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1. Introduction

1.1. Unique maximality problem and submodularity conjecture

Let X be a family of subsets of a finite set E. We will refer to any matroid on E
in which each set in X is a circuit as an X -matroid on E. The set of all X -matroids 
on E forms a poset under the weak order of matroids in which, for two matroids M1
and M2 with the same groundset, we have M1 � M2 if every independent set in M1 is 
independent in M2. The main problem addressed in this paper is to determine when this 
poset has a unique maximal element and to characterise this unique maximal matroid 
when it exists.

Our key tool is the following upper bound on the rank function of any X -matroid on 
E from [8]. A proper X -sequence is a sequence S = (X1, X2, . . . , Xk) of sets in X such 
that Xi �⊂

⋃i−1
j=1 Xj for all i = 2, . . . , k. For F ⊂ E, let val(F, S) = |F ∪ (

⋃k
i=1 Xi)| − k.

Lemma 1.1 ([8, Lemma 3.3]). Suppose M is an X -matroid on E and F ⊆ E. Then 
rM(F ) ≤ val(F, S) for any proper X -sequence S. Furthermore, if equality holds, then 
rM(F − e) = rM(F ) − 1 for all e ∈ F\(

⋃
X∈S X) and rM(F + e) = rM(F ) for all 

e ∈
⋃

X∈S X.

We can use this lemma to derive a sufficient condition for the poset of all X -matroids 
on E to have a unique maximal element. We need to consider a slightly larger poset. We 
say that a matroid M on E is X -cyclic if each X ∈ X is a cyclic set in M i.e. for every 
e ∈ X, there is a circuit C of M with e ∈ C ⊆ X.

Lemma 1.2. Let X be a family of subsets of a finite set E and define valX : 2E → Z by

valX (F ) = min{val(F,S) : S is a proper X -sequence} (F ⊆ E). (1)

Suppose valX is a submodular set function on E. Then valX is the rank function of an X -
cyclic matroid MX on E. In addition, if the poset of all X -matroids on E is nonempty, 
then MX is the unique maximal X -matroid on E.

Proof. It is straightforward to check that valX is non-decreasing and satisfies valX (e) ≤ 1
for all e ∈ E. Since valX is also submodular, this implies that valX is the rank function 
of a matroid MX . To see that MX is X -cyclic, we choose e ∈ X ∈ X and let S be a 
proper X -sequence such that valX (X−e) = val(X−e, S). If e ∈

⋃
Xi∈S Xi then we have 

valX (X) ≤ val(X, S) = val(X−e, S) = valX (X−e). On the other hand, if e /∈
⋃

Xi∈S Xi

then we can extend S to a longer proper X -sequence S ′ by adding X as the last element 
of S ′ and we will have valX (X) ≤ val(X, S ′) = val(X − e, S) = valX (X − e). In both 
cases equality must hold throughout since valX is non-decreasing. Since valX is the rank 
function of MX , the equality valX (X) = valX (X − e) implies that e belongs to a circuit 
of MX which is contained in X. Hence MX is X -cyclic.
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Lemma 1.1 implies that M � MX for every X -matroid M on E. If there exists at 
least one X -matroid on E, then this implies that each X ∈ X is a circuit in MX and 
that MX is the unique maximal X -matroid on E. �

We conjecture that the converse to Lemma 1.2 is also true. The special case when X
is the set of all non-spanning circuits of a matroid on E was previously given in [8].

Conjecture 1.3. Let X be a family of subsets of a finite set E. Suppose there is at least 
one X -matroid on E. Then the poset of all X -matroids on E has a unique maximal 
element if and only if valX is a submodular set function on E.1

We will develop techniques for determining when there exists a unique maximal X -
matroid in the weak order poset of all X -matroids on E and use them to verify this 
conjecture for various families X .

Conjecture 1.3 is motivated by the polynomial identity testing problem of symbolic 
determinants (or the Edmonds problem). In this problem, we are given a matrix A
with entries in Q[x1, . . . , xn], and we are asked to decide whether the rank of A over 
Q(x1, . . . , xn) is at least a given number. The Schwarz-Zippel Lemma implies that the 
problem is in the class NP, but it is a long-standing open problem to show that it is 
also in co-NP. The following experimental approach may aid our understanding of this 
problem. We first test the linear independence/dependence of small sets of rows of A to 
obtain a family X of minimally dependent sets of rows. Then Lemma 1.1 tells us that we 
can use any X -sequence to obtain a certificate that the rank of A is at most a specified 
value. In addition, if the “freest” matroid on the groundset E indexed by the rows of A
in which each set in X is a circuit is uniquely determined, then Conjecture 1.3 would 
imply that its rank is valX and this function has the potential to be the rank function 
of the row matroid of A.

We are particularly interested in special cases of Edmond’s problem which arise in 
the study of the rigidity of frameworks and the low rank completion of partially filled 
matrices If true, Conjecture 1.3 could have important applications in these areas. These 
applications will be discussed in Section 6 below.

1.2. Unique maximality problem on graphs

We will concentrate on the special case of Conjecture 1.3 when E is the edge set of a 
graph G and X is the family HG of edge sets of all subgraphs of G which are isomorphic 
to some member of a given family H of graphs. To simplify terminology we say that 
a matroid M is a H-matroid on G if it is an HG-matroid on E(G). We will assume 
throughout that G contains at least one copy of each H ∈ H otherwise we can just 

1 More generally, if we remove the hypothesis that there is at least one X -matroid on E, then we conjecture 
that the poset of all X -cyclic matroids on E has a unique maximal element if and only if valX is a submodular 
set function on E.
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consider H\{H}. This implies that the edge sets of any two subgraphs of G which are 
isomorphic to the same subgraph of a graph H ∈ H will have the same rank in M, but 
we do not require M to be completely symmetric i.e. we do not require that the edge 
sets of every pair of isomorphic subgraphs of G have the same rank.

We will simplify notation in the case when H = {H} and refer to a H-matroid on G
as a H-matroid on G. Two examples of K3-matroids on Kn are the graphic matroid of 
Kn and the rank two uniform matroid on E(Kn).

Chen, Sitharam and Vince previously considered the unique maximality problem for 
H-matroids on Kn for various graphs H. They announced at a workshop at BIRS in 
2015, see [27], that there is a unique maximal K5-matroid on Kn. Sitharam and Vince 
subsequently released a preprint [28] which claims to show that there is a unique maximal 
H-matroid on Kn for all graphs H. Unfortunately their claim is false. Pap [22] pointed 
out that the poset of C5-matroids on Kn has two maximal elements. We will describe 
Pap’s counterexample, and give other counterexamples to the Sitharam-Vince claim in 
Section 5.

Our interest in this topic was motivated by the work of Graver, Servatius, and Ser-
vatius [12,13] and Whiteley [31] on maximal abstract rigidity matroids, and that of 
Chan, Sitharam and Vince [27,28] on maximal H-matroids. In two joint papers with 
Clinch [7,8], we were able to confirm that there is a unique maximal K5-matroid on Kn

and, more importantly, give a good characterisation for the rank function of this ma-
troid. The theory of matroid erections due to Crapo [9] is a key ingredient in our proof 
technique.

In this paper we will use results on matroid erection from [8] to construct a maximal 
element in the poset of all X -matroids on a set E. We will show that this element is the 
unique maximal element in the poset of all H-matroids on a graph G for various pairs 
(H, G), and verify that Conjecture 1.3 holds in each case.

1.3. Weakly saturated sequences

The function valX defined in (1) is related to the weak saturation number in extremal 
graph theory. Let X be a family of subsets of a finite set E, and F0 ⊆ E. A proper 
X -sequence (X1, X2, . . . , Xm) is said to be a weakly X -saturated sequence from F0 if 
|Xi \ (F0∪

⋃
j<i Xj)| = 1 for all i with 1 ≤ i ≤ m. We say that E can be constructed by a 

weakly X -saturated sequence (X1, X2, . . . , Xm) from F0 if there is a weakly X -saturated 
sequence S from F0 with E = F0 ∪

⋃m
i=1 Xi. These sequences were first introduced by 

Bollobás [4], where he posed the problem of determining the size of a smallest set F0
from which E can be constructed by a weakly X -saturated sequence. The problem has 
subsequently been studied by several authors, typically in the case when E is the edge 
set of a complete k-uniform hypergraph or a complete bipartite graph, see for example 
[1,4,16,17,20,23,24]. We will see in Sections 3 and 4 that results on weakly X -saturated 
sequences can sometimes be used to prove the unique maximality of an X -matroid. 
However this approach is applicable only when the flats of the target matroid are easily 
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described. (The difficulty of deciding uniqueness when the structure of the flats is more 
complicated is illustrated by the matroids discussed in Section 6.)

The concept of X -matroids was previously studied by Kalai [16] and Pikhurko [24] with 
the goal of constructing a maximum rank X -matroid on E to obtain a lower bound on 
the size of a set F0 from which E can be constructed by a weakly X -saturated sequence. 
Our concern in this paper is different: we would like to gain a better understanding of 
the poset of all X -matroids on a given finite set E by determining its maximal elements.

