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1. Introduction

All graphs considered in this paper are finite and simple. Let k be a positive integer. We use [k] to denote the set
{1,2, ..., k}. Let G be a graph. We use x(G), »(G) and «(G) to denote the chromatic number, clique number and independent
number of G, respectively. A path (resp. cycle) on k vertex is denoted by P (resp. C). We say a graph G is bipartite, if G
can be partitioned into two parts S and T such that every edge in G intersects both S and T nonempty. In particular, G is
complete bipartite, if every vertex in S connects every vertex in T, and we denote G by K; ., where |S| = s and |T| = t.
For x € V(G) and X C V(G), let N(x) be the set of neighbors of x, let N[x] = N(x) U {x}, and let N(X) = |J,.x N(v). Let
M(x) = V(G) \ N[x], and let M(X) = V(G) \ (N(X) U X). We say that X dominates G if V(G) = X U N(X), say that x is
complete (resp. anticomplete) to X, if X C N(x) (resp. X € M(x)), and say that x is mixed to X if x is neither complete nor
anticomplete to X.

Let X and Y be two subsets of V(G). If each vertex of X is complete (resp. anticomplete) to Y, then we say that X is
complete (resp. anticomplete) to Y. We say that X is mixed to Y if X is neither complete nor anticomplete to Y. Let G[X]
be the subgraph of G induced by X. We say that G induces H if G has an induced subgraph isomorphic to H, and say that
G is H-free if G does not induce H. For a given family # of graphs, we say that G is s#-free if G is H-free for each member
H of 7.
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A hole of G is an induced cycle of length at least 4. The complement of a hole is called an antihole. A hole (resp. an
antihole) C is called an odd hole (resp. odd antihole) if C has odd number of vertices. A graph is perfect if x(H) = w(H)
for each induced subgraph H of G. The famous Strong Perfect Graph Theorem states that a graph is perfect if and only if it
induces neither an odd hole nor an odd antihole [7].

Let k > 2 be an integer. We say that G admits a perfect division if V(G) can be partitioned into two subsets A and B such
that G[A] is perfect and w(G[B]) < w(G), and say that G admits a k-division if either E(G) = ¥ or V(G) can be partitioned
into k subsets Vi, V5, ..., Vi such that w(G[V;]) < w(G) for all i € [k]. A graph G is perfectly divisible [14] if each induced
subgraph H of G admits a perfect division, and G is k-divisible [15] if each induced subgraph H admits a k-division. By
induction, it is easy to verify that each perfectly divisible graph G is (”(GZ)H)—colorable, and each k-divisible graph G is
k©=1_colorable.

Hoang and McDiarmid [15] proved that every (odd hole, K; 5)-free graph is 2-divisible, and they also proposed a
conjecture, the Hoang and McDiarmid Conjecture for short, claiming that a graph is 2-divisible if and only if it is odd
hole free. The necessity of this conjecture is easy since each odd hole is not 2-divisible. Note that the 2-divisibility of G
implies that x(G) < 2©~1, The trueness of Hoang ar(lc)l McDiarmid Conjecture will determine a better upper bound on the
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chromatic number of odd hole free graphs than m the best known upper bound, due to Scott and Seymour [19].

Scott and Seymour mentioned a conjecture of Hoang, which claims that x(G) < w?(G) for every odd hole free graph
(see page 498 of [19]). Sivaraman [21] proposed a conjecture, that is a weakening version of Hoang's conjecture, claiming
that if G is a (hole of length at least 5)-free graph then x(G) < «?(G). It is easy to see that Ps-free graphs must be of
(hole of length at least 6)-free. The currently best known upper bound to chromatic number of Ps-free graphs is due to
Esperet et al. [12] who showed that x(G) < 5 - 3*(©=3 if G is Ps-free with (G) > 3. A still open conjecture of Choudum,
Karthick and Shalu [5] claiming that there is a constant ¢ such that x(G) < cw?(G) for all Ps-free graphs. There are quite
a lot upper bounds to the chromatic number of Ps-free graphs by avoiding some further small graphs.

We use diamond to denote the graph obtained from K4 by removing an edge, use cricket to denote the graph obtained
from a K; 4 by adding an edge between two pendant vertices of K 4. Let viv,v3v4v5 denote the path Ps with vertices v
for i € [5] and edges v;vi;q for i € [4]. We call Ps + viv3 a hammer, call Ps + v,v4 a bull, call Ps 4+ vqv4 a banner, call
Ps + {vivs, v1vs} a house, call Ps + {vqvs3, vivs} a cochair, call Ps + {vjvg, vovs} a dart, and call Ps + {vivs, vivg, V1V5} a
gem. A gem™ is obtained from a gem by adding a vertex adjacent to its vertex of degree 4.

