Contents lists available at ScienceDirect

# **Discrete Applied Mathematics**

journal homepage: www.elsevier.com/locate/dam

## Divisibility and coloring of some *P*<sub>5</sub>-free graphs<sup>☆</sup>

## Jialei Song<sup>a,\*</sup>, Baogang Xu<sup>b</sup>

<sup>a</sup> School of Mathematical Sciences, Key Laboratory of MEA (Ministry of Education) & Shanghai Key Laboratory of PMMP, East China Normal University, Shanghai, 200241, China <sup>b</sup> Institute of Mathematical Sciences, Naming Normal University, Naming, 210022, China

<sup>b</sup> Institute of Mathematics, School of Mathematical Sciences, Nanjing Normal University, Nanjing, 210023, China

#### ARTICLE INFO

Article history: Received 9 October 2022 Received in revised form 16 September 2023 Accepted 20 January 2024 Available online xxxx

- MSC: 05C15 05C78
- *Keywords: P*<sub>5</sub>-free Perfect Perfect division 2-division

## ABSTRACT

A  $P_5$  is a path on 5 vertices, a banner is a graph obtained by adding a pendant edge to a vertex of a quadrilateral and a hammer is a graph obtained from a  $K_5$  by deleting a banner as a partial subgraph. A graph *G* is perfect if  $\chi(H) = \omega(H)$  for each induced subgraph *H* of *G*. We say that *G* admits a perfect division if V(G) can be partitioned into two subsets *A* and *B* such that *G*[*A*] is perfect and  $\omega(G[B]) < \omega(G)$ , and say that *G* admits a 2-division if  $E(G) = \emptyset$  or V(G) can be partitioned into two subsets *A* and *B* such that max{ $\omega(G[A]), \omega(G[B])$ }  $< \omega(G)$ . Furthermore, *G* is perfectly divisible if each induced subgraph *H* of *G* admits a perfect division, and *G* is 2-divisible if each induced subgraph *H* admits a 2-division. In this paper, we show that each ( $P_5$ , banner)-free graph is perfectly divisible, and show that each ( $P_5, C_5$ , banner, hammer)-free graph *G* is  $\omega^{\frac{3}{2}}(G)$ -colorable. For every  $P_5$ -free graph *G* with  $\alpha(G) \ge 3$ , we show that *G* admits a 2-division if *G* is banner-free, and *G* is perfect if *G* is connected and  $K_{1,3}$ -free.

© 2024 Elsevier B.V. All rights reserved.

## 1. Introduction

All graphs considered in this paper are finite and simple. Let k be a positive integer. We use [k] to denote the set  $\{1, 2, ..., k\}$ . Let G be a graph. We use  $\chi(G)$ ,  $\omega(G)$  and  $\alpha(G)$  to denote the *chromatic number*, *clique number* and *independent number* of G, respectively. A *path* (resp. *cycle*) on k vertex is denoted by  $P_k$  (resp.  $C_k$ ). We say a graph G is bipartite, if G can be partitioned into two parts S and T such that every edge in G intersects both S and T nonempty. In particular, G is complete bipartite, if every vertex in S connects every vertex in T, and we denote G by  $K_{s,t}$ , where |S| = s and |T| = t. For  $x \in V(G)$  and  $X \subseteq V(G)$ , let N(x) be the set of neighbors of x, let  $N[x] = N(x) \cup \{x\}$ , and let  $N(X) = \bigcup_{v \in X} N(v)$ . Let  $M(x) = V(G) \setminus N[x]$ , and let  $M(X) = V(G) \setminus (N(X) \cup X)$ . We say that X dominates G if  $V(G) = X \cup N(X)$ , say that x is *complete* (resp. *anticomplete*) to X, if  $X \subseteq N(x)$  (resp.  $X \subseteq M(x)$ ), and say that x is *mixed* to X if x is neither complete nor anticomplete to X.

Let *X* and *Y* be two subsets of *V*(*G*). If each vertex of *X* is complete (resp. anticomplete) to *Y*, then we say that *X* is complete (resp. anticomplete) to *Y*. We say that *X* is mixed to *Y* if *X* is neither complete nor anticomplete to *Y*. Let *G*[*X*] be the subgraph of *G* induced by *X*. We say that *G* induces *H* if *G* has an induced subgraph isomorphic to *H*, and say that *G* is *H*-free if *G* does not induce *H*. For a given family  $\mathcal{H}$  of graphs, we say that *G* is  $\mathcal{H}$ -free if *G* is *H*-free for each member *H* of  $\mathcal{H}$ .

\* Corresponding author.





<sup>\*</sup> Supported in part by Science and Technology Commission of Shanghai Municipality, China (No. 22DZ2229014) and National Natural Science Foundation of China (Nos. 11931006, 12126339).

E-mail addresses: jialsong@foxmail.com (J. Song), baogxu@njnu.edu.cn (B. Xu).

A hole of *G* is an induced cycle of length at least 4. The complement of a hole is called an *antihole*. A hole (resp. an antihole) *C* is called an *odd hole* (resp. *odd antihole*) if *C* has odd number of vertices. A graph is *perfect* if  $\chi(H) = \omega(H)$  for each induced subgraph *H* of *G*. The famous *Strong Perfect Graph Theorem* states that a graph is perfect if and only if it induces neither an odd hole nor an odd antihole [7].

Let  $k \ge 2$  be an integer. We say that *G* admits a *perfect division* if V(G) can be partitioned into two subsets *A* and *B* such that G[A] is perfect and  $\omega(G[B]) < \omega(G)$ , and say that *G* admits a *k*-division if either  $E(G) = \emptyset$  or V(G) can be partitioned into *k* subsets  $V_1, V_2, \ldots, V_k$  such that  $\omega(G[V_i]) < \omega(G)$  for all  $i \in [k]$ . A graph *G* is *perfectly divisible* [14] if each induced subgraph *H* of *G* admits a perfect division, and *G* is *k*-divisible [15] if each induced subgraph *H* admits a *k*-division. By induction, it is easy to verify that each perfectly divisible graph *G* is  $\binom{\omega(G)+1}{2}$ -colorable, and each *k*-divisible graph *G* is  $k^{\omega(G)-1}$ -colorable.

Hoàng and McDiarmid [15] proved that every (odd hole,  $K_{1,3}$ )-free graph is 2-divisible, and they also proposed a conjecture, the Hoàng and McDiarmid Conjecture for short, claiming that a graph is 2-divisible if and only if it is odd hole free. The necessity of this conjecture is easy since each odd hole is not 2-divisible. Note that the 2-divisibility of *G* implies that  $\chi(G) \leq 2^{\omega(G)-1}$ . The trueness of Hoàng and McDiarmid Conjecture will determine a better upper bound on the chromatic number of odd hole free graphs than  $\frac{2^{2^{\omega(G)+2}}}{48(\omega(G)+2)}$ , the best known upper bound, due to Scott and Seymour [19].