We next give an outline of the remaining sections in the paper. Section 2 uses the 
theory of matroid erections to construct a particular X -matroid which will always be 
a maximal element in the poset of all X -matroids. Sections 3 and 4 use the theories of 
weakly saturated sequences and submodular functions to show that this matroid is the 
unique maximal element for various families X . Section 5 constructs examples in which 
the poset of all X -matroids does not have a unique maximal element. Section 6 describes
several families of X -matroids arising in discrete geometry and matrix completion. We 
formulate conjectures which would characterise the rank functions of generic rigidity, 
birigidity and hyperconnectivity matroids, and obtain some partial results in support of 
these conjectures.

We close this introduction by listing notation used throughout this paper. Let M be 
a matroid on a finite set E. Its rank function and closure operator are denoted by rM
and clM, respectively. A set F ⊆ E with clM(F ) = F is called a flat.

For a graph G, V (G) and E(G) denote its vertex set and its edge set, respectively. 
Let NG(v) be the set of neighbours of v in G. For F ⊆ E(G), let V (F ) be the set of 
vertices incident to F and let G[F ] be the graph with vertex set V (F ) and edge set F . 
Let dF (v) be the number of edges in F incident to a vertex v ∈ V (G), and let NF (v) be 
the set of neighbours of v in G[F ].

For disjoint sets X and Y , let K(X) be the complete graph with vertex set X and 
K(X; Y ) be the complete bipartite graph with vertex partition (X, Y ).

2. Maximal matroids and matroid elevations

Let X be a family of subsets of a finite set E. We first derive a sufficient condition for 
a given X -matroid on E to be the unique maximal such matroid. We then use results 
from [8] to construct a maximal element in the poset of all X -matroids on E (whenever 
this poset is non-empty).

2.1. A sufficient condition for unique maximality

Recall that a set F in a matroid M is connected if, for every pair of elements e1, e2 ∈ F , 
there exists a circuit C of M with e1, e2 ∈ C ⊆ F , and that F is a connected component
of M if F is either a coloop of M or a maximal connected set in M. It is well known 
that the set {F1, F2, . . . , Fm} of all connected components partitions the ground set of 
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M and that rankM =
∑m

i=1 rM(Fi). In addition, F is connected in M if and only if 
rM(F ) < rM(F ′) + rM(F ′′) for all partitions {F ′, F ′′} of F .

Lemma 2.1. Let X be a family of subsets of a finite set E and M be a loopless X -matroid 
on E. Suppose that, for every connected flat F of M, there is a proper X -sequence S
with rM(F ) = val(F, S). Then valX = rM and M is the unique maximal X -matroid on 
E.

Proof. Since rM ≤ valX for all X -matroids on E by Lemma 1.1, it will suffice to show 
that, for each F ⊆ E, there is a proper X -sequence S such that rM(F ) = val(F, S).

Suppose, for a contradiction, that this is false for some set F . We may assume that F
has been chosen such that rM(F ) is as small as possible and, subject to this condition, |F |
is as large as possible. If F is not a flat then rM(F + e) = rM(F ) for some e ∈ E\F and 
we can now use the maximality of |F | to deduce that there exists a proper X -sequence 
S such that rM(F + e) = val(F + e, S). By Lemma 1.1 and rM(F ) = rM(F + e), 
e ∈

⋃
X∈S X. Hence, val(F + e, S) = val(F, S) = rM(F + e) = rM(F ). This would 

contradict the choice of F . Hence F is a flat.
Suppose F is not connected. Then we have rM(F ) = rM(F1) + rM(F2) for some 

partition {F1, F2} of F . Since M is loopless, Fi is a flat of M and 1 ≤ rM(Fi) < rM(F )
for both i = 1, 2. The choice of F now implies that there exists a proper X -sequence Si

such that rM(Fi) = val(Fi, Si) for i = 1, 2. Since each Fi is a flat, we have Xi ⊆ Fi for 
all Xi ∈ Si by Lemma 1.1. This implies that the concatenation S = (S1, S2) is a proper 
X -sequence and satisfies

val(F,S) = val(F1,S1) + val(F2,S2) = rM(F1) + rM(F2) = rM(F ).

This contradicts the choice of F .
Hence F is a connected flat and we can use the hypothesis of the lemma to deduce 

that there is a proper X -sequence S such that rM(F ) = val(F, S), as required. �
2.2. Matroid elevations

The truncation of a matroid M1 = (E, I1) of rank k is the matroid M0 = (E, I0) of 
rank k− 1, where I0 = {I ∈ I1 : |I| ≤ k− 1}. Crapo [9] defined matroid erection as the 
‘inverse operation’ to truncation. So M1 is an erection of M0 if M0 is the truncation of 
M1. (For technical reasons we also consider M0 to be a trivial erection of itself.) Note 
that, although every matroid has a unique truncation, matroids may have several, or no, 
non-trivial erections.

Crapo [9] showed that the poset of all erections of a matroid M0 is actually a lattice. 
It is clear that the trivial erection of M0 is the unique minimal element in this lattice. 
Since this is a finite lattice, there also exists a unique maximal element which Crapo 
called the free erection of M0.
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A partial elevation of M0 is any matroid M which can be constructed from M0 by 
a sequence of erections. A (full) elevation of M0 is a partial elevation M which has 
no non-trivial erection. The free elevation of M0 is the matroid we get from M0 by 
recursively constructing a sequence of free erections until we arrive at a matroid which 
has no non-trivial erection. The set of all partial elevations of M0 forms a poset P (M0)
under the weak order and M0 is its unique minimal element. Every maximal element of 
P (M0) will have no non-trivial erection so will be a full elevation of M0. Given Crapo’s 
result that the poset of all erections of M0 is a lattice, it is tempting to conjecture 
that P (M0) will also be a lattice and that the free elevation of M0 will be its unique 
maximal element. But this is false: Brylawski gives a counterexample based on the Vamos 
matroid in [4] and we will construct another counterexample using H-matroids on Kn

in Section 5. The following weaker result is given in [8].

Lemma 2.2 ([8, Lemma 3.1]). Suppose that M0 is a matroid. Then the free elevation of 
M0 is a maximal element in the poset of all partial elevations of M0.

Our next result extends Lemma 2.2 to X -matroids.

Lemma 2.3. Let E be a finite set, X be a family of subsets of E of size at most s, and 
M0 be an X -matroid with rank s which is maximal in the poset of all X -matroids on E
with rank at most s. Then the free elevation of M0 is a maximal matroid in the poset of 
all X -matroids on E.

Proof. Let M be the free elevation of M0. Since M0 is an X -matroid with rank s, every 
set in X is a non-spanning circuit of M0. This implies that every partial elevation of 
M0 is an X -matroid. In particular, M is an X -matroid.

Lemma 2.2 implies that M is a maximal element in the poset of all partial elevations 
of M0. Let N be an X -matroid on E which is not a partial elevation of M0. Let N0

be the truncation of N to rank s if N has rank at least s, and otherwise let N0 = N . 
Then N0 �= M0. Since M0 is a maximal X -matroid in the poset of all X -matroids on 
E with rank at most s, N0 � M0 holds. Hence there exists F ⊆ E with the properties 
that |F | ≤ s, F is dependent in N0 and F is independent in M0. This implies that F
is dependent in N and independent in M so N � M. Hence M remains as a maximal 
element in the poset of all X -matroids on E. �

Lemma 2.3 can be applied whenever there exists at least one X -matroid M on E with 
rank at least s since we can truncate M to obtain an X -matroid with rank s, and hence 
the poset of all X -matroids on E with rank at most s will be non-empty.2

2 Note that in our main motivation, the Edmonds Problem, X will be a family of minimal row dependencies 
of a matrix A and hence the row matroid of A will be an X -matroid.
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We close this subsection by stating a useful property of free elevations. We say that 
an X -matroid M on a finite set E has the X -covering property if every cyclic flat in M
is the union of sets in X .

Lemma 2.4 ([8, Lemma 3.8]). Let M0 be a matroid on a finite set E, X be a family 
of non-spanning circuits of M0 and M be the free elevation of M0. Suppose that each 
cyclic flat in M0 is the union of circuits in X . Then each cyclic flat in M is the union 
of circuits in X .

2.3. Uniform X -matroids

A family X of sets is k-uniform if each set in X has size k. Given a k-uniform family 
X , the X -uniform system UX is defined as the pair (E, IX ), where E =

⋃
X∈X X and

IX := {F ⊆ E : |F | ≤ k and F /∈ X}.

We first characterise when UX is a matroid. We say that the k-uniform family X is 
union-stable if, for any X1, X2 ∈ X and e ∈ X1 ∩ X2, either |(X1 ∪ X2) − e| > k or 
(X1 ∪X2) − e ∈ X .

Lemma 2.5. Suppose that X is a k-uniform family. Then UX is a matroid if and only if 
X is union-stable.