Fouquet et al. [13] proved that (Ps, house)-free graphs are perfectly divisible. Schiermeyer [18] proved that x(G) <
?(G) if G is (Ps, H)-free for H € {cricket, dart, diamond, gem, gem™, K; 3}. Hoang [14] showed that every (odd holes,
banner)-free graph is both 2-divisible and perfectly divisible. Chudnovsky and Sivaraman [8] showed that (Ps, bull)-free
graphs and (odd hole, bull)-free graphs are both perfectly divisible, and (Ps, C5)-free graphs are 2-divisible. Dong, Xu and
Xu [10] proved that (Ps, Cs, K; 3)-free graphs are perfectly divisible and x(G) < 20*(G)—w ( ) 3if Gis (Ps, Ky 3)-free with
w(G) > 2. Improving the results of [3] and [5], Chudnovsky et al. [6] proved that x(G) < f 1 if G is (Ps, gem)-free. Let a
4-wheel be the graph obtained from a C4 by adding a vertex complete to Cy4, and let a paraglzder be the graph obtained from
a C4 by adding a vertex joining to three vertices of C4. Char and Karthick [4] showed that every (Ps, 4-wheel)-free gra h
G satisfies x(G) < 3‘” 9 . Huang and Karthick [16] showed that every (Ps, paraglider)-free graph G satisfies x(G) < |' 3(6) IR

Very recently, Brause et al. [1] proved that every (Ps, banner)-free graph G is ©®( l(‘,’gu()cc)) -colorable. Let x be a vertex of the

complete graph Ks. Let K5 be the graph obtained from K5 by removing an edge incident with x, let HVN be the graph
obtained from Ks by removing two edges incident with x, and let KI be the graph obtained from Ks by removing three
edges incident with x. Dong, Xu and Xu [11] proved that x(G) < max{15, 2w(G)} if G is (Ps, KI)—free. Improving slightly
a result of Malyshev [17], Xu [23] proved that x(G) < max{max{16, o(G) + 3}, w(G) + 1} for all (P5, HVN)-free graphs.
Xu [24] proved also that x(G) < max{13, w(G) + 1} for all (Ps, K, )-free graphs.

In this paper, we show that each (Ps, banner)-free graph is perfectly divisible. We note that (Ps, banner)-free graphs are
not necessarily 2-divisible, since the Cs is a trivial counterexample. However, we can find a 2-division for (Ps, banner)-free
graphs with independent number at least 3, and we can do even better with (Ps, K; 3)-free graphs.

Theorem 1.1. Let G be a (Ps, banner)-free graph. Then, G is perfectly divisible, and G admits a 2-division if a(G) > 3.

As a corollary of Theorem 1.1, we have that x(G) < (“9™") for all (Ps, banner)-free graphs. We can do better on (Ps,
K 3)-free graphs with independent number at least 3.

Theorem 1.2. If G is a connected (Ps, K1 3)-free graph with «(G) > 3, then G is perfect.

The restriction «(G) > 3 in Theorems 1.1 and 1.2 are necessary, since Cs is (Ps, banner)-free with independent number
2 but admits no 2-division, and all odd antiholes are (Ps, K; 3)-free with independent number 2 but imperfect.

Chudnovsky and Sivaraman [8] proved that (Ps, Cs)-free graphs are 2-divisible, and Scott, Seymour and Spirkl [20]
proved that x(G) < (G)°2“%) if G is Ps-free. Up to now, no polynomial binding function has been found even for
(Ps, Cs)-graphs. Theorem 1.1 asserts that (Ps, banner)-free graphs are perfectly divisible, which provides us with an O(w?)
binding function for such graphs. By a conclusion from [2] there is no linear binding function for (Ps, banner)-free graphs.
Even for (Ps, Cs, banner)-free graphs, it seems difficult to get a binding function better than O(w?). We study (Ps, Cs,
banner, hammer)-free graphs, and prove the following theorem.
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Theorem 1.3. Every (Ps, Cs, banner, hammer)-free graph G is w%(G)—colorable.

Before we begin our proofs, we list the following useful lemmas. A subset X of V(G) is called a homogeneous set if
2 < |X| < |V(G)| — 1 and every vertex in V(G) \ X is either complete or anticomplete to X.