Scott and Seymour mentioned a conjecture of Hoàng, which claims that  $\chi(G) \leq \omega^2(G)$  for every odd hole free graph (see page 498 of [19]). Sivaraman [21] proposed a conjecture, that is a weakening version of Hoàng's conjecture, claiming that if *G* is a (hole of length at least 5)-free graph then  $\chi(G) \leq \omega^2(G)$ . It is easy to see that  $P_5$ -free graphs must be of (hole of length at least 6)-free. The currently best known upper bound to chromatic number of  $P_5$ -free graphs is due to Esperet et al. [12] who showed that  $\chi(G) \leq 5 \cdot 3^{\omega(G)-3}$  if *G* is  $P_5$ -free with  $\omega(G) \geq 3$ . A still open conjecture of Choudum, Karthick and Shalu [5] claiming that there is a constant *c* such that  $\chi(G) \leq c\omega^2(G)$  for all  $P_5$ -free graphs. There are quite a lot upper bounds to the chromatic number of  $P_5$ -free graphs by avoiding some further small graphs.

We use *diamond* to denote the graph obtained from  $K_4$  by removing an edge, use *cricket* to denote the graph obtained from a  $K_{1,4}$  by adding an edge between two pendant vertices of  $K_{1,4}$ . Let  $v_1v_2v_3v_4v_5$  denote the path  $P_5$  with vertices  $v_i$  for  $i \in [5]$  and edges  $v_iv_{i+1}$  for  $i \in [4]$ . We call  $P_5 + v_1v_3$  a hammer, call  $P_5 + v_2v_4$  a bull, call  $P_5 + v_1v_4$  a banner, call  $P_5 + \{v_1v_4, v_1v_5\}$  a house, call  $P_5 + \{v_1v_3, v_1v_4\}$  a cochair, call  $P_5 + \{v_1v_4, v_2v_4\}$  a dart, and call  $P_5 + \{v_1v_3, v_1v_4, v_1v_5\}$  a gem. A gem<sup>+</sup> is obtained from a gem by adding a vertex adjacent to its vertex of degree 4.

Fouquet et al. [13] proved that ( $P_5$ , house)-free graphs are perfectly divisible. Schiermeyer [18] proved that  $\chi(G) \leq \omega^2(G)$  if *G* is ( $P_5$ , *H*)-free for  $H \in \{$ cricket, dart, diamond, gem,  $gem^+$ ,  $K_{1,3}\}$ . Hoàng [14] showed that every (odd holes, banner)-free graph is both 2-divisible and perfectly divisible. Chudnovsky and Sivaraman [8] showed that ( $P_5$ , bull)-free graphs and (odd hole, bull)-free graphs are both perfectly divisible, and ( $P_5$ ,  $C_5$ )-free graphs are 2-divisible. Dong, Xu and Xu [10] proved that ( $P_5$ ,  $C_5$ ,  $K_{2,3}$ )-free graphs are perfectly divisible and  $\chi(G) \leq 2\omega^2(G) - \omega(G) - 3$  if *G* is ( $P_5$ ,  $K_{2,3}$ )-free with  $\omega(G) \geq 2$ . Improving the results of [3] and [5], Chudnovsky et al. [6] proved that  $\chi(G) \leq \lceil \frac{5\omega(G)}{4} \rceil$  if *G* is ( $P_5$ , gem)-free. Let a 4-wheel be the graph obtained from a  $C_4$  by adding a vertex complete to  $C_4$ , and let a paraglider be the graph obtained from a  $C_4$  by adding a vertex joining to three vertices of  $C_4$ . Char and Karthick [4] showed that every ( $P_5$ , 4-wheel)-free graph G satisfies  $\chi(G) \leq \frac{3\omega(G)}{2}$ . Huang and Karthick [16] showed that every ( $P_5$ , paraglider)-free graph *G* satisfies  $\chi(G) \leq \lceil \frac{3\omega(G)}{2} \rceil$ . Very recently, Brause et al. [1] proved that every ( $P_5$ , banner)-free graph *G* is  $\Theta(\frac{\omega^2(G)}{\log \omega(G)})$ -colorable. Let *x* be a vertex of the complete graph  $K_5$ . Let  $K_5^-$  be the graph obtained from  $K_5$  by removing an edge incident with *x*, let *HVN* be the graph obtained from  $K_5$  by removing two edges incident with *x*, and let  $K_4^+$  be the graph obtained from  $K_5$  by removing slightly a result of Malyshev [17], Xu [23] proved that  $\chi(G) \leq \max\{\max\{16, \omega(G) + 3\}, \omega(G) + 1\}$  for all ( $P_5$ , *HVN*)-free graphs. Xu [24] proved also that  $\chi(G) \leq \max\{13, \omega(G) + 1\}$  for all ( $P_5, K_5^-$ )-free graphs.

In this paper, we show that each ( $P_5$ , banner)-free graph is perfectly divisible. We note that ( $P_5$ , banner)-free graphs are not necessarily 2-divisible, since the  $C_5$  is a trivial counterexample. However, we can find a 2-division for ( $P_5$ , banner)-free graphs with independent number at least 3, and we can do even better with ( $P_5$ ,  $K_{1,3}$ )-free graphs.

## **Theorem 1.1.** Let G be a ( $P_5$ , banner)-free graph. Then, G is perfectly divisible, and G admits a 2-division if $\alpha(G) \geq 3$ .

As a corollary of Theorem 1.1, we have that  $\chi(G) \leq {\binom{\omega(G)+1}{2}}$  for all ( $P_5$ , banner)-free graphs. We can do better on ( $P_5$ ,  $K_{1,3}$ )-free graphs with independent number at least 3.

## **Theorem 1.2.** If *G* is a connected ( $P_5$ , $K_{1,3}$ )-free graph with $\alpha(G) \ge 3$ , then *G* is perfect.

The restriction  $\alpha(G) \ge 3$  in Theorems 1.1 and 1.2 are necessary, since  $C_5$  is ( $P_5$ , banner)-free with independent number 2 but admits no 2-division, and all odd antiholes are ( $P_5$ ,  $K_{1,3}$ )-free with independent number 2 but imperfect.

Chudnovsky and Sivaraman [8] proved that  $(P_5, C_5)$ -free graphs are 2-divisible, and Scott, Seymour and Spirkl [20] proved that  $\chi(G) \leq \omega(G)^{\log_2 \omega(G)}$  if *G* is  $P_5$ -free. Up to now, no polynomial binding function has been found even for  $(P_5, C_5)$ -graphs. Theorem 1.1 asserts that  $(P_5, banner)$ -free graphs are perfectly divisible, which provides us with an  $O(\omega^2)$  binding function for such graphs. By a conclusion from [2] there is no linear binding function for  $(P_5, banner)$ -free graphs, Even for  $(P_5, C_5, banner)$ -free graphs, it seems difficult to get a binding function better than  $O(\omega^2)$ . We study  $(P_5, C_5, banner)$ -free graphs, and prove the following theorem.

## **Theorem 1.3.** Every ( $P_5$ , $C_5$ , banner, hammer)-free graph G is $\omega^{\frac{3}{2}}(G)$ -colorable.

Before we begin our proofs, we list the following useful lemmas. A subset X of V(G) is called a *homogeneous set* if  $2 \le |X| \le |V(G)| - 1$  and every vertex in  $V(G) \setminus X$  is either complete or anticomplete to X.

**Lemma 1.1** (*Theorem 3.6, [8]*). If *G* is not perfectly divisible with minimum number of vertices, then *G* admits no homogeneous subset.

A graph *G* is a 5-*ring* if its vertex set can be partitioned into sets  $X_1, \ldots, X_5$  such that for  $i \in [5]$ ,  $X_i$  is a stable set and *xy* is an edge for any  $x \in X_i$ ,  $y \in X_{i+1}$  with the subscript taken modulo 5.