Proof. Let C = X∪{C ⊆ E : |C| = k+1 and X � C for all X ∈ X}. It is straightforward 
to check UX is a matroid if and only if C satisfies the matroid circuit axioms and that 
the latter property holds if and only if X is union-stable. �

We will refer to the matroid UX given in Lemma 2.5 as the uniform X -matroid on 
E =

⋃
X∈X X. The special case when X consists of all the subsets of E of size k is the 

uniform matroid on E of rank k − 1, i.e. the matroid Uk−1(E) in which a set F ⊆ E

is independent if and only if |F | ≤ k − 1. Note that UX is a paving matroid and, when 
UX �= Uk−1(E), X is its set of non-spanning circuits.

Given an arbitrary k-uniform family X , we can construct the union-stable closure X̄
of X by first putting X̄ = X and then recursively adding (X1 ∪X2) − e to X̄ whenever 
X1, X2 ∈ X̄ , |X1 ∪ X2| = k + 1 and e ∈ X1 ∩ X2. It is straightforward to check that 
the resulting family X̄ is k-uniform and union-stable and that UX̄ is a maximal matroid 
in the poset of all X -matroids on E =

⋃
X∈X X with rank at most k. In addition, if 

UX̄ �= Uk−1(E), then UX̄ has rank k. We can now apply Lemma 2.3 to deduce:

Lemma 2.6. Let X be a k-uniform family of sets and E =
⋃

X∈X X. Suppose that UX̄ �=
Uk−1(E). Then the free elevation of UX̄ is a maximal X -matroid on E.
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Note that if UX̄ = Uk−1(E) then UX̄ is the unique maximal X -matroid on E but the 
free-elevation of UX̄ is the free matroid on E i.e. the matroid in which every subset of E
is independent.

Suppose that G and H are graphs with |E(H)| = k and that every edge of G belongs 
to a subgraph which is isomorphic to H (we can reduce to this case by deleting all edges 
of G which do not belong to copies of H). Recall that {H}G denotes the k-uniform family 
containing all edge sets of copies of H in G. The graph H is said to be union-stable on 
G if {H}G is union-stable, i.e., for any two distinct copies H1 and H2 of H in G and 
any e ∈ E(H1) ∩E(H2), either H1 ∪H2 − e is isomorphic to H or |E(H1 ∪H2 − e)| > k. 
To simplify notation we denote the uniform {H}G-matroid U{H}G

by UH(G) when H
is union-stable. Examples of union-stable subgraphs of Kn are regular graphs of degree 
at least two, bipartite graphs of minumum degree at least two in which all vertices on 
the same side of the bipartition have the same degree and stars. Lemmas 2.3 and 2.5
immediately imply:

Lemma 2.7. Suppose that G and H are graphs. Then UH(G) is a matroid if and only if 
H is union-stable on G. Furthermore, if UH(G) is a matroid, then its free elevation is a 
maximal H-matroid on G.

3. Weakly saturated sequences

Let X be a family of subsets of a finite set E, and F0 ⊆ E. Recall that a proper 
X -sequence (X1, X2, . . . , Xm) is a weakly X -saturated sequence from F0 if |Xi \ (F0 ∪⋃

j<i Xj)| = 1 for all i with 1 ≤ i ≤ m. We say that a set F ⊆ E can be constructed 
by a weakly X -saturated sequence from F0 if there is a weakly X -saturated sequence 
(X1, X2, . . . , Xm) from F0 with F = F0 ∪

⋃m
i=1 Xi. Note that if this is the case then we 

will have val(F, S) = |F0|. We can combine this simple observation with Lemma 2.1 to 
give several examples of unique maximality.

Lemma 3.1. Let X be a k-uniform family of sets. Suppose that E =
⋃

X∈X X can be 
constructed by a weakly X -saturated sequence from some X0 ∈ X . Then the rank k − 1
uniform matroid Uk−1(E) is the unique maximal X -matroid on E and its rank function 
is valX .

Proof. We denote U = Uk−1(E). Note that U is an X -matroid. Since U is uniform, E is 
the only connected flat in U and hence, by Lemma 2.1, it will suffice to show that there is 
a proper X -sequence S such that rU(E) = valX (S, E). By hypothesis, there is a weakly 
saturated X -sequence S0 from X0 to E. Let S be the proper X -sequence obtained by 
inserting X0 at the beginning of S0. Then

valX (S, E) = valX (S0, E) − 1 = |X0| − 1 = k − 1 = rU (E),

as required. �
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The same proof technique can handle a slightly more complicated situation.

Lemma 3.2. Let X be a k-uniform, union-stable family of sets. Suppose that E =⋃
X∈X X can be constructed by a weakly X -saturated sequence from some Y ⊆ E with 

|Y | = k and Y /∈ X . Then UX is the unique maximal X -matroid on E and its rank 
function is valX .

Proof. By Lemma 2.5, UX is an X -matroid. By Lemma 2.1, it will suffice to show that 
there is a proper X -sequence S such that rUX (F ) = valX (S, F ) for every connected flat 
in UX . Let F be a connected flat in UX . Then the definition of UX implies that the rank 
of F is either k or k − 1.

Suppose that the rank of F is k. Then we have F = E. By hypothesis, E can be 
constructed from Y by a weakly X -saturated sequence S. Then rUX (E) = k = |Y | =
val(E, S) follows.

Hence we may assume that the rank of F is k − 1. Then every subset of F of size 
k belongs to X . We will use this fact to define a weakly X -saturated sequence for F . 
Choose a set F0 of k − 1 elements in F , and let Xe = F0 ∪ {e} for each e ∈ F \ F0. 
Then each Xe ∈ X , and {Xe : e ∈ F \ F0} (ordered arbitrarily) is a weakly X -saturated 
sequence S ′ which constructs F from F0. We have val(S ′, F ) = |F0| = k − 1 = rUX (F )
as required. �
Applications to matroids on graphs

Given graphs G and H and subgraphs F0, F ⊆ G, we say that F can be constructed by 
a weakly H-saturated sequence from F0 if E(F ) can be constructed by a weakly {H}G-
saturated sequence from E(F0).

Lemma 3.3. Let Hk be the vertex-disjoint union of k copies of K2. Then Kn can be 
constructed by a weakly saturated Hk-sequence from any copy of Hk in Kn whenever 
n ≥ 2k + 1.

Proof. Let H = {e1, e2, . . . , ek} be a copy of Hk in Kn for some n ≥ 2k + 1. We show 
that Kn has a weakly saturated Hk-sequence starting from H by induction on n. Choose 
a vertex v ∈ V (Kn)\V (H).

Suppose n = 2k + 1. For each edge f from v to H we can choose a k-matching Hf

containing f and k − 1 edges of H. Then for each edge g of (Kn − v) − E(H) we can 
choose a k-matching Hg containing g and k − 1 edges of H ∪

⋃
f∼v H

f . Concatenating 
H with Hf for f ∼ v and then Hg for the remaining edges g gives a weakly saturated 
Hk-sequence which constructs K2k+1 from H.

Now suppose n > 2k+1. By induction, Kn−v has a weakly saturated Hk-sequence S
starting from H. For each edge f from v to H we can choose a k-matching Hf containing 
f and k−1 edges of Kn−v. Concatenating H with Hf gives the required weakly saturated 
Hk-sequence for Kn. �
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Combining Lemmas 3.1 and 3.3, we immediately obtain:

Theorem 3.4. Let Hk be the vertex-disjoint union of k copies of K2. Then Uk−1(Kn) is 
the unique maximal Hk-matroid on Kn for all n ≥ 2k+1, and valHk

is its rank function.

Let Pk denote the path with k edges, Ck the cycle with k edges and K−
n the graph 

obtained from Kn by removing an edge. It is straightforward to show that Kn can be 
constructed by a weakly saturated Pk-sequence starting from a particular copy of Pk in 
Kn whenever n ≥ k + 1. Lemma 3.1 now gives:

Theorem 3.5. Uk−1(Kn) is the unique maximal Pk-matroid on Kn for all n ≥ k+1, and 
valPk

is its rank function.

Sitharam and Vince [28] showed that UK1,3(Kn) is the unique maximal K1,3-matroid 
on Kn for all n ≥ 4. Their result can be deduced from Lemma 3.2 since K1,3 is union-
stable and Kn can be constructed by a weakly K1,3-saturated sequence starting from a 
copy of K3. We may also deduce that valK1,3 is the rank function of UK1,3(Kn).

We next derive an upper bound on the rank of all H-matroids on Kn which is linear in 
n for any fixed H. In the special case when H is a forest, our upper bound is independent 
of n and quadratic in the number of edges of H. This implication will be used in Section 5
to construct families of graphs H for which the poset of all H-matroids on Kn has at 
least two maximal elements.

Lemma 3.6. Suppose H is a graph with s vertices and minimum degree δ, and M is a 
H-matroid on Kn with n ≥ s −1. Then the rank of M is at most (δ−1)(n −s +1) +

(
s−1
2
)
.