Lemma 1.1 (Theorem 3.6, [8]). If G is not perfectly divisible with minimum number of vertices, then G admits no homogeneous
subset.

A graph G is a 5-ring if its vertex set can be partitioned into sets X, ..., X5 such that for i € [5], X; is a stable set and
xy is an edge for any x € X;, y € X;,1 with the subscript taken modulo 5.

Lemma 1.2 (Theorem 3.5, [22]). A connected graph G is (Ps, K3)-free if and only if G is either bipartite or a 5-ring.

Proposition 1.1 (Lemma 7.3, [14]). Each graph with independent number at most 2 is perfectly divisible.

We will prove Theorem 1.1 in Section 2, prove Theorem 1.2 in Section 3, and prove Theorem 1.3 in Section 4.
2. Proof of Theorem 1.1

Hoang has proved the perfect divisibility and 2-divisibility of (odd hole, banner)-free graphs [14], and Chudnovsky and
Sivaraman have proved the 2-divisibility of (Ps, Cs)-free graphs [8]. When consider the perfectly divisibility or 2-divisibility
of (Ps, banner)-free graphs, we may assume that those graphs are connected and contain a hole of length 5.

Let G be a (Ps, banner)-free graph, and let C = vqv,v3v4vs5v1 be the chordless cycle with vertices v; for i € [5] and
edges v;v;1 for i € [5] with the subscript taken modulo 5. If G is triangle-free, then G = C by Lemma 1.2. So, we suppose
that w(G) > 3.

Define A to be the set of all vertices of N(C) of which each has exactly three or four consecutive neighbors in C, and
define B to be the set of all vertices of N(C) of which each is complete to C. It is easy to check that

N(C)=AUB, (1)

as otherwise each x € N(C) \ (A U B) together with the cycle C will induce a Ps or a banner.
By Proposition 1.1, we suppose that «(G) > 3. Before proving Theorem 1.1, we first present some structural properties
of G. Let By be the set of all vertices of B of which each has a neighbor in M(C), and let B, = B\ B;.

Lemma 2.1. If M(C) # , then A is anticomplete to M(C), and B, is complete to AU B, U C.

Proof. Suppose that M(C) # @.

Suppose that A is not anticomplete to M(C), and let m € M(C) and n € A with mn € E(G). If n has exactly three
consecutive neighbors in C, we suppose, by symmetry, that nvq, nvy, nvs € E(G) and nvg, nvs ¢ E(G), then mnvsvavs
is a Ps. If n has four consecutive neighbors in C, we may suppose that vs is the only non-neighbor of n on C, then
G[{m, n, vq, v4, vs}] is a banner. Therefore, A is anticomplete to M(C).

Since G is connected and M(C) # @, we see that By # (. Let b; be a vertex of By, and let m be a neighbor of by in
M(C). For each pair of a € A and b, € B,, we may suppose, by symmetry, that ¢y, c3 € N(a) N N(by), and so ab; € E(G)
to avoid a banner on {a, by, ¢1, c3, m}, and b1b, € E(G) to avoid a banner on {bq, by, c1, c3, m}. Thus, B; is complete to
AUB,UC. =

Lemma 2.1 asserts that if M(C) # ¢, then AU B, U C is a homogeneous subset of G.

Next, we consider the case that M(C) = @. If C has a vertex complete to N(C), say vy, then ({vq, vs, v4, vs5}, V(G) \
{v1, v3, V4, vs}) is a perfect division (also a 2-division). Thus, we suppose that no vertex of C may be complete to N(C).

Recall that each vertex in A has three or four consecutive neighbors on C and each vertex in B is complete to C. For
each i € [5], we define T; = {t : tv;, tviy1, tvis € E(G), tviss, tvipsa ¢ E(G)}, and F; = {f : fui, fvirr, fvigo, fuies €
E(G), fviya ¢ E(G)} with the subscripts taken modulo 5. Then, N(C) = BU (Uig51Ti) U (Uigps)F).

Let t; and t, be two distinct vertices of T;, and let f; and f, be two distinct vertices in F;. Since none of G[{t1, t2, vi, Vit2,
vir4}] and G[{f1, f2, vi, vit2, viya}] can be a banner, we see that both T; and F; are cliques. With a similar argument, one
can verify that T; is complete to F;_; U F;. Let t3 be a vertex of T, 1. Since G[{t1, t3, vi, vi12, Vi+4}] cannot be a Ps, we see
that T; is complete to T;,;. Therefore, we have that

T;UTi1 UF is a clique. (2)
If M(C) = @, then
M(vi) = Fiyq U T U Tigp U {viga, vy},
and
N(vi)) =FUFp UF 3 UF 4 UT; UTig3 U Tigq U {vigq, viga).
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By (2), we see that
M(v;) is a clique, (3)

and so (M(v;) U {v;}, N(v;)) is a perfect-division. Therefore, we have

Lemma 2.2. [f M(C) = @, then G admits a perfect division.

