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a b s t r a c t

A P5 is a path on 5 vertices, a banner is a graph obtained by adding a pendant edge
to a vertex of a quadrilateral and a hammer is a graph obtained from a K5 by deleting
a banner as a partial subgraph. A graph G is perfect if χ (H) = ω(H) for each induced
subgraph H of G. We say that G admits a perfect division if V (G) can be partitioned
into two subsets A and B such that G[A] is perfect and ω(G[B]) < ω(G), and say that G
admits a 2-division if E(G) = ∅ or V (G) can be partitioned into two subsets A and B such
that max{ω(G[A]), ω(G[B])} < ω(G). Furthermore, G is perfectly divisible if each induced
subgraph H of G admits a perfect division, and G is 2-divisible if each induced subgraph H
admits a 2-division. In this paper, we show that each (P5, banner)-free graph is perfectly
divisible, and show that each (P5, C5, banner, hammer)-free graph G is ω

3
2 (G)-colorable.

For every P5-free graph G with α(G) ≥ 3, we show that G admits a 2-division if G is
banner-free, and G is perfect if G is connected and K1,3-free.

© 2024 Elsevier B.V. All rights reserved.

1. Introduction

All graphs considered in this paper are finite and simple. Let k be a positive integer. We use [k] to denote the set
1, 2, . . . , k}. Let G be a graph. We use χ (G), ω(G) and α(G) to denote the chromatic number, clique number and independent
umber of G, respectively. A path (resp. cycle) on k vertex is denoted by Pk (resp. Ck). We say a graph G is bipartite, if G
an be partitioned into two parts S and T such that every edge in G intersects both S and T nonempty. In particular, G is
omplete bipartite, if every vertex in S connects every vertex in T , and we denote G by Ks,t , where |S| = s and |T | = t .
or x ∈ V (G) and X ⊆ V (G), let N(x) be the set of neighbors of x, let N[x] = N(x) ∪ {x}, and let N(X) =

⋃
v∈X N(v). Let

(x) = V (G) \ N[x], and let M(X) = V (G) \ (N(X) ∪ X). We say that X dominates G if V (G) = X ∪ N(X), say that x is
omplete (resp. anticomplete) to X , if X ⊆ N(x) (resp. X ⊆ M(x)), and say that x is mixed to X if x is neither complete nor
nticomplete to X .
Let X and Y be two subsets of V (G). If each vertex of X is complete (resp. anticomplete) to Y , then we say that X is

omplete (resp. anticomplete) to Y . We say that X is mixed to Y if X is neither complete nor anticomplete to Y . Let G[X]

e the subgraph of G induced by X . We say that G induces H if G has an induced subgraph isomorphic to H , and say that
is H-free if G does not induce H . For a given family H of graphs, we say that G is H -free if G is H-free for each member
of H .
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A hole of G is an induced cycle of length at least 4. The complement of a hole is called an antihole. A hole (resp. an
ntihole) C is called an odd hole (resp. odd antihole) if C has odd number of vertices. A graph is perfect if χ (H) = ω(H)
or each induced subgraph H of G. The famous Strong Perfect Graph Theorem states that a graph is perfect if and only if it
nduces neither an odd hole nor an odd antihole [7].

Let k ≥ 2 be an integer. We say that G admits a perfect division if V (G) can be partitioned into two subsets A and B such
hat G[A] is perfect and ω(G[B]) < ω(G), and say that G admits a k-division if either E(G) = ∅ or V (G) can be partitioned
nto k subsets V1, V2, . . . , Vk such that ω(G[Vi]) < ω(G) for all i ∈ [k]. A graph G is perfectly divisible [14] if each induced
ubgraph H of G admits a perfect division, and G is k-divisible [15] if each induced subgraph H admits a k-division. By
nduction, it is easy to verify that each perfectly divisible graph G is

(
ω(G)+1

2

)
-colorable, and each k-divisible graph G is

ω(G)−1-colorable.
Hoàng and McDiarmid [15] proved that every (odd hole, K1,3)-free graph is 2-divisible, and they also proposed a

onjecture, the Hoàng and McDiarmid Conjecture for short, claiming that a graph is 2-divisible if and only if it is odd
ole free. The necessity of this conjecture is easy since each odd hole is not 2-divisible. Note that the 2-divisibility of G
mplies that χ (G) ≤ 2ω(G)−1. The trueness of Hoàng and McDiarmid Conjecture will determine a better upper bound on the
hromatic number of odd hole free graphs than 22

ω(G)+2

48(ω(G)+2) , the best known upper bound, due to Scott and Seymour [19].
Scott and Seymour mentioned a conjecture of Hoàng, which claims that χ (G) ≤ ω2(G) for every odd hole free graph