**Lemma 1.2** (Theorem 3.5, [22]). A connected graph G is  $(P_5, K_3)$ -free if and only if G is either bipartite or a 5-ring.

**Proposition 1.1** (Lemma 7.3, [14]). Each graph with independent number at most 2 is perfectly divisible.

We will prove Theorem 1.1 in Section 2, prove Theorem 1.2 in Section 3, and prove Theorem 1.3 in Section 4.

### 2. Proof of Theorem 1.1

Hoàng has proved the perfect divisibility and 2-divisibility of (odd hole, banner)-free graphs [14], and Chudnovsky and Sivaraman have proved the 2-divisibility of ( $P_5$ ,  $C_5$ )-free graphs [8]. When consider the perfectly divisibility or 2-divisibility of ( $P_5$ , banner)-free graphs, we may assume that those graphs are connected and contain a hole of length 5.

Let *G* be a ( $P_5$ , banner)-free graph, and let  $C = v_1v_2v_3v_4v_5v_1$  be the chordless cycle with vertices  $v_i$  for  $i \in [5]$  and edges  $v_iv_{i+1}$  for  $i \in [5]$  with the subscript taken modulo 5. If *G* is triangle-free, then G = C by Lemma 1.2. So, we suppose that  $\omega(G) \ge 3$ .

Define *A* to be the set of all vertices of N(C) of which each has exactly three or four consecutive neighbors in *C*, and define *B* to be the set of all vertices of N(C) of which each is complete to *C*. It is easy to check that

$$N(C) = A \cup B$$

(1)

as otherwise each  $x \in N(C) \setminus (A \cup B)$  together with the cycle C will induce a  $P_5$  or a banner.

By Proposition 1.1, we suppose that  $\alpha(G) \ge 3$ . Before proving Theorem 1.1, we first present some structural properties of *G*. Let *B*<sub>1</sub> be the set of all vertices of *B* of which each has a neighbor in *M*(*C*), and let  $B_2 = B \setminus B_1$ .

**Lemma 2.1.** If  $M(C) \neq \emptyset$ , then A is anticomplete to M(C), and  $B_1$  is complete to  $A \cup B_2 \cup C$ .

#### **Proof.** Suppose that $M(C) \neq \emptyset$ .

Suppose that *A* is not anticomplete to M(C), and let  $m \in M(C)$  and  $n \in A$  with  $mn \in E(G)$ . If *n* has exactly three consecutive neighbors in *C*, we suppose, by symmetry, that  $nv_1, nv_2, nv_3 \in E(G)$  and  $nv_4, nv_5 \notin E(G)$ , then  $mnv_3v_4v_5$  is a  $P_5$ . If *n* has four consecutive neighbors in *C*, we may suppose that  $v_5$  is the only non-neighbor of *n* on *C*, then  $G[\{m, n, v_1, v_4, v_5\}]$  is a banner. Therefore, *A* is anticomplete to M(C).

Since *G* is connected and  $M(C) \neq \emptyset$ , we see that  $B_1 \neq \emptyset$ . Let  $b_1$  be a vertex of  $B_1$ , and let *m* be a neighbor of  $b_1$  in M(C). For each pair of  $a \in A$  and  $b_2 \in B_2$ , we may suppose, by symmetry, that  $c_1, c_3 \in N(a) \cap N(b_1)$ , and so  $ab_1 \in E(G)$  to avoid a banner on  $\{a, b_1, c_1, c_3, m\}$ , and  $b_1b_2 \in E(G)$  to avoid a banner on  $\{b_1, b_2, c_1, c_3, m\}$ . Thus,  $B_1$  is complete to  $A \cup B_2 \cup C$ .

Lemma 2.1 asserts that if  $M(C) \neq \emptyset$ , then  $A \cup B_2 \cup C$  is a homogeneous subset of *G*.

Next, we consider the case that  $M(C) = \emptyset$ . If *C* has a vertex complete to N(C), say  $v_1$ , then  $(\{v_1, v_3, v_4, v_5\}, V(G) \setminus \{v_1, v_3, v_4, v_5\})$  is a perfect division (also a 2-division). Thus, we suppose that no vertex of *C* may be complete to N(C).

Recall that each vertex in *A* has three or four consecutive neighbors on *C* and each vertex in *B* is complete to *C*. For each  $i \in [5]$ , we define  $T_i = \{t : tv_i, tv_{i+1}, tv_{i+2} \in E(G), tv_{i+3}, tv_{i+4} \notin E(G)\}$ , and  $F_i = \{f : fv_i, fv_{i+1}, fv_{i+2}, fv_{i+3} \in E(G), fv_{i+4} \notin E(G)\}$  with the subscripts taken modulo 5. Then,  $N(C) = B \cup (\bigcup_{i \in [5]} T_i) \cup (\bigcup_{i \in [5]} F_i)$ .

Let  $t_1$  and  $t_2$  be two distinct vertices of  $T_i$ , and let  $f_1$  and  $f_2$  be two distinct vertices in  $F_i$ . Since none of  $G[\{t_1, t_2, v_i, v_{i+2}, v_{i+4}\}]$  and  $G[\{f_1, f_2, v_i, v_{i+2}, v_{i+4}\}]$  can be a banner, we see that both  $T_i$  and  $F_i$  are cliques. With a similar argument, one can verify that  $T_i$  is complete to  $F_{i-1} \cup F_i$ . Let  $t_3$  be a vertex of  $T_{i+1}$ . Since  $G[\{t_1, t_3, v_i, v_{i+2}, v_{i+4}\}]$  cannot be a  $P_5$ , we see that  $T_i$  is complete to  $T_{i+1}$ . Therefore, we have that

 $T_i \cup T_{i+1} \cup F_i$  is a clique.

If  $M(C) = \emptyset$ , then

 $M(v_i) = F_{i+1} \cup T_{i+1} \cup T_{i+2} \cup \{v_{i+2}, v_{i+3}\},\$ 

and

 $N(v_i) = F_i \cup F_{i+2} \cup F_{i+3} \cup F_{i+4} \cup T_i \cup T_{i+3} \cup T_{i+4} \cup \{v_{i+1}, v_{i+4}\}.$ 

(2)

By (2), we see that

 $M(v_i)$  is a clique,

(3)

and so  $(M(v_i) \cup \{v_i\}, N(v_i))$  is a perfect-division. Therefore, we have

**Lemma 2.2.** If  $M(C) = \emptyset$ , then G admits a perfect division.

Now, we can prove Theorem 1.1. First, we show that each ( $P_5$ , banner)-free graph is perfectly divisible. Suppose to its contrary, and let *G* be a minimal ( $P_5$ , banner)-free non-perfectly divisible graph. Recall that Proposition 1.1 establishes the perfect divisibility of graphs with independence number no more than 2. We have  $\alpha(G) \ge 3$ .

If  $M(C) = \emptyset$ , then for each  $i \in [5]$ ,  $(M(v_i) \cup \{v_i\}, N(v_i))$  is a perfect division of G by Lemma 2.2. If  $M(C) \neq \emptyset$ , then G admits a homogeneous set by Lemma 2.1, a contradiction to Lemma 1.1. Therefore, each  $(P_5, \text{ banner})$ -free graph is perfectly divisible.

To complete the proof of Theorem 1.1, we shall show that every ( $P_5$ , banner)-free graph *G* admits a 2-division, when  $\alpha(G) \ge 3$ . Before that, we need the following lemma.