Now, we can prove Theorem 1.1. First, we show that each (Ps, banner)-free graph is perfectly divisible. Suppose to its
contrary, and let G be a minimal (Ps, banner)-free non-perfectly divisible graph. Recall that Proposition 1.1 establishes
the perfect divisibility of graphs with independence number no more than 2. We have «a(G) > 3.

If M(C) = @, then for each i € [5], (M(v;) U {v;}, N(v;)) is a perfect division of G by Lemma 2.2. If M(C) # ¢, then
G admits a homogeneous set by Lemma 2.1, a contradiction to Lemma 1.1. Therefore, each (Ps, banner)-free graph is
perfectly divisible.

To complete the proof of Theorem 1.1, we shall show that every (Ps, banner)-free graph G admits a 2-division, when
«(G) > 3. Before that, we need the following lemma.

Lemma 2.3. Let k > 2 be an integer. If G is a minimal graph that admits no k-division, then G admits no homogeneous subset.

Proof. Suppose that G admits a homogeneous subset and is a minimal graph such that G admits no k-division. Let H be
a homogeneous subset belonging to G, L = G[V(G) \ H].

Since G is a minimal counterexample, we have that both L and H admit a k-division. Suppose L has a k-division
(Ly, Ly, ..., L) and H has a k-division (Hq, H, ..., Hy). Write G; = L; U H; for i = [k]. One can observe that o(G) >
w(G;) > max{w(L;), w(H;)}. Let K be a maximum clique in G;. Obviously, K will not entirely lie in L; or H;. Since H is

complete to Ng(H) and anticomplete to L \ Ng(H), we have K N H; # @, K N Ng(H) # @ and K N (L \ Ng(H)) = @. If
|K| = w(G), then K N H; must be a largest clique in H, a contradiction. ®

Suppose that «(G) > 3. Notice that (odd holes, banner)-free graphs are 2-divisible (see [14]). By Lemmas 2.1 and 2.3,
we may suppose that M(C) = ¢. For convenience, we use co-triangle to denote an independent set of size 3.

Since M(v;) is a clique for each i € [5] by (3), if there exists a v; such that M(v;) is not a maximum clique of G, then
(N(v;), M(v;) U {v;}) is a 2-division. So, we suppose that

M(v;) is @ maximum clique of G for each i € [5]. (4)
We will complete the proof of Theorem 1.1 by showing
G contains no co-triangles. (5)

Suppose that (5) does not hold and let Cy be a co-triangle of G. It is certain that |C, N V(C)| < 2.

Recall that C = vjvyvzvgqvsvy. If |Co NV(C)| = 2, we suppose, by symmetry, that Co = {u, vy, v3}, then u ¢ (A U B),
contradicting (1). If |Co N V(C)| = 1, we suppose that Cy = {uq, uy, v1} (Where uq, u; ¢ C), then uy,u, e L UT3 UF, as
M(C) = @, contradicting (2) by taking i = 2. Therefore, Cy contains no vertex of C.

Suppose that C; = {uq, Uz, us}. By (2), we have the following possibilities, for some i € [5], on the locations of the
vertices of Cp.

(a) uy € F, up € Fiyq,and us € Fiyp U Ty,
(b) uy € Fuy e F1‘+2, and us € Fi+3 UTi_q.
(c) u; e FUT;, uy € Fiyq, and u3 € B.

(d) u e FUT;, uy € F,'+2 (@] TH»Z‘ and us € B.
(e) uy € FUT;, uy, u3 € B.

(f) uy €Ty uy € Ti+2, and us € Fj+3.

&) GCB

Since G[{uq, uz, us, v;, viy2}] is a banner in cases (a) to (c) and a Ps in case (f), and G[{uy, uy, us, vi_1, vi12}] is a banner
in cases (d) and (e), we turn to case (g).

