bound for Theorem 2.

Other orientations of the path. In Conjecture 1, all possible orientations of the k-edge path are considered. As a weakening 
of the conjecture, we could ask the following.

Problem 10. Does Theorem 2 hold for other types of oriented paths?
5
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The fact that Problem 10 holds for the extreme opposites of possible orientations of paths – antipaths and directed 
paths [8] – may induce some hope that Problem 10 is true, whether or not Conjecture 1 holds.

Antitrees. It seems natural to replace anti-paths with anti-trees in Conjecture 1. Together with Zárate-Guerén the second 
author shows in [13] the following result, where an anti-tree is balanced if it has as many vertices of out-degree 0 as 
vertices of in-degree 0.

Theorem 11. [13] For all ε, c > 0 there is an n0 such that for all n ≥ n0 and all k ≥ εn, every oriented graph D with δ0(D) > (1/2 +ε)k
contains each balanced anti-tree T with k edges and with maximum degree at most c log n.

The proof of Theorem 11 uses digraph regularity, but it might be possible to find a simpler proof and/or drop either the 
approximation or the additional condition on the balancedness and the maximum degree of T if we only look for specific 
anti-trees.

Problem 12. Does every oriented graph D with δ0(D) > k/2 (or δ0(D) > (1/2 + ε)k, or δ0(D) > 3k/4) contain each anti-tree 
T with k edges, if we add some additional restriction on T (e.g. T is a caterpillar, spider, has small diameter,...)?

Digraphs. Analogous questions can be asked for digraphs. Observe that as for oriented graphs, a greedy embedding argu-
ment gives that δ0(D) ≥ k is enough to guarantee a copy of any oriented k-edge tree T in a digraph D . So it seems natural 
to ask whether this bound can be lowered. However, in contrast to the situation in oriented graphs, it will now be nec-
essary to add an additional condition on the order of the largest connected component of the underlying graph of D , as 
the minimum semidegree condition alone is not sufficient to ensure that |V (D)| ≥ |V (T )| (since D could be the union of 
complete digraphs of order δ0(D) + 1). For instance, one could ask whether every digraph D with δ0(D) > k/2 (or some 
other bound) having a component of size at least k + 1 contains each oriented k-edge path. For this question and further 
comments see [12].
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