(see page 498 of [19]). Sivaraman [21] proposed a conjecture, that is a weakening version of Hoàng’s conjecture, claiming
that if G is a (hole of length at least 5)-free graph then χ (G) ≤ ω2(G). It is easy to see that P5-free graphs must be of
hole of length at least 6)-free. The currently best known upper bound to chromatic number of P5-free graphs is due to
speret et al. [12] who showed that χ (G) ≤ 5 · 3ω(G)−3 if G is P5-free with ω(G) ≥ 3. A still open conjecture of Choudum,
arthick and Shalu [5] claiming that there is a constant c such that χ (G) ≤ cω2(G) for all P5-free graphs. There are quite
lot upper bounds to the chromatic number of P5-free graphs by avoiding some further small graphs.
We use diamond to denote the graph obtained from K4 by removing an edge, use cricket to denote the graph obtained

rom a K1,4 by adding an edge between two pendant vertices of K1,4. Let v1v2v3v4v5 denote the path P5 with vertices vi
or i ∈ [5] and edges vivi+1 for i ∈ [4]. We call P5 + v1v3 a hammer, call P5 + v2v4 a bull, call P5 + v1v4 a banner, call
5 + {v1v4, v1v5} a house, call P5 + {v1v3, v1v4} a cochair, call P5 + {v1v4, v2v4} a dart, and call P5 + {v1v3, v1v4, v1v5} a
em. A gem+ is obtained from a gem by adding a vertex adjacent to its vertex of degree 4.
Fouquet et al. [13] proved that (P5, house)-free graphs are perfectly divisible. Schiermeyer [18] proved that χ (G) ≤

2(G) if G is (P5,H)-free for H ∈ {cricket, dart, diamond, gem, gem+, K1,3}. Hoàng [14] showed that every (odd holes,
anner)-free graph is both 2-divisible and perfectly divisible. Chudnovsky and Sivaraman [8] showed that (P5, bull)-free
raphs and (odd hole, bull)-free graphs are both perfectly divisible, and (P5, C5)-free graphs are 2-divisible. Dong, Xu and
u [10] proved that (P5, C5, K2,3)-free graphs are perfectly divisible and χ (G) ≤ 2ω2(G)−ω(G)−3 if G is (P5, K2,3)-free with
(G) ≥ 2. Improving the results of [3] and [5], Chudnovsky et al. [6] proved that χ (G) ≤ ⌈

5ω(G)
4 ⌉ if G is (P5, gem)-free. Let a

4-wheel be the graph obtained from a C4 by adding a vertex complete to C4, and let a paraglider be the graph obtained from
C4 by adding a vertex joining to three vertices of C4. Char and Karthick [4] showed that every (P5, 4-wheel)-free graph
satisfies χ (G) ≤

3ω(G)
2 . Huang and Karthick [16] showed that every (P5, paraglider)-free graph G satisfies χ (G) ≤ ⌈

3ω(G)
2 ⌉.

ery recently, Brause et al. [1] proved that every (P5, banner)-free graph G is Θ( ω2(G)
logω(G) )-colorable. Let x be a vertex of the

complete graph K5. Let K−

5 be the graph obtained from K5 by removing an edge incident with x, let HVN be the graph
btained from K5 by removing two edges incident with x, and let K+

4 be the graph obtained from K5 by removing three
dges incident with x. Dong, Xu and Xu [11] proved that χ (G) ≤ max{15, 2ω(G)} if G is (P5, K+

4 )-free. Improving slightly
result of Malyshev [17], Xu [23] proved that χ (G) ≤ max{max{16, ω(G) + 3}, ω(G) + 1} for all (P5,HVN)-free graphs.
u [24] proved also that χ (G) ≤ max{13, ω(G) + 1} for all (P5, K−

5 )-free graphs.
In this paper, we show that each (P5, banner)-free graph is perfectly divisible. We note that (P5, banner)-free graphs are

ot necessarily 2-divisible, since the C5 is a trivial counterexample. However, we can find a 2-division for (P5, banner)-free
raphs with independent number at least 3, and we can do even better with (P5, K1,3)-free graphs.

heorem 1.1. Let G be a (P5, banner)-free graph. Then, G is perfectly divisible, and G admits a 2-division if α(G) ≥ 3.

As a corollary of Theorem 1.1, we have that χ (G) ≤
(
ω(G)+1

2

)
for all (P5, banner)-free graphs. We can do better on (P5,

1,3)-free graphs with independent number at least 3.

heorem 1.2. If G is a connected (P5, K1,3)-free graph with α(G) ≥ 3, then G is perfect.