**Lemma 2.3.** Let  $k \ge 2$  be an integer. If G is a minimal graph that admits no k-division, then G admits no homogeneous subset.

**Proof.** Suppose that *G* admits a homogeneous subset and is a minimal graph such that *G* admits no *k*-division. Let *H* be a homogeneous subset belonging to  $G, L = G[V(G) \setminus H]$ .

Since *G* is a minimal counterexample, we have that both *L* and *H* admit a *k*-division. Suppose *L* has a *k*-division  $(L_1, L_2, ..., L_k)$  and *H* has a *k*-division  $(H_1, H_2, ..., H_k)$ . Write  $G_i = L_i \cup H_i$  for i = [k]. One can observe that  $\omega(G) \ge \omega(G_i) \ge \max\{\omega(L_i), \omega(H_i)\}$ . Let *K* be a maximum clique in *G<sub>i</sub>*. Obviously, *K* will not entirely lie in *L<sub>i</sub>* or *H<sub>i</sub>*. Since *H* is complete to  $N_G(H)$  and anticomplete to  $L \setminus N_G(H)$ , we have  $K \cap H_i \neq \emptyset$ ,  $K \cap N_G(H) \neq \emptyset$  and  $K \cap (L \setminus N_G(H)) = \emptyset$ . If  $|K| = \omega(G)$ , then  $K \cap H_i$  must be a largest clique in *H*, a contradiction.

Suppose that  $\alpha(G) \ge 3$ . Notice that (odd holes, banner)-free graphs are 2-divisible (see [14]). By Lemmas 2.1 and 2.3, we may suppose that  $M(C) = \emptyset$ . For convenience, we use *co-triangle* to denote an independent set of size 3.

Since  $M(v_i)$  is a clique for each  $i \in [5]$  by (3), if there exists a  $v_i$  such that  $M(v_i)$  is not a maximum clique of G, then  $(N(v_i), M(v_i) \cup \{v_i\})$  is a 2-division. So, we suppose that

 $M(v_i)$  is a maximum clique of *G* for each  $i \in [5]$ .

We will complete the proof of Theorem 1.1 by showing

G contains no co-triangles.

Suppose that (5) does not hold and let  $C_0$  be a co-triangle of *G*. It is certain that  $|C_0 \cap V(C)| \le 2$ .

Recall that  $C = v_1v_2v_3v_4v_5v_1$ . If  $|C_0 \cap V(C)| = 2$ , we suppose, by symmetry, that  $C_0 = \{u, v_1, v_3\}$ , then  $u \notin (A \cup B)$ , contradicting (1). If  $|C_0 \cap V(C)| = 1$ , we suppose that  $C_0 = \{u_1, u_2, v_1\}$  (where  $u_1, u_2 \notin C$ ), then  $u_1, u_2 \in T_2 \cup T_3 \cup F_2$  as  $M(C) = \emptyset$ , contradicting (2) by taking i = 2. Therefore,  $C_0$  contains no vertex of C.

Suppose that  $C_0 = \{u_1, u_2, u_3\}$ . By (2), we have the following possibilities, for some  $i \in [5]$ , on the locations of the vertices of  $C_0$ .

(a)  $u_1 \in F_i$ ,  $u_2 \in F_{i+1}$ , and  $u_3 \in F_{i+2} \cup T_{i+3}$ . (b)  $u_1 \in F_i$ ,  $u_2 \in F_{i+2}$ , and  $u_3 \in F_{i+3} \cup T_{i-1}$ . (c)  $u_1 \in F_i \cup T_i$ ,  $u_2 \in F_{i+1}$ , and  $u_3 \in B$ . (d)  $u_1 \in F_i \cup T_i$ ,  $u_2 \in F_{i+2} \cup T_{i+2}$ , and  $u_3 \in B$ . (e)  $u_1 \in F_i \cup T_i$ ,  $u_2$ ,  $u_3 \in B$ . (f)  $u_1 \in T_i$ ,  $u_2 \in T_{i+2}$ , and  $u_3 \in F_{i+3}$ . (g)  $C_0 \subseteq B$ .

Since  $G[\{u_1, u_2, u_3, v_i, v_{i+2}\}]$  is a banner in cases (a) to (c) and a  $P_5$  in case (f), and  $G[\{u_1, u_2, u_3, v_{i-1}, v_{i+2}\}]$  is a banner in cases (d) and (e), we turn to case (g).

Suppose that  $C_0 \subseteq B$ , and let v be a vertex in  $T_i \cup F_i$ . The vertex v exists, for otherwise  $A = \emptyset$ , and so C is a homogeneous set of G, a contradiction to Lemma 2.3. If v is anticomplete to  $C_0$ , then  $G[\{v, v_{i+1}, u_1, u_2, v_{i+4}\}]$  is a banner. If v has exactly one neighbor in  $C_0$ , say  $vu_1 \in E(G)$  by symmetry, then  $G[\{v, v_{i+1}, u_2, u_3, v_{i+4}\}]$  is a banner. If v has exactly two neighbors in  $C_0$ , say  $vu_3 \notin E(G)$  by symmetry, then  $G[\{v, u_1, u_2, v_{i+4}, u_3\}]$  is a banner. So, we have that  $C_0$  is complete to  $T_i \cup F_i$ . By symmetry between the pair  $(T_i, F_i)$  and the pair  $(T_{i+1}, F_i)$ , one can verify easily that  $C_0$  is complete to  $T_{i+1} \cup F_i$ . Therefore,  $C_0$  is complete to  $T_i \cup T_{i+1} \cup F_i$  if  $C_0 \subseteq B$ . Recall that  $M(v_{i-1}) = F_i \cup T_i \cup T_{i+1} \cup \{v_{i+1}, v_{i+2}\}$ . Since  $u_1 \in B$ , we see that  $M(v_{i-1}) \cup \{u_1\}$  is a clique larger than  $M(v_{i-1})$ . This contradiction to (4) proves (5), and completes the proof of Theorem 1.1.

(4)

(5)

## 3. ( $P_5$ , $K_{1,3}$ )-free graphs

We prove Theorem 1.2 in this section. Below lemma is very useful to our proof.

**Lemma 3.1** (Ben Rebea's Lemma, see [9]). Let G be a  $K_{1,3}$ -free graph which induces an odd antihole. If  $\alpha(G) \geq 3$ , then G contains an induced cycle of length 5.

**Proof of Theorem 1.2.** Suppose to the contrary that Theorem 1.2 does not hold. Let *G* be an imperfect ( $P_5$ ,  $K_{1,3}$ )-free graph with  $\alpha(G) \ge 3$ . Since *G* is  $P_5$ -free, *G* contains an odd antihole as induced subgraph. By Lemma 3.1, *G* contains a hole of length 5. Let  $C = v_1v_2v_3v_4v_5v_1$  be a hole of length five in *G*.

We still define *A* to be the set of all vertices of N(C) of which each has exactly three or four consecutive neighbors on *C*, define *B* to be the set of all vertices of N(C) of which each is complete to *C*, and define  $T_i$  and  $F_i$  for each  $i \in [5]$  in the same way as that of last section. Then,  $A = (\bigcup_{i \in [5]} T_i) \cup (\bigcup_{i \in [5]} F_i)$ , and  $N(C) = A \cup B$  as *G* is certainly (*P*<sub>5</sub>, banner)-free.