Proof. Let V (Kn) = {v1, v2, . . . , vn} and put Vi = {v1, v2, . . . , vi} and Ei = E(K[Vi])
for 1 ≤ i ≤ n. Choose a base Bs−1 of E(K(Vs−1)) in M. Clearly |Bs−1| ≤

(
s−1
2
)
.

We inductively construct a base Bi of Ei in M from Bs−1, for i = s, . . . , n. Suppose 
we have a base Bi of Ei, and let B′

i+1 = Bi ∪ {vi+1v1, . . . , vi+1vδ−1}. Then, for each j
with s ≤ j ≤ i, K(Vi) + {vi+1v1, . . . , vi+1vδ−1, vi+1vj} contains a graph isomorphic to 
H in which the degree of vi+1 is equal to δ. Hence B′

i+1 spans Ei in M. Let Bi+1 be 
a base of B′

i+1 obtained by extending Bi. Then Bi+1 is obtained from Bi by adding at 
most δ − 1 edges. This implies that Bn has size at most (δ − 1)(n − s + 1) +

(
s−1
2
)
. The 

lemma now follows since Bn is a base of M. �
We close this section by noting that Lemma 3.6 is tight when: H = K1,2 with 

M = U1(Kn); H = K1,3 with M = UK1,3(Kn), H = Kd+2 for d ≥ 1 with M equal 
to the d-dimensional rigidity matroid, see Section 6; H = K−

d for d = 4, 5, 6, see Theo-
rem 4.3(c,d,e) below; H = C4, see Theorem 4.6(a) below. It is not tight when: H = Pk

with k ≥ 3 by Theorem 3.5; H = Ck with k ≥ 5 by a result of Borowiecki and Sidor-
wicz [5] which implies that the rank of any Ck-matroid on Kn is at most n with strict 
inequality when k is odd.
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4. Matroids induced by submodular functions

In this section we use weakly saturated sequences and a matroid construction due to 
Edmonds to give more examples of unique maximal matroids.

Theorem 4.1 (Edmonds [11]). Let E be a finite set and f : 2E → Z be a non-decreasing, 
submodular function. Put

If := {F ⊆ E : |I| ≤ f(I) for any I ⊆ F with I �= ∅}.

Then Mf := (E, If ) is a matroid with rank function f̂ : 2E → Z given by

f̂(F ) := min
{
|F0| +

k∑
i=1

f(Fi) : F0 ⊆ F and {F1, . . . , Fk} is a partition of F\F0

}
.

(2)

We refer to the matroid Mf given by Edmond’s theorem as the matroid induced by 
f . Given a set F ⊆ E it is straightforward to check that:

F is a circuit in Mf if and only if 0 �= |F | = f(F ) + 1 and

|F ′| ≤ f(F ′) for all F ′ ⊆ F with ∅ �= F ′ �= F ;
(3)

F is a flat in Mf if and only if f(F + e) = f(F ) + 1 for all e ∈ E\F . (4)

For any graph G, the function fa,b : 2E(G) → Z defined by fa,b(F ) = a|V (F )| − b is 
submodular and non-decreasing for all a, b ∈ Z with a ≥ 0 and hence induces a matroid 
Mfa,b

(G) on E(G). These matroids are known as count matroids. It is well known that 
the cycle matroid of Kn is the count matroid Mf1,1(Kn). Another well-known example 
is when a = 2 and b = 3, which gives the rigidity matroid of generic frameworks in 
R2. Sitharam and Vince [28] showed that Mf1,1(Kn) and Mf2,3(Kn) are, respectively, 
the unique maximal K3-matroid and the unique maximal K4-matroid on Kn. Slightly 
weaker versions of these results were previously obtained by Graver [12].

We will show that the maximality of both these matroids, as well as that of several 
other count matroids, follow easily from Lemma 2.1 and Theorem 4.1. We need the 
following observation on the connected flats of count matroids which follows immediately 
from (3) and (4).

Lemma 4.2. Suppose a, b ∈ Z with a ≥ 0 and F ⊆ E(G) is a connected flat in Mfa,b
(G). 

Then G[F ] is the subgraph of G induced by V (F ) and |F | ≥ a|V (F )| − b + 1.

Recall that K−
n denotes the graph obtained from Kn by removing an edge.
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Theorem 4.3. (a) Mf1,1(Kn) is the unique maximal K3-matroid on Kn and its rank 
function is valK3 .
(b) Mf2,3(Kn) is the unique maximal K4-matroid on Kn and its rank function is valK4 .
(c) Mf1,0(Kn) is the unique maximal K−

4 -matroid on Kn and its rank function is valK−
4
.

(d) Mf2,2(Kn) is the unique maximal K−
5 -matroid on Kn and its rank function is valK−

5
.

(e) Mf3,5(Kn) is the unique maximal K−
6 -matroid on Kn and its rank function is valK−

6
.

Proof. In each case Mfa,b
(Kn) is loopless and is an X-matroid on Kn for X = K3, K4, 

K−
4 , K−

5 , K−
6 , respectively, by (3). Lemmas 2.1 and 4.2 will now imply that Mfa,b

(Kn)
is the unique maximal X-matroid on Kn once we have shown that, for every Km ⊆ Kn

with |E(Km)| > am −b, there is a proper X-sequence S with rMfa,b
(Km) = val(Km, S). 

We will do this by finding a weakly saturated X-sequence which constructs Km from a 
subgraph G ⊂ Km with |E(G)| = am − b. Let V (Km) = {v1, v2, . . . , vm}.

In cases (a) and (b) we can use the well known fact that, for m ≥ d − 1, Km can be 
constructed by a weakly saturated Kd-sequence starting from the spanning subgraph G
with E(G) = {vivj : 1 ≤ i < j ≤ d − 2} ∪ {vivj : 1 ≤ i ≤ d − 2, d − 1 ≤ j ≤ m}, then 
taking d = 3, 4 for cases (a), (b), respectively.

In cases (c), (d) and (e) we can use a result of Pikhurko [24] that, for m ≥ d, Km has 
a weakly saturated K−

d -sequence starting from a spanning subgraph with (d − 3)m −(
d−2
2
)

+ 1 edges, and then taking d = 4, 5, 6 for cases (c), (d), (e), respectively. �
Lemma 2.1 can also be used to extend Theorem 4.3 to matroids on non-complete 

graphs. For example, if G is a chordal graph, then every connected flat of Mf1,1(G)
is a 2-connected chordal graph and we can use Lemma 2.1 and an appropriate weakly 
saturated K3-sequence to deduce that Mf1,1(G) is the unique maximal K3-matroid on 
G and valK3 is its rank function.

Our next result gives another example of uniqueness for matroids on non-complete 
graphs.

Theorem 4.4. The matroid Mf1,0(Km,n) is the unique maximal K2,3-matroid on Km,n

and valK2,3 is its rank function.

Proof. By (3) and (4), each copy of K2,3 is a circuit in Mf1,0(Km,n) and each connected 
flat is a copy of Ks,t for some s ≥ 2, t ≥ 3. By the same argument as in the proof 
of Theorem 4.3, it will suffice to show that, for any Ks,t with s ≥ 2, t ≥ 3, there is a 
weakly saturated K2,3-sequence which constructs Ks,t from a subgraph G ⊂ Ks,t with 
|E(G)| = s + t. This follows easily by taking V (G) = {u1, u2, . . . , us} ∪ {w1, w2, . . . , wt}
and E(G) = {u2w2} ∪ {u1wi : 1 ≤ i ≤ t} ∪ {uiw1 : 2 ≤ i ≤ s}. �

In contrast to this result, we will see in Section 5 that there are two distinct maximal 
K2,3-matroids on Kn.

The even cycle matroid is the matroid M on E(Kn), in which a set F is independent 
if and only if each connected component of the induced subgraph Kn[F ] contains at 
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most one cycle, and this cycle is odd if it exists. The rank function of M is given 
by rM(F ) = |V (F )| − β(F ), where β(F ) denotes the number of bipartite connected 
components in the graph Kn[F ]. We can use this fact to define a modified version of 
count matroids.

For a, b, c ∈ Z, define ga,b,c : 2E(Kn) → Z by ga,b,c(F ) = a|V (F )| − bβ(F ) − c. 
Then ga,b,c is submodular and non-decreasing for all a, b ∈ Z with a ≥ b ≥ 0 since the 
functions F �→ |V (F )| and F �→ |V (F )| −β(F ) are both submodular and non-decreasing. 
Hence ga,b,c induces a matroid Mga,b,c

(Kn) on E(Kn) whenever a ≥ b ≥ 0. We will give 
examples of families H for which Mga,b,c

(Kn) is the unique maximal H-matroid on Kn. 
We need the following observation on the connected flats of Mga,b,c

(Kn) which follows 
immediately from (3) and (4).