Suppose that Cy C B, and let v be a vertex in T;UF;. The vertex v exists, for otherwise A = 4, and so C is a homogeneous
set of G, a contradiction to Lemma 2.3. If v is anticomplete to Cp, then G[{v, vit1, U1, U, viy4}] is a banner. If v has exactly
one neighbor in Cy, say vu; € E(G) by symmetry, then G[{v, vi;1, Uz, U3, vi4}] is a banner. If v has exactly two neighbors
in Co, say vus ¢ E(G) by symmetry, then G[{v, u, Uz, viy4, u3}] is a banner. So, we have that Cy is complete to T; U F;. By
symmetry between the pair (T;, F;) and the pair (T, 1, F;), one can verify easily that Cy is complete to T;, 1 UF;. Therefore, Cy
is complete to T;UT;, UF; if Cp C B. Recall that M(vj_1) = F;UT;UT;;1U{viy1, viyo}. Since u; € B, we see that M(v;_1)U{u4}
is a clique larger than M(v;_1). This contradiction to (4) proves (5), and completes the proof of Theorem 1.1. W
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3. (Ps, K4,3)-free graphs
We prove Theorem 1.2 in this section. Below lemma is very useful to our proof.

Lemma 3.1 (Ben Rebea’s Lemma, see [9]). Let G be a K; 3-free graph which induces an odd antihole. If «(G) > 3, then G
contains an induced cycle of length 5.

Proof of Theorem 1.2. Suppose to the contrary that Theorem 1.2 does not hold. Let G be an imperfect (Ps, K 3)-free
graph with «(G) > 3. Since G is Ps-free, G contains an odd antihole as induced subgraph. By Lemma 3.1, G contains a hole
of length 5. Let C = vyv,v3v4v5v1 be a hole of length five in G.

We still define A to be the set of all vertices of N(C) of which each has exactly three or four consecutive neighbors on
C, define B to be the set of all vertices of N(C) of which each is complete to C, and define T; and F; for each i € [5] in the
same way as that of last section. Then, A = (Uje(s)T;) U (Uigrs Fi), and N(C) = AU B as G is certainly (Ps, banner)-free.

If M(C) # @, we may choose w to be a vertex in M(C) that has a neighbor, say w’, in N(C), then {w, w’} together with
two nonadjacent neighbors of w’ on C would induce a K 3. Therefore, M(C) = .

Since «(G) > 3, we may choose a stable set of size 3, say S = {uy, uy, us}. Note that each (Ps, K; 3)-free graph must be
(Ps, banner)-free. Since M(C) = @, both (2) and (3) still hold for each i € [5].

Since G is K 3-free, we see that S Z B, and either SN V(C) =@ or SN B = {J as B is complete to C. If |SNB| = 2, we
suppose by symmetry that uq, u, € B, and let v be a neighbor of u3 on C. If |S N B| = 1, we suppose u; € B, and let v be
a common neighbor of u; and u3 on C. In both cases, we have a K; 3 induced by S U {v}. Therefore, we have SN B = ¢.

Recall that for each i € [5], both F; and T; are cliques by (2).

If |S N (Vigs1Fi)l = 2, we suppose that uq, u; € UiesiF; by symmetry, then there exists j € [5] such that the common
neighbors of u; and u; on C is either {vj, vjy1, vjy2} O {vj, vjt1, vjy3}. Since us has at least 3 neighbors on C, one can
always find a vertex, say v, on C such that G[S U {v}] is a Kj 3.

If |S N (UiesiFi)l = 1, we may suppose that u; € F; by symmetry, then up, u3 € T3 U T4 U Ts U {vs} by (2), and so
{uy, us} N T3] = 1 = |{uy, us} N Ts|, which implies an induced Ps = uqv3uyvsus3 OF Uqv3U3VsU;.

So, we have that S N (Uies)Fi) = @ as well, and thus S C UjesT; U V(C). But G[Uie5T; U V(C)] is a graph obtained by
blowing up each vertex of a Cs into a clique, which has independent number 2. This contradiction to «(G) > 3 completes
the proof of Theorem 1.2. MW

4. (Ps, C5, banner, hammer)-free graphs

We prove Theorem 1.3 in this section.

Let G be a (Ps, Cs, banner, hammer)-free graph on n vertices. Following the Strong Perfect Graph3 Theorem [7], G is perfect
ifn <6.1f n =7, G is imperfect if and only if G is an odd antihole, and x(G) =4 < %w(G) < w2(G). If G is triangle-free,
then G is bipartite by Lemma 1.2, and x(G) =2 < 23, So, Theorem 1.3 holds for n < 7 or w(G) < 2.