If  $M(C) \neq \emptyset$ , we may choose w to be a vertex in M(C) that has a neighbor, say w', in N(C), then  $\{w, w'\}$  together with two nonadjacent neighbors of w' on C would induce a  $K_{1,3}$ . Therefore,  $M(C) = \emptyset$ .

Since  $\alpha(G) \ge 3$ , we may choose a stable set of size 3, say  $S = \{u_1, u_2, u_3\}$ . Note that each  $(P_5, K_{1,3})$ -free graph must be  $(P_5, \text{ banner})$ -free. Since  $M(C) = \emptyset$ , both (2) and (3) still hold for each  $i \in [5]$ .

Since *G* is  $K_{1,3}$ -free, we see that  $S \not\subseteq B$ , and either  $S \cap V(C) = \emptyset$  or  $S \cap B = \emptyset$  as *B* is complete to *C*. If  $|S \cap B| = 2$ , we suppose by symmetry that  $u_1, u_2 \in B$ , and let v be a neighbor of  $u_3$  on *C*. If  $|S \cap B| = 1$ , we suppose  $u_1 \in B$ , and let v be a common neighbor of  $u_2$  and  $u_3$  on *C*. In both cases, we have a  $K_{1,3}$  induced by  $S \cup \{v\}$ . Therefore, we have  $S \cap B = \emptyset$ .

Recall that for each  $i \in [5]$ , both  $F_i$  and  $T_i$  are cliques by (2).

If  $|S \cap (\bigcup_{i \in [5]} F_i)| \ge 2$ , we suppose that  $u_1, u_2 \in \bigcup_{i \in [5]} F_i$  by symmetry, then there exists  $j \in [5]$  such that the common neighbors of  $u_1$  and  $u_2$  on C is either  $\{v_j, v_{j+1}, v_{j+2}\}$  or  $\{v_j, v_{j+1}, v_{j+3}\}$ . Since  $u_3$  has at least 3 neighbors on C, one can always find a vertex, say v, on C such that  $G[S \cup \{v\}]$  is a  $K_{1,3}$ .

If  $|S \cap (\bigcup_{i \in [5]} F_i)| = 1$ , we may suppose that  $u_1 \in F_1$  by symmetry, then  $u_2, u_3 \in T_3 \cup T_4 \cup T_5 \cup \{v_5\}$  by (2), and so  $|\{u_2, u_3\} \cap T_3| = 1 = |\{u_2, u_3\} \cap T_5|$ , which implies an induced  $P_5 = u_1v_3u_2v_5u_3$  or  $u_1v_3u_3v_5u_2$ .

So, we have that  $S \cap (\bigcup_{i \in [5]} F_i) = \emptyset$  as well, and thus  $S \subseteq \bigcup_{i \in [5]} T_i \cup V(C)$ . But  $G[\bigcup_{i \in [5]} T_i \cup V(C)]$  is a graph obtained by blowing up each vertex of a  $C_5$  into a clique, which has independent number 2. This contradiction to  $\alpha(G) \ge 3$  completes the proof of Theorem 1.2.

### 4. (*P*<sub>5</sub>, *C*<sub>5</sub>, banner, hammer)-free graphs

We prove Theorem 1.3 in this section.

Let  $\overline{G}$  be a ( $P_5$ ,  $C_5$ , banner, hammer)-free graph on n vertices. Following the *Strong Perfect Graph Theorem* [7],  $\overline{G}$  is perfect if  $n \le 6$ . If n = 7,  $\overline{G}$  is imperfect if and only if  $\overline{G}$  is an odd antihole, and  $\chi(\overline{G}) = 4 \le \frac{4}{3}\omega(\overline{G}) \le \omega^{\frac{3}{2}}(\overline{G})$ . If  $\overline{G}$  is triangle-free, then  $\overline{G}$  is bipartite by Lemma 1.2, and  $\chi(\overline{G}) = 2 \le 2^{\frac{3}{2}}$ . So, Theorem 1.3 holds for  $n \le 7$  or  $\omega(\overline{G}) \le 2$ .

Suppose that  $n \ge 8$ ,  $\omega(G) \ge 3$ , and G is a counterexample to Theorem 1.3 with minimum n. We may assume that G is imperfect, and

if  $uv \notin E(G)$ , then neither  $N(u) \subseteq N(v)$  nor  $N(v) \subseteq N(u)$  holds. (6)

Let  $k \ge 7$  be an odd integer, and let *C* be an odd antihole of *G* with vertex set  $\{c_1, c_2, \ldots, c_k\}$  such that  $c_i$  is adjacent to all vertices but  $c_{i-1}$  and  $c_{i+1}$  of *C*, here the subscripts are taken modulo *k*.

Let v be a vertex in N(C). We call v an (i, j)-neighbor of C if v is complete to  $\{c_i, c_{i+1}, \ldots, c_{i+j-1}\}$  and anticomplete to  $\{c_{i-1}, c_{i+j}\}$ . Especially, an (i, 1)-neighbor of C is a vertex adjacent to  $c_i$  but nonadjacent to  $c_{i-1}$  and  $c_{i+1}$ . To avoid a 5-hole  $c_ic_{i+2}c_{i-1}c_{i+1}vc_i$ , we see that

no vertex of N(C) can be an (i, 2)-neighbor of C.

(7)

(9)

If v is an (i, 1)-neighbor of C for some i, then  $vc_{i-2} \in E(G)$  to avoid a  $P_5 = vc_ic_{i-2}c_{i+1}c_{i-1}$ , and  $vc_{i+2} \in E(G)$  to avoid a  $P_5 = vc_ic_{i+2}c_{i-1}c_{i+1}$ . Therefore, we have

$$vc_{i-2} \in E(G)$$
 and  $vc_{i+2} \in E(G)$  for each  $(i, 1)$ -neighbor  $v$  of  $C$ , (8)

and consequently, each vertex of N(C) has at least two neighbors in C.

Let  $B \subset N(C)$  be the set of all vertices complete to *C*, and let  $A = N(C) \setminus B$ . We first claim that

each vertex of *A* is an (i, j)-neighbor of *C* for some  $i \in [k]$  and  $j \ge 3$ .

If it is not the case, we may suppose, without loss of generality, that  $v \in A$  is a vertex such that  $c_1v \in E(G)$ ,  $c_2v \notin E(G)$  and  $c_kv \notin E(G)$  by (7), then  $c_3v \in E(G)$  and  $c_{k-1}v \in E(G)$  by (8). Repeating this argument with odd integer  $i \in \{1, 3, 5, ..., k-2\}$ , since k is odd, we have that  $c_kv \in E(G)$ , contradicting our assumption that  $c_kv \notin E(G)$ . Therefore, (9) holds. For each  $j \in [k]$  and  $c_iv \in E(G)$ , since  $\{v, c_i, c_{i+1}, c_{i+3}, c_{i+4}\}$  cannot induce a banner, we know that

there will not exist *j* such that 
$$vc_i \in E(G)$$
 and  $vc_{i+i} \notin E(G)$  for all  $i \in [4]$ . (10)

We consider two possibilities depending on  $M(C) = \emptyset$  or not.

J. Song and B. Xu

**Case 1.** First suppose that  $M(C) \neq \emptyset$ .

Let  $B_1$  be the set of all vertices of B of which each has a neighbor in M(C), and let  $B_2 = B \setminus B_1$ . We show that

*A* is anticomplete to M(C), and  $B_1$  is complete to  $A \cup B_2 \cup C$ .

The proof of (11) is almost the same as that of Lemma 2.1.