Lemma 4.5. Suppose a, b, c ∈ Z with a ≥ b ≥ 0, c ≥ 0, and F ⊆ E(Kn) is a connected 
flat in Mga,b,c

(Kn). Then Kn[F ] is either a complete graph with |F | ≥ a|V (F )| − c + 1
or a complete bipartite graph with |F | ≥ a|V (F )| − b − c + 1.

The hypothesis of Lemma 4.5 that c ≥ 0 is needed to ensure that the circuits of 
Mga,b,c

(Kn) induce connected subgraphs of Kn, which in turn implies that the same 
property holds for the connected flats of Mga,b,c

(Kn). This is not true when c ≤ −1, for 
example the disjoint union of two copies of C4 is both a circuit and a connected flat in 
Mg1,1,−1(Kn).

Theorem 4.6. (a) The even cycle matroid Mg1,1,0(Kn) is the unique maximal C4-matroid 
on Kn and its rank function is valC4 .
(b) Mg2,1,2 is the unique maximal {K−

5 , K3,4}-matroid on Kn and its rank function is 
val{K−

5 ,K3,4}.

Proof. In each case, Mga,b,c
(Kn) is loopless and is an X -matroid on Kn for X = {C4}Kn

and X = {K−
5 , K3,4}Kn

, respectively, by (3). Lemmas 2.1 and 4.5 will now imply that 
Mga,b,c

(Kn) is the unique maximal X -matroid on Kn once we have shown that: for every 
Km ⊆ Kn with |E(Km)| ≥ am − c + 1, there is a weakly saturated X -sequence which 
constructs Km from a subgraph G ⊂ Km with |E(G)| = am −c; and for every Ks,t ⊆ Kn

with |E(Ks,t)| ≥ am −b −c +1, there is a weakly saturated X -sequence which constructs 
Ks,t from a subgraph G ⊂ Ks,t with |E(G)| = am − b − c. Let V (Km) = {v1, v2, . . . , vm}
and V (Ks,t) = {u1, u2, . . . , us} ∪ {w1, w2, . . . , wt}.
(a) For m ≥ 4, Km can be constructed by a weakly saturated C4-sequence starting from 
a spanning subgraph G with g1,1,0(E(Km)) = m edges by taking E(G) = {v2v3} ∪{v1vi :
2 ≤ i ≤ m}. For s, t ≥ 2, Ks,t can be constructed by a weakly saturated C4-sequence 
starting from a spanning subgraph G with g1,1,0(E(Ks,t)) = s + t − 1 edges by taking 
E(G) = {u1wi : 1 ≤ i ≤ t} ∪ {uiw1 : 1 ≤ i ≤ s}.
(b) For m ≥ 5, Km can be constructed by a weakly saturated K−

5 -sequence starting 
from a spanning subgraph G with g2,1,2(E(Km)) = 2m − 2 edges by taking E(G) =
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{v1v2, v3v4} ∪ {vivj : 1 ≤ i ≤ 2, 3 ≤ j ≤ m}. For s ≥ 3 and t ≥ 4, Ks,t can be 
constructed by a weakly saturated K3,4-sequence starting from a spanning subgraph G
with g2,1,2(E(Ks,t)) = 2(s + t) − 3 edges by taking E(G) = {uiwj : 1 ≤ i ≤ 3, 1 ≤ j ≤
3} ∪ {uiwj : 1 ≤ i ≤ 2, 4 ≤ j ≤ t} ∪ {uiwj : 4 ≤ i ≤ s, 1 ≤ j ≤ 2}. �

The matroid Mg2,1,2(Kn) in Theorem 4.6(b) is the Dilworth truncation of the union of 
the graphic matroid and the even cycle matroid. It appears in the context of the rigidity 
of symmetric frameworks in R2, see for example [29].

The concept of count matroids has been extended to hypergraphs [23] and to 
group-labelled graphs [14]. The technique in this section can be adapted to both set-
tings.

We close this section with a remark on the poset of all {K4, K2,3}-matroids on Kn. 
It is straightforward to check that Mg1,1,−1(Kn) is a {K4, K2,3}-matroid on Kn. But we 
cannot show it is the unique maximal such matroid by using the same proof technique 
as Theorem 4.6 since Lemma 4.5 does not hold when c < 0. In fact, we will see in 
Theorem 5.4 below that there are at least two maximal {K4, K2,3}-matroids on Kn

when n is sufficiently large.

5. Examples of non-uniqueness

We will give three examples of posets of H-matroids on Kn in which there is not a 
unique maximal matroid. We will frequently use the following lemma on the free elevation 
of a symmetric matroid on Kn (where a matroid M on E(Kn) is said to be symmetric
if the edge sets of every pair of isomorphic subgraphs of Kn have the same rank in M). 
This result follows from the procedure for constructing the free erection of a matroid 
due to Duke [10], see for example [8, Algorithm 1].

Lemma 5.1. If M0 is a symmetric matroid on Kn, then the free elevation of M0 is a 
symmetric matroid on Kn.

Gyula Pap [22] observed that the cycle matroid of Kn and the uniform C5-matroid 
on Kn are two distinct maximal C5-matroids on Kn. We can use Lemma 2.7 to show 
that Pap’s example extends to Ck for all k ≥ 5.

Theorem 5.2. There are two distinct maximal Ck-matroids on Kn for all k ≥ 5 and 
n ≥

(
k−1
2
)

+ 2.

Proof. It is straightforward to check that Ck is union-stable. Hence UCk
(Kn) is a matroid 

and the free elevation M of UCk
(Kn) is a maximal Ck-matroid by Lemma 2.7. In addition, 

Lemma 5.1 implies that M is symmetric. We will show that M contains a circuit Z such 
that Kn[Z] has minimum degree one. To see this, consider two distinct copies X and 
Y of Ck such that X ∩ Y forms a path of length k − 2. By the circuit elimination 
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Fig. 1. The graphs G1, G2, . . . , G5 in the proof of Theorem 5.3.

axiom, (X ∪ Y ) − e contains a circuit Z of M for any e ∈ X ∩ Y . Since the copy of 
C4 in Kn[(X ∪ Y ) − e] is not a circuit in UCk

(Kn), it cannot be a circuit in M. Hence 
(X ∪Y ) − e contains a circuit Z such that Kn[Z] has minimum degree one. We may now 
apply Lemma 3.6 with H = Z to deduce that the rank of M is at most 

(
k−1
2
)
.

The facts that M is a maximal Ck-matroid and the cycle matroid of Kn is a Ck-
matroid of rank n − 1, now imply that there are at least two maximal Ck-matroids on 
Kn whenever n ≥

(
k−1
2
)

+ 2. �
We saw in Theorem 4.4 that the poset of all K2,3-matroids on Km,n has a unique 

maximal element. We next show that this statement becomes false if we change the 
ground set to E(Kn).

Theorem 5.3. There are two distinct maximal K2,3-matroids on Kn for all n ≥ 7.

Proof. Since K2,3 is union-stable, UK2,3(Kn) is a matroid by Lemma 2.7, and its free 
elevation M is a maximal K2,3-matroid on Kn and is symmetric by Lemmas 2.6 and 5.1. 
We will show that UK2,3(Kn) has no non-trivial erection and hence M = UK2,3(Kn).

We first show that M contains a circuit Z such that Kn[Z] has minimum degree one. 
To see this consider the graphs G1 and G2 given in Fig. 1. Both are isomorphic to K2,3, 
and hence, by the circuit elimination axiom, the edge set of G3 = (G1 ∪ G2) − v2v5, 
is dependent in M. Since every set of six edges which does not induce a copy of K2,3

is independent in M, the edge set of G3 is a circuit in M. Since the graph G4 in 
Fig. 1 is isomorphic to G3, the circuit elimination axiom now implies the edge set of 
G5 = (G3∪G4) −v4v5 is dependent in M. Again, since every set of six edges which does 
not induce a copy K2,3 is independent in M, the edge set of G5 is a circuit in M.
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This implies that M is a G5-matroid on Kn and hence, by Lemma 3.6, the rank of 
M is at most 6. Since UK2,3(Kn) has rank 6, this gives M = UK2,3(Kn), and hence 
UK2,3(Kn) is a maximal K2,3-matroid on Kn. Since the bicircular matroid Mf1,0 is a 
K2,3-matroid on Kn of rank n, we have at least two maximal K2,3-matroids on Kn

whenever n ≥ 7. �
Our final example of this section shows that the unique maximality property may 

not hold even if we restrict our attention to the poset of all partial elevations of a 
given H-matroid on Kn (and hence provides another example, in addition to that given 
by Brylawski [6], which shows that the free elevation may not be the unique maximal 
matroid in the poset of all partial elevations of a given matroid). Note that the matroids 
described in Theorem 5.2 and 5.3 do not give such an example.

Theorem 5.4. There are two distinct maximal matroids in the poset of all partial eleva-
tions of the uniform {K4, K2,3}-matroid U{K4,K2,3}(Kn) whenever n ≥ 36.

Proof. Let X = {K4, K2,3}Kn
. Since X is 6-uniform and union-stable, UX is a matroid. 