Suppose that n > 8, w(G) > 3, and G is a counterexample to Theorem 1.3 with minimum n. We may assume that G is
imperfect, and

if uv ¢ E(G), then neither N(u) € N(v) nor N(v) € N(u) holds. (6)
Let k > 7 be an odd integer, and let C be an odd antihole of G with vertex set {cy, co, ..., ¢k} such that ¢; is adjacent

to all vertices but ¢;_; and c;;; of C, here the subscripts are taken modulo k.
Let v be a vertex in N(C). We call v an (i, j)-neighbor of C if v is complete to {c;, Cit1, ..., Ciyj—1} and anticomplete to

{ci—1, ciyj}. Especially, an (i, 1)-neighbor of C is a vertex adjacent to ¢; but nonadjacent to ¢;_; and c;4;. To avoid a 5-hole
CiCi12Ci—1Ci+10C;, we see that

no vertex of N(C) can be an (i, 2)-neighbor of C. (7)

If v is an (i, 1)-neighbor of C for some i, then vc;_, € E(G) to avoid a Ps = vci¢j_»Ci11Ci—1, and vciyo € E(G) to avoid a
Ps = vciCiy2Ci—1Cirq. Therefore, we have

vci_ € E(G) and vciy, € E(G) for each (i, 1)-neighbor v of C, (8)

and consequently, each vertex of N(C) has at least two neighbors in C.
Let B C N(C) be the set of all vertices complete to C, and let A = N(C) \ B. We first claim that

each vertex of A is an (i, j)-neighbor of C for some i € [k] and j > 3. (9)

If it is not the case, we may suppose, without loss of generality, that v € A is a vertex such that c;v € E(G), c;v € E(G) and
cxv € E(G)by (7), then c3v € E(G) and ¢x_1v € E(G) by (8). Repeating this argument with odd integeri € {1, 3,5, ..., k—2},
since k is odd, we have that c,v € E(G), contradicting our assumption that cyv & E(G). Therefore, (9) holds.

For each j € [k] and ¢jv € E(G), since {v, ¢, Cj11, Cj13, Cj+4} cannot induce a banner, we know that

there will not exist j such that v¢; € E(G) and vcjy; ¢ E(G) for all i € [4]. (10)
We consider two possibilities depending on M(C) = ¢ or not.
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Case 1. First suppose that M(C) # @.
Let By be the set of all vertices of B of which each has a neighbor in M(C), and let B, = B\ B;. We show that

A is anticomplete to M(C), and B; is complete to AU B, U C. 11

The proof of (11) is almost the same as that of Lemma 2.1.

Let v be a vertex of A. Suppose that v has a neighbor, say w, in M(C). By (9), we may suppose by symmetry that v is
a (1, j)-neighbor for some j > 3. Then, {w, v, c3, 3, ¢} induces a banner. So, A is anticomplete to M(C).

Since G is connected, we see that B cannot be anticomplete to M(C), and so B; # {. Let b, be a vertex of B, and let w
be a neighbor of by in M(C). For each pair of a € A and b, € B,, we may suppose that, for some i, ¢;, ¢ci.1 € N(a) N N(bq)
by (9), and so ab; € E(G) to avoid a banner on {a, by, ¢;, ¢ci+1, w}, and b1b, € E(G) to avoid a banner on {by, b,, ¢, ¢i+1, w}.
This proves (11).

Furthermore, we can also show that

B, is complete to M(C), (12)

as otherwise, let w’ € Ny(cy(w) \ N(b1), then {w’, w, by, ¢;, cit»} induces a hammer.
Combine (11) and (12), we have that By is complete3to G\ By, and so w(G) < a)(B1)3+ (G \ By). Since G is a minimum
counterexample to Theorem 1.3, we know that B; is w2 (B;)-colorable and G \ B; is w2(G \ B;)-colorable. Then,

x(G) = x(B1) + x(G\ B1)
< w3 (B)+wi(G\By)
< wi(G),
a contradiction.

Case 2. Now, we can suppose that M(C") = @ holds for any odd antihole C’ in G. For i € [k], we denote the edge cic;;» by
e i+2, call such an edge as a main edge, and define M; i, to be the set of all vertices which are anticomplete to {c;, ¢i12}.
Let A; = N(c¢;) \ N(ci+2), Bi = N(ci+2) \ N(c;), and D; ;12 = N(c¢;) N N(ciy2), where the summation of subindexes are taken
modulo k. We partition D; ;5 into two subsets D; i1 1 and D; ;42 » such that each vertex in D; ;45 1 has a neighbor in M; i1
and D; 122 = Dji2 \ Dijt2.1. Since C is an odd antihole, we have that c;y3 € A;, ¢i—1 € Bi and ¢iy4, ¢i—2 € Dj 42,1, Wwhich
imply that A;, B;, Diit21 # @.
We will show that, for each i € [k],