Let v be a vertex of A. Suppose that v has a neighbor, say w, in M(C). By (9), we may suppose by symmetry that v is a (1, j)-neighbor for some  $j \ge 3$ . Then,  $\{w, v, c_2, c_3, c_k\}$  induces a banner. So, A is anticomplete to M(C).

Since *G* is connected, we see that *B* cannot be anticomplete to M(C), and so  $B_1 \neq \emptyset$ . Let  $b_1$  be a vertex of  $B_1$ , and let w be a neighbor of  $b_1$  in M(C). For each pair of  $a \in A$  and  $b_2 \in B_2$ , we may suppose that, for some  $i, c_i, c_{i+1} \in N(a) \cap N(b_1)$  by (9), and so  $ab_1 \in E(G)$  to avoid a banner on  $\{a, b_1, c_i, c_{i+1}, w\}$ , and  $b_1b_2 \in E(G)$  to avoid a banner on  $\{b_1, b_2, c_i, c_{i+1}, w\}$ . This proves (11).

Furthermore, we can also show that

 $B_1$  is complete to M(C),

as otherwise, let  $w' \in N_{M(C)}(w) \setminus N(b_1)$ , then  $\{w', w, b_1, c_i, c_{i+2}\}$  induces a hammer.

Combine (11) and (12), we have that  $B_1$  is complete to  $G \setminus B_1$ , and so  $\omega(G) \le \omega(B_1) + \omega(G \setminus B_1)$ . Since G is a minimum counterexample to Theorem 1.3, we know that  $B_1$  is  $\omega^{\frac{3}{2}}(B_1)$ -colorable and  $G \setminus B_1$  is  $\omega^{\frac{3}{2}}(G \setminus B_1)$ -colorable. Then,

$$\begin{split} \chi(G) &\leq \chi(B_1) + \chi(G \setminus B_1) \\ &\leq \omega^{\frac{3}{2}}(B_1) + \omega^{\frac{3}{2}}(G \setminus B_1) \\ &\leq \omega^{\frac{3}{2}}(G), \end{split}$$

a contradiction.

**Case 2.** Now, we can suppose that  $M(C') = \emptyset$  holds for any odd antihole C' in G. For  $i \in [k]$ , we denote the edge  $c_i c_{i+2}$  by  $e_{i,i+2}$ , call such an edge as a *main edge*, and define  $M_{i,i+2}$  to be the set of all vertices which are anticomplete to  $\{c_i, c_{i+2}\}$ . Let  $A_i = N(c_i) \setminus N(c_{i+2})$ ,  $B_i = N(c_{i+2}) \setminus N(c_i)$ , and  $D_{i,i+2} = N(c_i) \cap N(c_{i+2})$ , where the summation of subindexes are taken

modulo k. We partition  $D_{i,i+2}$  into two subsets  $D_{i,i+2,1}$  and  $D_{i,i+2,2}$  such that each vertex in  $D_{i,i+2,1}$  has a neighbor in  $M_{i,i+2}$  and  $D_{i,i+2,2} = D_{i,i+2} \setminus D_{i,i+2,1}$ . Since C is an odd antihole, we have that  $c_{i+3} \in A_i$ ,  $c_{i-1} \in B_i$  and  $c_{i+4}$ ,  $c_{i-2} \in D_{i,i+2,1}$ , which imply that  $A_i$ ,  $B_i$ ,  $D_{i,i+2,1} \neq \emptyset$ .

We will show that, for each  $i \in [k]$ ,

$$A_i \cup B_i \cup M_{i,i+2}$$
 is a clique.

(13)

By symmetry, we may take  $e = e_{1,3}$  as an example. Denote  $M = M_{1,3}$ ,  $D = D_{1,3}$ ,  $D_1 = D_{1,3,1}$  and  $D_2 = D_{1,3,2}$  for simplicity. Since  $c_2$  is anticomplete to e, we have that  $c_2 \in M$ . Let  $a_1$  be a vertex in  $A_1$ , and  $b_1$  a vertex in  $B_1$ . If  $a_1c_2 \notin E(G)$ , then  $a_1c_1c_3c_kc_2$  is an induced  $P_5$  or banner, a contradiction. This shows that  $a_1c_2 \in E(G)$ . Similarly, we have that  $b_1c_2 \in E(G)$ . Therefore,

 $c_2$  is complete to  $A_1 \cup B_1$ .

If  $N_M(a_1) \neq N_M(b_1)$ , we may suppose  $m \in N_M(a_1) \setminus N_M(b_1)$ , then  $\{m, a_1, b_1, c_1, c_3\}$  will induce a  $P_5$  or a banner. So,  $N_M(a_1) = N_M(b_1)$ . Since G is  $C_5$ -free, we have that  $a_1b_1 \in E(G)$ , and thus

 $A_1$  is complete to  $B_1$ .

Let  $a'_1 \in A_1$ . Since  $G[\{a_1, a'_1, c_1, c_2, c_3\}]$  is not a banner, we know that  $a_1a'_1 \in E(G)$ , which implies that  $A_1$  is a clique. Similarly, we have that  $B_1$  is also a clique. So,

 $A_1 \cup B_1$  is a clique.

Let *a* be a vertex in  $A_1 \cup B_1 \cup D_1$  and *M'* be a component of *G*[*M*] such that *a* has a neighbor in *M'*. If *a* is not complete to *M'*, then there exists an edge  $w_1w_2 \in E(M')$  such that  $\{a, w_1, w_2\}$  forms a  $P_3$  and thus  $\{c_1, c_3, a, w_1, w_2\}$  is a  $P_5$  or a hammer. Therefore,

 $A_1 \cup B_1 \cup D_1$  is complete to M'.

We will show further that

 $wc_2 \in E(G)$  for each vertex  $w \in M$ .

(14)

Suppose that  $wc_2 \notin E(G)$  for some  $w \in M$ . Then,  $wc_1, wc_2, wc_3 \notin E(G)$ . Since  $M(C) = \emptyset$ , there exists *i* such that  $wc_i \in E(G)$ . Suppose such an *i* makes min{|i-1|, |i-3|} minimum under taking index modulo *k*. Then, it is not hard to verify  $wc_4, wc_k \in E(G)$  by (10) and hence { $w, c_2, c_3, c_4, c_5$ } will induce a  $P_5$  or a banner. Therefore, (14) holds, and thus G[M] is connected, which implies that  $A_1 \cup B_1 \cup D_1$  is complete to *M*. By symmetry, we have that

 $A_i \cup B_i \cup D_{i,i+2,1}$  is complete to  $M_{i,i+2}$  for each  $i \in [k]$ .

(15)

To prove (13), it remains to show that

*M* is a clique.