Hence the free elevation M of UX is a symmetric X -matroid on Kn by Lemma 5.1. We 
will show that M has bounded rank.

Claim 5.5. The rank of M is at most 36.

Proof. Let D1 be the edge set of the union of a vertex-disjoint 3-cycle and 4-cycle in Kn

and D2 be the edge set of the union of two vertex-disjoint 4-cycles in Kn. We split the 
proof into three cases.

Case 1: D1D1D1 is dependent in MMM. Since |D1| = 7 and neither K4 nor K2,3 is contained in 
Kn[D1], every proper subset of D1 is independent in M, and hence D1 is a circuit in 
M. By Lemma 2.4, the closure clM(D1) of D1 is the union of copies of K4 and K2,3. 
Hence clM(D1) �= D1 and, for each e ∈ clM(D1) \ D1, there exists a circuit C with 
e ∈ C � D1 + e. Since Kn[D1 + e] cannot contain K4 or K2,3 and |D1 + e| = 8 we have 
|C| = 7. Observe that any 7-element subset of D1 + e containing e has a vertex of degree 
one. We may now use Lemma 3.6 and the fact that |V (C)| ≤ 9 to deduce that M has 
rank at most 

(8
2
)

= 28.

Case 2: D1D1D1 is independent in MMM and D2D2D2 is dependent in MMM. If some proper subset C
of D2 is a circuit in M then Kn[C] would contain a vertex of degree one and we could 
again use Lemma 3.6 and the fact that |V (C)| ≤ 8 to deduce that M has rank at most (7
2
)

= 21. Hence we may assume that D2 is a circuit.
By Lemma 2.4, clM(D2) is the union of copies of K4 and K2,3. Hence clM(D2) �= D2

and, for each e ∈ clM(D2) \ D2, there exists a circuit C ′ with e ∈ C ′ � D2 + e. Since 
Kn[D2 + e] cannot contain K4 or K2,3, and |D2 + e| = 9, we have 7 ≤ |C ′| ≤ 8. Observe 
that every subset of D2 + e of size 7 or 8 which contains e and is distinct from D1, has 



B. Jackson, S.-i. Tanigawa / Journal of Combinatorial Theory, Series B 165 (2024) 20–46 37
Fig. 2. The graph G in the proof of Theorem 5.4.

a vertex of degree one. Hence, we may use Lemma 3.6 and the fact that |V (C ′)| ≤ 10 to 
deduce that M has rank at most 

(9
2
)

= 36.

Case 3: D1, D2D1, D2D1, D2 are independent in MMM. By Theorem 4.4, if F ⊆ E(Kn) induces a bipartite 
subgraph in Kn, then F has rank at most |V (F )| in any K2,3-matroid. We can use this 
fact, to compute the rank of the edge set D3 of the graph G in Fig. 2, in M. Let B be a 
base of D3 which contains the independent subset D2. Since D2 + e induces a bipartite 
graph with |V (D2+e)| +1 edges for each e ∈ D3\D2, D2+e is dependent. Hence B = D2
and rM(D3) = |D2| = 8.

On the other hand the edge set D4 of the 5-cycle with a chord in G is independent in 
M (since D4 is independent in UX ). Since rM(D3) = 8, this implies that D3−e contains 
a circuit C of M with 1 ≤ |C\D4| ≤ 3. Then Kn[C] has a vertex of degree 1, and we 
may again use Lemma 3.6 and the fact that |V (C)| ≤ 8 to deduce that M has rank at 
most 

(7
2
)

= 21. �
We can now complete the proof of Theorem 5.4 by observing that the matroid 

Mg1,1,−1(Kn) from Section 4 is a partial elevation of UX and has rank n + 1. Since 
M is a maximal partial elevation of UX by Lemma 2.2 and has rank at most 36 by 
Claim 5.5, M is not the unique maximal partial elevation of UX for all n ≥ 36. This 
completes the proof. �

The above proof also implies that there are two distinct maximal {K4, K2,3}-matroids 
on Kn for all n ≥ 36. The only modification we need is to use Lemma 2.6 in the final 
paragraph of the proof to deduce that M is a maximal {K4, K2,3}-matroid on Kn.

6. Matroids from rigidity, hyperconnectivity and matrix completion

6.1. Rigidity matroids and cofactor matroids

Given a generic realisation p : V (Kn) → Rd, we would like to know when a subgraph 
G ⊂ Kn is d-rigid i.e., every continuous motion of the vertices of (G, p) which preserves 
the distances between adjacent pairs of vertices must preserve the distances between all 
pairs of vertices. The (edge sets of the) minimal d-rigid spanning subgraphs of Kn are 
the bases of a matroid Rd(Kn) which is referred to as the d-dimensional generic rigidity 
matroid. It is well known that Rd(Kn) is a Kd+2-matroid on Kn and R1(Kn) is the 
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cycle matroid of Kn. Pollaczek-Geiringer [25] and subsequently Laman [19] showed that 
R2(Kn) = Mf2,3(Kn). Characterising Rd(Kn) for d ≥ 3 is an important open problem 
in discrete geometry.

Graver [12] suggested we may get a better understanding of Rd(Kn) by studying 
the poset of all abstract d-rigidity matroids on Kn. This can be defined, using a result 
of Nguyen [21], as the poset of all Kd+2-matroids on Kn of rank dn −

(
d+1
2
)
. Graver 

conjectured that Rd(Kn) is the unique maximal element in this poset and verified his 
conjecture for the cases when d = 1, 2. The same proofs yield the slightly stronger results 
given in Theorem 4.3(a) and (b) of this paper.

Whiteley [31] showed that Graver’s conjecture is false when d ≥ 4 using the cofactor 
matroid Cd−2

d−1(Kn) from the theory of bivariate splines. He first showed that Cd−2
d−1(Kn)

is an abstract d-rigidity matroid for all d ≥ 1 and that E(Kd+2,d+2) is independent 
in Cd−2

d−1(Kn) whenever d ≥ 4. He then applied a result of Bolker and Roth [3] that 
E(Kd+2,d+2) is dependent in Rd(Kn) to deduce that Rd(Kn) � Cd−2

d−1(Kn) for all d ≥ 4
and n ≥ 2d + 4.

Whiteley [31] made the revised conjecture that Cd−2
d−1(Kn) is the unique maximal ele-

ment in the poset of all abstract d-rigidity matroids on Kn for all d ≥ 1. This holds by 
Graver’s result when d = 1, 2 since we have Rd(Kn) = Cd−2

d−1(Kn). We recently verified 
the case d = 3 of Whiteley’s conjecture in joint work with Clinch.

Theorem 6.1 ([7]). The cofactor matroid C1
2(Kn) is the unique maximal K5-matroid on 

Kn and its rank function is valK5 .

We propose the following extensions of Whiteley and Graver’s conjectures.

Conjecture 6.2. Cd−2
d−1(Kn) is the unique maximal Kd+2-matroid on Kn for all d ≥ 1 and 

its rank function is valKd+2 .

Conjecture 6.3. Rd
n(Kn) is the unique maximal {Kd+2, Kd+2,d+2}-matroid on Kn for all 

d ≥ 3 and its rank function is val{Kd+2,Kd+2,d+2}.

6.2. Birigidity and rooted Ks,t-matroids on Km,n

Let H be a bipartite graph with bipartition (A, B) and Km,n be a copy of the complete 
bipartite graph with bipartition (U, W ) where |U | = m and |W | = n. We say that a 
subgraph H ′ of Km,n is a rooted copy of H in Km,n if there is an isomorphism θ from 
H to H ′ with θ(A) ⊆ U and θ(B) ⊆ W . Let {H}∗Km,n

be the set of all rooted-copies of 
H in Km,n. A matroid M on Km,n is said to be a rooted H-matroid if it is a {H}∗Km,n

-
matroid. Note that the given ordered bipartition (A, B) of H plays a significant role in 
this definition - we do not require that an isomorphic image θ(H) of H in Km,n is a 
circuit in M when θ(A) � U . On the other hand, if H has an automorphism which maps 
A onto B, then we will get the same matroid for each ordering of the bipartition of H
and this matroid will be equal to the (unrooted) H-matroid on Km,n.
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6.2.1. Birigidity matroids
As a primary example of matroids on complete bipartite graphs, we shall introduce 

the birigidity matroids of Kalai, Nevo, and Novik [18].
Let G = (U ∪ W, E) be a bipartite graph with m = |U | and n = |W |, p : U → Rk, 

and q : W → R�. We assume that the vertices of U and W are ordered as u1, u2, . . . , um

and v1, v2, . . . , vn, respectively. We define the (k, �)-rigidity matrix of (G, p, q), denoted 
by Rk,�(G, p, q), to be the matrix of size |E| × (�m +kn) in which each vertex in U labels 
a set of � consecutive columns from the first �m columns, each vertex in W labels a set 
of k consecutive columns from the last kn columns, each row is associated with an edge, 
and the row labelled by the edge e = uiwj is

[ ui wj

e=uiwj 0 . . . 0 q(wj) 0 . . . 0 p(ui) 0 . . . 0
]
.