AiUB; U MLH»Z isa clique. (13)

By symmetry, we may take e = €q,3 as an example. Denote M = M1’3, D = D],g, D, = D1’3,1 and D, = D1’3’2 for
simplicity. Since ¢, is anticomplete to e, we have that ¢, € M. Let a; be a vertex in Aq, and b; a vertex in By. If a;c; & E(G),
then a;cic3cicy is an induced Ps or banner, a contradiction. This shows that a;c, € E(G). Similarly, we have that bic; € E(G).
Therefore,

c, is complete to A; U By.

If Ny(a;) # Ny(bq), we may suppose m € Ny(aq) \ Ny(by), then {m, ay, b1, c1, c3} will induce a Ps or a banner. So,
Nu(aq) = Ny(by). Since G is Cs-free, we have that a;b; € E(G), and thus

Ay is complete to Bj.

Let a} € Ay. Since G[{ay, a}, ¢1, ¢z, c3}] is not a banner, we know that a;a} € E(G), which implies that A; is a clique.
Similarly, we have that By is also a clique. So,

A UBjq is a clique.

Let a be a vertex in A; UB; UD; and M’ be a component of G[M] such that a has a neighbor in M'. If a is not complete
to M’, then there exists an edge wiw, € E(M’) such that {a, wy, w,} forms a P; and thus {cy, c3, a, wy, wp} is a Ps or a
hammer. Therefore,

A1 UB; UD; is complete to M.
We will show further that
wc, € E(G) for each vertex w € M. (14)

Suppose that wc, € E(G) for some w € M. Then, wcy, wey, wes ¢ E(G). Since M(C) = @, there exists i such that
wc; € E(G). Suppose such an i makes min{|i — 1|, |i — 3|} minimum under taking index modulo k. Then, it is not hard to
verify wcy, we, € E(G) by (10) and hence {w, c3, c3, ¢4, s} will induce a Ps or a banner. Therefore, (14) holds, and thus
G[M] is connected, which implies that A; U B; U D¢ is complete to M. By symmetry, we have that

Ai UB; UD; ;4 is complete to M; ;4 for each i € [k]. (15)
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To prove (13), it remains to show that
M is a clique. (16)

If it is not the case, then let wq, wy be two nonadjacent vertices in M. Since E(G) N {w1C1, w1C3, waCq, waC3} = @, we
have {w1cs, w1k, wacs, wock} € E(G) by (8). For v € {wq, wy}, as {v, ¢z, c3, ¢, ¢¢+1} Will not induce a banner, we have
that

there will not exist t with 5 <t < k — 1 such that vc;, vceqq € E(G). a7

If {w, w,} is not anticomplete {cs, cx_1}, we may suppose wics € E(G), then {wq, wo, c3, ¢4, cs} will induce a banner or
a Ps, a contradiction. So, {w1Cs5, w1Ck_1, WaCs, woCr_1} NE(G) = @, which implies that {wcg, wyCg, W1Cr_2, W2Ck_2} C E(G)
by (8) and (17). Consider iteratively the subsets {wq, wy, C142¢, Co42t, C342¢} for 1 < t < "’77 With almost the same
arguments as above, one can verify, by (8) and (17), that {w1cq42¢, WaC142¢} N E(G) = @ and {w1Cay2¢, waCa12t} S E(G)
forl <t < "%5 This shows that {wick_4, wack_4} N E(G) = ¥ and {wqck_3, wacr_3} € E(G). This contradicts (7), as
{wick_2, wack_2} € E(G) and {wick_1, wack—1} N E(G) = @. Therefore, (16) follows and so does (13).

Let d € D,. Since G[{d, c1, c3, c3,a;}] and G[{d, c1, c3, c3, b1}] cannot be hammers, we have that a;d € E(G) and

bid € E(G). By symmetry, we have that
D; 422 is complete to A; U B; for each i e [k]. (18)

Now, we consider the main edge ey ». Since Dy 3 1 is complete to M; 3 by (15), we have that Dq 31 € N(c2). Since Dy 32
is complete to A; UBy by (18), we have that D; 3, € N(ck). Notice that Ay UB1 UM 3\ {ck, c2} € N(c2)NN(ck) by (13). We
have that Ay = N(cx) \ N(c2) = D132 U{c3}, and thus Dy 35 is a clique as Ay is a clique by (13). With the similar argument,
we can show that My, = {c;}. By symmetry, we have that, for each i € [k],

N(ci) \ N(ciy2) = Dit1,i43.2 U {Ciy3}, which is a clique, and M; 42 = {ciy1}- (19)

Recall that Dy = Dy 37 and D, = Dy 3. Lett > 0, and let D, = {d;, d3, ..., d¢}. By (19), we have that D, U {cy, c3} is a
clique.