(16)

(20)

If it is not the case, then let  $w_1, w_2$  be two nonadjacent vertices in M. Since  $E(G) \cap \{w_1c_1, w_1c_3, w_2c_1, w_2c_3\} = \emptyset$ , we have  $\{w_1c_4, w_1c_k, w_2c_4, w_2c_k\} \subseteq E(G)$  by (8). For  $v \in \{w_1, w_2\}$ , as  $\{v, c_2, c_3, c_t, c_{t+1}\}$  will not induce a banner, we have that

there will not exist t with 
$$5 \le t \le k - 1$$
 such that  $vc_t, vc_{t+1} \notin E(G)$ . (17)

If  $\{w_1, w_2\}$  is not anticomplete  $\{c_5, c_{k-1}\}$ , we may suppose  $w_1c_5 \in E(G)$ , then  $\{w_1, w_2, c_3, c_4, c_5\}$  will induce a banner or a  $P_5$ , a contradiction. So,  $\{w_1c_5, w_1c_{k-1}, w_2c_5, w_2c_{k-1}\} \cap E(G) = \emptyset$ , which implies that  $\{w_1c_6, w_2c_6, w_1c_{k-2}, w_2c_{k-2}\} \subseteq E(G)$  by (8) and (17). Consider iteratively the subsets  $\{w_1, w_2, c_{1+2t}, c_{2+2t}, c_{3+2t}\}$  for  $1 \leq t \leq \frac{k-7}{2}$ . With almost the same arguments as above, one can verify, by (8) and (17), that  $\{w_1c_{1+2t}, w_2c_{1+2t}\} \cap E(G) = \emptyset$  and  $\{w_1c_{2+2t}, w_2c_{2+2t}\} \subseteq E(G)$  for  $1 \leq t \leq \frac{k-5}{2}$ . This shows that  $\{w_1c_{k-4}, w_2c_{k-4}\} \cap E(G) = \emptyset$  and  $\{w_1c_{k-3}, w_2c_{k-3}\} \subseteq E(G)$ . This contradicts (7), as  $\{w_1c_{k-2}, w_2c_{k-2}\} \subseteq E(G)$  and  $\{w_1c_{k-1}, w_2c_{k-1}\} \cap E(G) = \emptyset$ . Therefore, (16) follows and so does (13).

Let  $d \in D_2$ . Since  $G[\{d, c_1, c_2, c_3, a_1\}]$  and  $G[\{d, c_1, c_2, c_3, b_1\}]$  cannot be hammers, we have that  $a_1d \in E(G)$  and  $b_1d \in E(G)$ . By symmetry, we have that

$$D_{i,i+2,2}$$
 is complete to  $A_i \cup B_i$  for each  $i \in [k]$ . (18)

Now, we consider the main edge  $e_{k,2}$ . Since  $D_{1,3,1}$  is complete to  $M_{1,3}$  by (15), we have that  $D_{1,3,1} \subseteq N(c_2)$ . Since  $D_{1,3,2}$  is complete to  $A_1 \cup B_1$  by (18), we have that  $D_{1,3,2} \subseteq N(c_k)$ . Notice that  $A_1 \cup B_1 \cup M_{1,3} \setminus \{c_k, c_2\} \subseteq N(c_2) \cap N(c_k)$  by (13). We have that  $A_k = N(c_k) \setminus N(c_2) = D_{1,3,2} \cup \{c_3\}$ , and thus  $D_{1,3,2}$  is a clique as  $A_k$  is a clique by (13). With the similar argument, we can show that  $M_{k,2} = \{c_1\}$ . By symmetry, we have that, for each  $i \in [k]$ ,

$$N(c_i) \setminus N(c_{i+2}) = D_{i+1,i+3,2} \cup \{c_{i+3}\}, \text{ which is a clique, and } M_{i,i+2} = \{c_{i+1}\}.$$
(19)

Recall that  $D_1 = D_{1,3,1}$  and  $D_2 = D_{1,3,2}$ . Let  $t \ge 0$ , and let  $D_2 = \{d_1, d_2, \dots, d_t\}$ . By (19), we have that  $D_2 \cup \{c_1, c_3\}$  is a clique.

For a subset  $Z \subset V(G)$  and a vertex  $x \in V(G)$ , let  $M_Z(x)$  be the set of vertices of Z which are not adjacent to x. For  $i \in [t]$ , let  $U_i = M_{D_1}(d_i)$ , which is the set of non-neighbors of  $d_i$  in  $D_1$ . By (18), we have that  $U_i = M_{A_1 \cup B_1 \cup D_1}(d_i)$ . We will prove that

 $\bigcup_{v \in D_2 \cup \{c_1, c_3\}} M_{A_1 \cup B_1 \cup D_1}(v) \text{ is a clique.}$ 

To prove (20), we first prove that

 $M_{A_1 \cup B_1 \cup D_1}(v)$  is a nonempty clique for each vertex  $v \in D_2 \cup \{c_1, c_3\}$ . (21)

Since  $M_{A_1 \cup B_1 \cup D_1}(c_1) = B_1$  and  $M_{A_1 \cup B_1 \cup D_1}(c_3) = A_1$ , which are both cliques by (13), we only need to verify that (21) holds for the vertices in  $D_2$ . If  $U_i = \emptyset$  for some *i*, then  $N(c_1) \subseteq N(d_i)$  by (18), contradicting (6). Therefore,  $U_i \neq \emptyset$  for all  $i \in [t]$ . If there exists an  $i \in [t]$  and two nonadjacent vertices  $u_i, u'_i \in U_i$ , then  $G[\{d_i, u_i, u'_i, c_1, c_2\}]$  is a banner, a contradiction. So,  $U_i$  is a clique for all  $i \in [t]$ , and thus (21) holds.

If  $U_i \cap U_j \neq \emptyset$  for some  $1 \leq i < j \leq t$ , then there exists  $u \in U_i \cap U_j$  such that  $d_i u \notin E(G)$  and  $d_j u \notin E(G)$ , which implies  $G[\{d_i, d_i, u, c_1, c_2\}]$  is a hammer. Therefore,

 $U_1, U_2, \ldots, U_t$  are pairwisely disjoint,

and consequently,  $A_1, B_1, U_1, U_2, \ldots, U_t$  are pairwisely disjoint.

Let  $a_1 \in A_1$  and  $b_1 \in B_1$ . For integers  $1 \le i < i' \le t$ , let  $u_i \in U_i$  and  $u_{i'} \in U_{i'}$ . From (18), we have that  $a_1d_i, b_1d_i, a_1d_{i'}, b_1d_{i'} \in E(G)$ . If  $u_iu_{i'} \notin E(G)$ , then  $G[\{d_i, d_{i'}, u_i, u_{i'}, c_2\}]$  is a  $C_5$ . So,  $u_iu_{i'} \in E(G)$ . If  $a_1u_i \notin E(G)$ , then  $G[\{d_i, c_3, u_i, a_1, c_2\}]$  is a  $C_5$ . So,  $a_1u_i \notin E(G)$ , then  $G[\{d_i, c_3, u_i, a_1, c_2\}]$  is a  $C_5$ . So,  $a_1u_i \notin E(G)$ . Similarly, we have that  $b_1u_i \in E(G)$ . Therefore,  $U_i, U_{i'}, A_1, B_1$  are pairwisely complete for  $1 \le i < i' \le t$ . By (21), we have (20) holds. If  $\omega(G \setminus \{c_2\}) < \omega(G)$ , then

$$\chi(G) \le \chi(G \setminus \{c_2\}) + 1$$
$$\le (\omega(G) - 1)^{\frac{3}{2}} + 1$$
$$< \omega^{\frac{3}{2}}(G).$$

So,  $\omega(G \setminus \{c_2\}) = \omega(G)$ . Let  $W_0 = \{c_1, c_3\} \cup D_2$  and  $W_1 = A_1 \cup B_1 \cup U_1 \cup U_2 \cup \cdots \cup U_t$ . By (19) and (20), we have  $W_0$  and  $W_1$  are cliques. By (21), we have  $\omega(W_0) \le \omega(W_1)$ . Since  $c_2$  is complete to  $A_1 \cup B_1 \cup D_1$ ,  $A_1 \cup B_1 \cup D_1$  contains no maximum cliques, which means both  $G \setminus (W_0 \cup \{c_2\})$  and  $G[W_1]$  contain no maximum cliques. Therefore,  $\omega(G \setminus (W_0 \cup \{c_2\})) < \omega(G)$  and  $\omega(W_1) < \omega(G)$ .