The generic (k, �)-rigidity matroid Rk,�
m,n is the row matroid of Rk,�(Km,n, p, q) for any 

generic p and q. It can be checked that the rank of Rk,�
m,n is equal to �m + kn − k�, from 

which it follows that Kk+1,�+1 is a circuit and Rk,�
m,n is a rooted Kk+1,�+1-matroid.

As pointed out in [18], Rk,�
m,n coincides with the picture lifting matroids extensively 

studied by Whiteley [30] when min{k, �} = 1. We will show that this matroid is the 
unique maximal rooted Kk+1,�+1-matroid in this case.

Theorem 6.4. Rk,1
m,n is the unique maximal rooted Kk+1,2-matroid on Km,n.

Proof. Whiteley [30] showed that the picture lifting matroid is the matroid induced by 
the submodular, non-decreasing function h : 2E(Km,n) → Z defined by

h(F ) := |U(F )| + k|W (F )| − k (F ⊆ E(Km,n)),

where U(F ) and W (F ) denote the sets of vertices in U and W , respectively, that are 
incident to F . Since every connected flat in Mh(Km,n) is a complete bipartite graph 
Km′,n′ for some m′ ≥ 1 and n′ ≥ 2, we may deduce the theorem from Lemma 2.1 by 
showing that Km′,n′ can be constructed by a weakly saturated, rooted Kk+1,2-sequence 
from a subgraph G with m′ +kn′−k edges. Such a sequence is easily obtained by taking

E(G) = {uiw1 : 1 ≤ i ≤ m′} ∪ {uiwj : 1 ≤ i ≤ k and 2 ≤ j ≤ n′}. �
We refer the reader to [1] for more details on weakly saturated, rooted Ks,t-sequences 

in Km,n.
Lemma 2.1 also tells us that the rank function of Rk,1

m,n is determined by proper, 
rooted Kk+1,2-sequences. We conjecture that this extends to Rk,�

m,n for all k, � ≥ 1.

Conjecture 6.5. Rk,�
m,n is the unique maximal rooted Kk+1,�+1-matroid on Km,n and the 

rank of any F ⊆ E(Kn,m) is given by
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r(F ) = min{val(F,S) : S is a proper, rooted Kk+1,�+1-sequence in Km,n}.

The special case of this conjecture for R2,2
m,n is equivalent to a conjecture on the rank 

function of R2,2
m,m given in [15, Section 8]. Bernstein [2] gave an NP-type combinatorial 

characterization for independence in R2,2
m,n, but no co-NP-type characterization is known. 

The special case k = � = 2 of Conjecture 6.5 would provide such a certificate but even 
this special case seems challenging. Some evidence in support of the conjecture is given 
in Theorem 6.15 and the discussion after Theorem 6.15.

6.3. Hyperconnectivity matroids, matrix completion and {Kd,Ks,t}-matroids on Kn

Let p : V (Kn) → Rd be a generic map. We assume that the vertices of Kn are ordered 
as v1, v2, . . . , vn. Kalai [16] defined the d-hyperconnectivity matroid, Hd

n, to be the row 
matroid of the matrix of size 

(
n
2
)
× dn in which each vertex of Kn labels a set of d

consecutive columns, each row is labelled by an edge of Kn, and the row labelled by the 
edge e = vivj with i < j is

[ vi vj

e=vivj 0 . . . 0 p(vj) 0 . . . 0 −p(vi) 0 . . . 0
]
. (5)

He showed that, when n ≥ 2d + 2, this matroid is a {Kd+2, Kd+1,d+1}-matroid of rank 
dn −

(
d+1
2
)
.

As a variant of Hd
n, Kalai [16] also introduced the matroid Id

n, which is the row matroid 
of the (

(
n
2
)
× dn)-matrix with rows

[ vi vj

e=vivj 0 . . . 0 p(vj) 0 . . . 0 p(vi) 0 . . . 0
]

instead of (5). He showed that, when n ≥ 2d + 2, Id
n is a Kd+1,d+1-matroid on Kn of 

rank dn −
(
d
2
)
. In the special case when d = 2, this rank constraint implies that I2

n is a 
{K5, K3,3}-matroid.

The matroids Hd
n and Id

n arise naturally in the context of the rank d completion 
problem for partially filled n × n matrices which are skew-symmetric and symmetric, 
respectively, see [4,26]. The restriction of either Id

n or Hd
n to the complete bipartite 

graph Km,n is the birigidity matroid Rd,d
m,n, and this matroid arises in the context of the 

rank d completion problem for partially filled m × n matrices, see [26].
When d = 1, H1

n is the cycle matroid (and hence is the unique maximal {K3, K2,2}-
matroid on Kn by Theorem 4.3(a)) and I1

n is the even cycle matroid (and hence is the 
unique maximal K2,2-matroid on Kn by Theorem 4.6(a)).

We conjecture that each of Hd
n and I2

n is the unique maximal matroid in its respective 
poset.
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Conjecture 6.6. (a) Hd
n is the unique maximal {Kd+2, Kd+1,d+1}-matroid on Kn for all 

d ≥ 1 and its rank function is val{Kd+2,Kd+1,d+1}.
(b) I2

n is the unique maximal {K5, K3,3}-matroid on Kn and its rank function is 
val{K5,K3,3}.

6.4. {K4,K3,3}-matroids on Kn

The smallest unsolved case of Conjecture 6.6(a) is when d = 2. More generally, a 
better understanding of the poset of all {K4, K3,3}-matroids would have applications in 
such areas as the rank two completion of partially filled skew-symmetric matrices [4] and 
partially-filled rectangular matrices [9], and the rigidity of 2-dimensional frameworks 
whose points lie on a conic. In this section, we will describe how the combinatorial 
operations of 0-extension and diamond splitting can be used to attack Conjecture 6.6(a) 
and indicate what is missing to complete the proof.

Given a graph G, the 0-extension operation constructs a new graph by adding a new 
vertex v0 and two edges v0v1 and v0v2 with distinct v1, v2 ∈ V (G). We say that a 
matroid M on Kn has the 0-extension property if the 0-extension operation preserves 
independence in M, i.e. E(G′) is independent if E(G) is independent and G′ is obtained 
from G by a 0-extension operation for all G, G′ ⊆ Kn.

Given a vertex v1 of a graph G, the diamond splitting operation at v1 (with respect 
to a fixed partition {U0, U∗, U1} of NG(v1) with |U∗| = 2) removes the edges between v1
and the vertices in U0, adds a new vertex v0, and adds new edges v0u for all u ∈ U0∪U∗. 
We say that a matroid M on Kn has the diamond splitting property if the diamond 
splitting operation preserves independence in M.

We can use standard techniques from rigidity theory to prove the following, see [18, 
Lemmas 3.7, 3.8] or [15, Lemmas 2.3, 4.5].

Lemma 6.7. H2
n has the 0-extension property and the diamond splitting property.

Let R9(H2
n) be the matroid on Kn obtained by truncating H2

n to rank 9. Our next 
two lemmas imply that the free elevation of R9(H2

n) is a maximal {K4, K3,3}-matroid 
and has the {K4, K3,3}-covering property (and hence is equal to H2

n if Conjecture 6.6(a) 
is true). Let Wn denote the wheel on n vertices.

Lemma 6.8. Suppose n ≥ 6. Then:
(a) the edge set of every copy of W5 in Kn is dependent in every K4-matroid on Kn;
(b) every circuit of H2

n of rank at most 8 induces a copy of K4, W5 or K3,3.

Proof. (a) This follows from the circuit elimination axiom applied to two copies of K4
with a common triangle.
(b) Let G = (V, C) be the graph induced by a circuit C of H2

n of rank at most 8. Then 
|C| ≤ 2|V | − 2 with strict inequality when G is bipartite. In addition G has minimum 
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degree three since H2
n has the 0-extension property. Since |C| ≤ 9 this implies that 

4 ≤ |V | ≤ 6. If |V | = 4 then G = K4, so we may assume 5 ≤ |V | ≤ 6. Let v be a vertex 
of degree three in G. If |V | = 5 then G − v = K−

4 (since G has minimum degree three 
and E(G − v) is independent in H2

n) and we have G = W5. Hence we may assume that 
|V | = 6. Since G has minimum degree three and |C| ≤ 9, G is 3-regular. This implies 
that G is either K3,3 or the triangular prism. Since the triangular prism can be obtained 
from W5 by first deleting an edge and then applying the diamond split operation to the 
vertex of degree four, it’s edge set is independent in H2

n. Hence G = K3,3. �
Lemma 6.9. Suppose n ≥ 6. Then the free elevation of R9(H2

n) is a maximal {K4, K3,3}-
matroid on Kn and has the {K4, K3,3}-covering property.