For a subset Z C V(G) and a vertex x € V(G), let Mz(x) be the set of vertices of Z which are not adjacent to x. For
i € [t], let U; = Mp, (d;), which is the set of non-neighbors of d; in D;. By (18), we have that U; = My, up,up, (d;). We will
prove that

UveDzu{qm Ma,us,up, (V) is a clique. (20)
To prove (20), we first prove that
Ma,us,up, (v) is a nonempty clique for each vertex v € D, U {cy, ¢3}. (21)

Since Ma,u,up, (1) = By and Ma,ug,up, (c3) = Ay, which are both cliques by (13), we only need to verify that (21) holds
for the vertices in D,. If U; = @ for some i, then N(c;) C N(d;) by (18), contradicting (6). Therefore, U; # ¢ for all i € [t].
If there exists an i € [t] and two nonadjacent vertices u;, u; € U;, then G[{d;, u;, u}, ¢1, c2}] is a banner, a contradiction. So,
U is a clique for all i € [t], and thus (21) holds.

If UyNUj # @ for some 1 <i < j <t, then there exists u € U; N U; such that dju ¢ E(G) and d;u ¢ E(G), which implies
Gl{d;, d;, u, c1, c2}] is a hammer. Therefore,

Ui, Uy, ..., U; are pairwisely disjoint,

and consequently, A1, By, Uy, Ua, ..., U; are pairwisely disjoint.

Let a; € A; and by € B;. Forintegers 1 < i < i’ < t,let u; € U; and uy € Uy. From (18), we have that
aid;, b1d;, a1dy, bidy € E(G). If ujuy ¢ E(G), then G[{d;, dy, u;, uy, c3}] is a GCs. So, ujuy € E(G). If aju; ¢ E(G), then
G[{d;, c3, u;, aq, c2}] is a Gs. So, aju; € E(G). Similarly, we have that byu; € E(G). Therefore, U;, Uy, A1, By are pairwisely
complete for 1 <i < i <t.By (21), we have (20) holds.

If w(G\ {c2}) < w(G), then

x(G) < x(G\ {c2}) + 1
<((G)—1)3 +1
< w3 (G).

So, w(G\ {c2}) = w(G). Let Wy = {c1, c3}UD, and W; = A UB{UU;UU, U---UU,. By (19) and (20), we have Wy and
Wi are cliques. By (21), we have w(Wy) < w(W,). Since ¢, is complete to A; U By UD1, A; UB; UD; contains no maximum
cliques, which means both G\ (W U {c,}) and G[W,] contain no maximum cliques. Therefore, (G \ (Wp U {c2})) < o(G)
and o(W7) < o(G).

150



J. Song and B. Xu Discrete Applied Mathematics 348 (2024) 144-151

If w(W;) > w?(Wp), then
X(G) < x(G\ (Wo U{ea]) + x(Wo U {c2))
®2(G\ (Wo U {c2}) + (W)

=<

< ((G) = 1)7 + w2 (W)
< (@(G) = 1)7 + ((G) — 1)?
< (@(G) — 1)? - w(G)

< w3 (G).

Suppose that w(W;) < w?(Wp). Let dy € W be a vertex such that its corresponding nonadjacent clique Uy € W,

has minimum size among Ay, By, Uy, Us, ..., U;. We have that w(Wp) - w(Up) = (t 4+ 2)w(Ug) < (A1) + w(B1) +

2

le o(Up)w(W;) < min{w?(Wp), »(G)}, which implies that w(Up) < w(Wp) and w(Up) < (@(G)— 1)%. Since d is complete

to G\ (Up U {ca, dp}), we have w(G \ (Up U {c2, dp})) < ®(G) — 1 and then

X(G) < x(G\ (Up U {2, do})) + x(Uo U {do}) + x(lca})
®2(G\ (Up U {3, do})) + w(Up) + 1

=<

< (@(G) = 1)? + ((@(G) — 1)7 — 1)+ 1
< (@(G) = 1)? - w(G)

< w3 (G).

Thus, x(G) < w%(G) holds and so does Theorem 1.3. W
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