If  $\omega(W_1) \ge \omega^2(W_0)$ , then  $\chi(G) \le \chi(G \setminus (W_0 \cup \{c_2\})) + \chi(W_0 \cup \{c_2\})$   $\le \omega^{\frac{3}{2}}(G \setminus (W_0 \cup \{c_2\})) + \omega(W_0)$   $\le (\omega(G) - 1)^{\frac{3}{2}} + \omega^{\frac{1}{2}}(W_1)$   $\le (\omega(G) - 1)^{\frac{3}{2}} + (\omega(G) - 1)^{\frac{1}{2}}$   $\le (\omega(G) - 1)^{\frac{1}{2}} \cdot \omega(G)$  $< \omega^{\frac{3}{2}}(G).$ 

Suppose that  $\omega(W_1) < \omega^2(W_0)$ . Let  $d_0 \in W_0$  be a vertex such that its corresponding nonadjacent clique  $U_0 \subseteq W_1$  has minimum size among  $A_1, B_1, U_1, U_2, \ldots, U_t$ . We have that  $\omega(W_0) \cdot \omega(U_0) = (t + 2)\omega(U_0) \le \omega(A_1) + \omega(B_1) + \sum_{i=1}^t \omega(U_i)\omega(W_1) < \min\{\omega^2(W_0), \omega(G)\}$ , which implies that  $\omega(U_0) < \omega(W_0)$  and  $\omega(U_0) < (\omega(G) - 1)^{\frac{1}{2}}$ . Since  $d_0$  is complete to  $G \setminus (U_0 \cup \{c_2, d_0\})$ , we have  $\omega(G \setminus (U_0 \cup \{c_2, d_0\})) \le \omega(G) - 1$  and then

$$\begin{split} \chi(G) &\leq \chi(G \setminus (U_0 \cup \{c_2, d_0\})) + \chi(U_0 \cup \{d_0\}) + \chi(\{c_2\}) \\ &\leq \omega^{\frac{3}{2}}(G \setminus (U_0 \cup \{c_2, d_0\})) + \omega(U_0) + 1 \\ &\leq (\omega(G) - 1)^{\frac{3}{2}} + ((\omega(G) - 1)^{\frac{1}{2}} - 1) + 1 \\ &\leq (\omega(G) - 1)^{\frac{1}{2}} \cdot \omega(G) \\ &\leq \omega^{\frac{3}{2}}(G). \end{split}$$

Thus,  $\chi(G) \le \omega^{\frac{3}{2}}(G)$  holds and so does Theorem 1.3.

#### Data availability

No data was used for the research described in the article.

#### References

- [1] C. Brause, M. Geißer, I. Schiermeyer, Homogeneous sets, clique-separators, critical graphs, and optimal  $\chi$ -binding functions, Discrete Appl. Math. 320 (2022) 211–222.
- [2] C. Brause, B. Randerath, I. Schiermeyer, E. Vumar, On the chromatic number of 2K<sub>2</sub>-free graphs, Discrete Appl. Math. 253 (2019) 14–24.
- [3] K. Cameron, S. Huang, O. Merkel, A bound for the chromatic number of (P<sub>5</sub>, gem)-free graphs, Bull. Austr. Math. Soc. 100 (2019) 182–188.
- [4] A. Char, T. Karthick, Coloring of (P<sub>5</sub>, 4-wheel)-free graphs, Discrete Math. 345 (2022) 211–222.
- [5] S.A. Choudum, T. Karthick, M.A. Shalu, Perfect coloring and linearly  $\chi$ -bounded  $P_6$ -free graphs, J. Graph Theory 54 (2007) 293–306.
- [6] M. Chudnovsky, T. Karthick, P. Maceli, F. Maffray, Coloring graphs with no induced five-vertex path or gem, J. Graph Theory 95 (2020) 527–542.
- [7] M. Chudnovsky, N. Robertson, P. Seymour, R. Thomas, The strong perfect graph theorem, Annal. Math. 164 (2006) 51–229.
- [8] M. Chudnovsky, V. Sivaraman, Perfect divisibility and 2-divisibility, J. Graph Theory 90 (2019) 54-60.
- [9] V. Chvátal, N. Sbihi, Recognizing claw-free perfect graphs, J. Combin, Theory Ser, B 44 (1988) 154–176.
- [10] W. Dong, B. Xu, Y. Xu, On the chromatic number of some  $P_5$ -free graphs, Discrete Math. 345 (2022) 113004.
- [11] W. Dong, B. Xu, Y. Xu, A tight linear bound to the chromatic number of  $(P_5, K_1 + (K_1 \cup K_3))$ -free graphs, Graphs Combin. 43 (2023) 43, http://dx.doi.org/10.1007/s00373-023-02642-y.
- [12] L. Esperet, L. Lemoine, F. Maffray, G. Morel, The chromatic number of {P<sub>5</sub>, K<sub>4</sub>}-free graphs, Discrete Math. 313 (2013) 743–754.
- [13] J.-L. Fouquet, V. Giakoumakis, F. Maire, H. Thuillier, On graphs without  $P_5$  and  $\overline{P}_5$ , Discrete Math. 146 (1995) 33–44.
- [14] C.T. Hoàng, On the structure of (banner, odd hole)-free graphs, J. Graph Theory 89 (2018) 395-412.
- [15] C.T. Hoàng, C. McDiarmid, On the divisibility of graphs, Discrete Math. 242 (2002) 145–156.
- [16] S. Huang, T. Karthick, On graphs with no induced five-vertex path or paraglider, 2019, arXiv:1903.11268v1.[math.CO]. https://arxiv.org.
- [17] D.S. Malyshev, Two cases of polynomial-time solvability for the coloring problem, J. Comb. Optm. 31 (2016) 833-845.
- [18] I. Schiermeyer, Chromatic number of P<sub>5</sub>-free graphs: Reed's conjecture, Discrete Math. 343 (2016) 1940–1943.
- [19] A. Scott, P. Seymour, Induced subgraphs of graphs with large chromatic number. I. Odd holes, J. Combin. Theory Ser. B 121 (2016) 68-84.
- [20] A. Scott, P. Seymour, S. Spirkl, Polynomial bounds for chromatic number. IV: A near-polynomial bound for excluding the five-vertex path, Combinatorica 43 (2023) 845–852.
- [21] V. Sivaraman, Some problems on induced subgraphs, Discrete Appl. Math. 236 (2018) 422-427.
- [22] D.P. Sumner, Subtrees of a graph and the chromatic number, in: The Theory and Applications of Graphs (Kalamazoo, Mich., 1980), Wiley, New York, 1981, pp. 557–576.
- [23] Y. Xu, The chromatic number of (P<sub>5</sub>, HVN)-free graphs, in: To Appear in Acta Appl. Math. Sinica English Ser, arXiv:2204.06460. [math.CO].
- [24] Y. Xu, The chromatic number of  $(P_5, K_5 e)$ -free graphs, Appl. Math. Comput. (2024) http://dx.doi.org/10.1016/j.amc.2023.128314.