Proof. The assertion that free elevation of R9(H2
n) is a maximal {K4, K3,3}-matroid on 

Kn follows from Lemmas 2.3 and 6.8. Since H2
n has rank 2n − 3, the H2

n-closure of every 
copy of W5 in Kn is a complete subgraph on five vertices. Lemma 6.8 now implies that 
every cyclic flat of R9(H2

n) is a copy of K3,3 or Kt for some 4 ≤ t ≤ n. Hence R9(H2
n) has 

the {K4, K3,3}-covering property. Lemma 2.4 now implies that the {K4, K3,3}-covering 
property also holds for the free elevation of R9(H2

n). �
So far we have seen that H2

n has the 0-extension property and the diamond splitting 
property (Lemma 6.7) and the free elevation of R9(H2

n) has the {K4, K3,3}-covering 
property (Lemma 6.9). Our main result of this section, Theorem 6.12 below, shows that, 
if some {K4, K3,3}-matroid on Kn has all of these three properties, then it will be the 
unique maximal {K4, K3,3}-matroid on Kn. To see this we need two rather technical 
lemmas.

Lemma 6.10. [8, Lemma 5.5] Let M be a matroid defined on the edge set of a graph G. 
Suppose that G[C] is 2-connected for every circuit C in M. Then, for every connected 
set X in M,

∑
v∈V (X)

min{dB(v) : B is a basis of X} ≤ 2(rM(X) − 1) − |V (X)|.

Lemma 6.11. Let M be a K4-matroid on Kn with the 0-extension property. Then, every 
circuit in M induces a 2-connected subgraph of Kn.

Proof. Suppose, for a contradiction, that some circuit C in M does not induce a 2-
connected subgraph of Kn.

We first consider the case when C is connected. Then C can be partitioned into two 
sets X and Y such that |V (X) ∩V (Y )| = 1. Let K be the edge set of the complete graph 
on V (Y ). Since M is a K4-matroid, Theorem 4.3(b) gives rM(K) ≤ 2|V (Y )| −3. The fact 
that X∪Y is a circuit now gives rM(X∪K) ≤ rM(X) +rM(K) −1 ≤ |X| +2|V (Y )| −4.



B. Jackson, S.-i. Tanigawa / Journal of Combinatorial Theory, Series B 165 (2024) 20–46 43
We may construct an independent subset of X ∪K by extending the independent set 
X using 0-extensions. Let e be an edge in K incident to the vertex in V (X) ∩V (Y ). Then 
X + e is independent by the 0-extension property. Repeatedly applying the 0-extension 
operation, we can extend X+e to an independent set B of size |X| +1 +2(|V (Y )| −2) =
|X| +2|V (Y )| −3 by adding edges in K. This contradicts the fact that the rank of X∪K

is at most |X| + 2|V (Y )| − 4.
The case when C is not connected can be proved similarly. �
We can now prove our main results on {K4, K3,3}-matroids.

Theorem 6.12. Let X = {K4, K3,3}Kn
and let M be an X -matroid on Kn that has the 

0-extension property, the diamond splitting property, and the X -covering property. Then 
M is the unique maximal X -matroid on Kn and its rank function is valX .

Proof. By Lemma 2.1, it suffices to show that, for each connected flat F of M, there is 
a proper X -sequence S such that rM(F ) = val(F, S). We prove this by induction on the 
rank of F .

Since M has the 0-extension property, Lemma 6.11 implies that every circuit in M
induces a 2-connected subgraph of Kn. Since M is a K4-matroid, rM(F ) ≤ 2|V (F )| − 3
and Lemma 6.10 now implies that there exists a base B of F and a vertex v ∈ V (B)
such that dB(v) ≤ 2. Let Fv and Bv be the set of edges in F and B, respectively, which 
are not incident to v. We first show that

Fv is a flat in M, dB(v) = 2 and rM(Fv) = rM(F ) − 2. (6)

To verify (6) we first note that, since M has the 0-extension property, every circuit in 
M has minimum degree at least three. Since dB(v) ≤ 2, this implies that clM(Bv) = Fv

and hence Fv is a flat in M. In addition, since F is connected in M, we have dF (v) ≥ 3. 
The facts that dB(v) ≤ 2 and M has the 0-extension property, now give |B| = rM(F ) ≥
rM(Fv) + 2 = |Bv| + 2 ≥ |B|. Hence equality holds throughout and (6) holds.

Claim 6.13. Let x, y ∈ NF (v) and z ∈ V (Fv) be three distinct vertices. Suppose that 
xz, yz ∈ Fv. Then uz ∈ Fv for all u ∈ NF (v) \ {z}.

Proof. Suppose, for a contradiction, that uz /∈ Fv for some u ∈ NF (v) \ {z}. Since Fv is 
a flat, Bv + uz is independent. We may construct B′ = Bv ∪ {vx, vy, vu} from Bv + uv

by applying the diamond splitting operation to z in such a way that the new vertex v
has degree three and is adjacent to x, y, u. Then B′ is contained in F and is independent 
in M. Since |B′| > |B|, this contradicts the fact that B is a base of F . �

We may apply induction to each connected component of Fv in M to obtain a proper 
X -sequence S ′ = (X1, X2 . . . , Xt) such that rM(Fv) = val(Fv, S ′). Since M has the X -
covering property, F is the union of copies of K4 and K3,3. Let NF (v) = {u1, u2, . . . , uk}.
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Suppose that some edge of F which is incident to v is contained in a copy K4 in F . 
Relabelling if necessary, we may suppose that the complete graph K(v, u1, u2, u3) satisfies 
K(v, u1, u2, u3) ⊆ F . We will show that K(v, u1, u2, . . . , uk) ⊆ F . For each i = 4, 5, . . . , k, 
we may apply Claim 6.13 with x = u1, y = u2, z = u3, u = ui to deduce that uiu1, uiu2 ∈
F . Since M has the 0-extension property, this implies that F contains an independent 
set of size 2|NF (v)| − 3 on NF (v). Since F is a flat and every A ⊆ E(Kn) has rank at 
most 2|V (A)| − 3, this implies that K(v, u1, u2, . . . , uk) ⊆ F . Let Xt+i be a copy of K4
on {v, ui, ui+1, ui+2} for i = 1, . . . , k − 2, and let S = (X1, . . . , Xt, Xt+1, . . . , Xt+i+2) be 
obtained by appending (Xt+1, . . . , Xt+k−2) to S ′. Then we have val(F, S) = val(Fv, S ′) +
2 = rM(Fv) + 2 = rM(F ), as required.

It remains to consider the case when no edge of F incident to v is contained in a 
copy of K4 in F . Then every edge in F which is incident to v is contained in a copy 
of K3,3. Relabelling if necessary we may suppose that the complete bipartite graph 
K(v, w1, w2; u1, u2, u3) is contained in F . Then wi /∈ NF (v) for i = 1, 2, since otherwise 
the facts that F is a flat and M is a K4-matroid would imply that K(v, u1, u2, wi) ⊆ F . 
By Claim 6.13, F contains uiw1 and uiw2 for all ui ∈ NF (v). Hence, F contains the 
complete bipartite graph K(NF (v); {w1, w2}). Let Xt+i = K(v, w1, w2; ui, ui+1, ui+2) for 
i = 1, . . . , k − 2, and let S = (X1, . . . , Xt, Xt+1, . . . , Xt+i+2) be obtained by appending 
(Xt+1, . . . , Xt+k−2) to S ′. Then we have val(F, S) = val(Fv, S ′) + 2 = rM(Fv) + 2 =
rM(F ), as required.

This completes the proof of Theorem 6.12. �
Corollary 6.14. Let X = {K4, K3,3}Kn

.
(a) Suppose H2

n is the unique maximal X -matroid on Kn. Then it is the free elevation 
of R9(H2

n) and its rank function is valX .
(b) Suppose the free elevation of R9(H2

n) has the 0-extension and diamond splitting prop-
erties. Then it is the unique maximal X -matroid on Kn and its rank function is valX .

Proof. (a) Lemma 2.6 and the unique maximality of H2
n imply that H2

n is the free 
elevation of R9(H2

n) and hence has the X -covering property by Lemma 2.4. In addition, 
H2

n has the 0-extension and diamond splitting properties by Lemma 6.7. Theorem 6.12
now implies that the rank function of H2

n is valX .
(b) The free elevation of R9(H2

n) has the X -covering property by Lemma 2.4. We can 
now apply Theorem 6.12 to deduce that it is the unique maximal X -matroid on Kn and 
its rank function is valX . �

We can prove the following bipartite counterpart of Theorem 6.12 by restricting the 
argument to complete bipartite graphs.

Theorem 6.15. Let X = {K3,3}Km,n
and let M be an X -matroid on Km,n that has the 

0-extension property, the diamond splitting property, and the X -covering property. Then 
M is the unique maximal X -matroid on Km,n and its rank function is valX .
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As in the case of {K4, K3,3}-matroids, R2,2
m,n satisfies the 0-extension property and 

the diamond splitting property whereas the free elevation of the rank nine truncation of 
R2,2

m,n has the K3,3-covering property.
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