The restriction α(G) ≥ 3 in Theorems 1.1 and 1.2 are necessary, since C5 is (P5, banner)-free with independent number
but admits no 2-division, and all odd antiholes are (P5, K1,3)-free with independent number 2 but imperfect.
Chudnovsky and Sivaraman [8] proved that (P5, C5)-free graphs are 2-divisible, and Scott, Seymour and Spirkl [20]

roved that χ (G) ≤ ω(G)log2 ω(G) if G is P5-free. Up to now, no polynomial binding function has been found even for
P5, C5)-graphs. Theorem 1.1 asserts that (P5, banner)-free graphs are perfectly divisible, which provides us with an O(ω2)
inding function for such graphs. By a conclusion from [2] there is no linear binding function for (P5, banner)-free graphs.
ven for (P5, C5, banner)-free graphs, it seems difficult to get a binding function better than O(ω2). We study (P5, C5,
anner, hammer)-free graphs, and prove the following theorem.
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heorem 1.3. Every (P5, C5, banner, hammer)-free graph G is ω
3
2 (G)-colorable.

Before we begin our proofs, we list the following useful lemmas. A subset X of V (G) is called a homogeneous set if
≤ |X | ≤ |V (G)| − 1 and every vertex in V (G) \ X is either complete or anticomplete to X .

emma 1.1 (Theorem 3.6, [8]). If G is not perfectly divisible with minimum number of vertices, then G admits no homogeneous
ubset.

A graph G is a 5-ring if its vertex set can be partitioned into sets X1, . . . , X5 such that for i ∈ [5], Xi is a stable set and
xy is an edge for any x ∈ Xi, y ∈ Xi+1 with the subscript taken modulo 5.

Lemma 1.2 (Theorem 3.5, [22]). A connected graph G is (P5, K3)-free if and only if G is either bipartite or a 5-ring.

Proposition 1.1 (Lemma 7.3, [14]). Each graph with independent number at most 2 is perfectly divisible.

We will prove Theorem 1.1 in Section 2, prove Theorem 1.2 in Section 3, and prove Theorem 1.3 in Section 4.

2. Proof of Theorem 1.1

Hoàng has proved the perfect divisibility and 2-divisibility of (odd hole, banner)-free graphs [14], and Chudnovsky and
Sivaraman have proved the 2-divisibility of (P5, C5)-free graphs [8]. When consider the perfectly divisibility or 2-divisibility
of (P5, banner)-free graphs, we may assume that those graphs are connected and contain a hole of length 5.

Let G be a (P5, banner)-free graph, and let C = v1v2v3v4v5v1 be the chordless cycle with vertices vi for i ∈ [5] and
edges vivi+1 for i ∈ [5] with the subscript taken modulo 5. If G is triangle-free, then G = C by Lemma 1.2. So, we suppose
that ω(G) ≥ 3.

Define A to be the set of all vertices of N(C) of which each has exactly three or four consecutive neighbors in C , and
define B to be the set of all vertices of N(C) of which each is complete to C . It is easy to check that

N(C) = A ∪ B, (1)

as otherwise each x ∈ N(C) \ (A ∪ B) together with the cycle C will induce a P5 or a banner.
By Proposition 1.1, we suppose that α(G) ≥ 3. Before proving Theorem 1.1, we first present some structural properties

of G. Let B1 be the set of all vertices of B of which each has a neighbor in M(C), and let B2 = B \ B1.

Lemma 2.1. If M(C) ̸= ∅, then A is anticomplete to M(C), and B1 is complete to A ∪ B2 ∪ C.

Proof. Suppose that M(C) ̸= ∅.
Suppose that A is not anticomplete to M(C), and let m ∈ M(C) and n ∈ A with mn ∈ E(G). If n has exactly three

onsecutive neighbors in C , we suppose, by symmetry, that nv1, nv2, nv3 ∈ E(G) and nv4, nv5 /∈ E(G), then mnv3v4v5
s a P5. If n has four consecutive neighbors in C , we may suppose that v5 is the only non-neighbor of n on C , then
[{m, n, v1, v4, v5}] is a banner. Therefore, A is anticomplete to M(C).
Since G is connected and M(C) ̸= ∅, we see that B1 ̸= ∅. Let b1 be a vertex of B1, and let m be a neighbor of b1 in
(C). For each pair of a ∈ A and b2 ∈ B2, we may suppose, by symmetry, that c1, c3 ∈ N(a) ∩ N(b1), and so ab1 ∈ E(G)

o avoid a banner on {a, b1, c1, c3,m}, and b1b2 ∈ E(G) to avoid a banner on {b1, b2, c1, c3,m}. Thus, B1 is complete to
A ∪ B2 ∪ C . ■

Lemma 2.1 asserts that if M(C) ̸= ∅, then A ∪ B2 ∪ C is a homogeneous subset of G.
Next, we consider the case that M(C) = ∅. If C has a vertex complete to N(C), say v1, then ({v1, v3, v4, v5}, V (G) \

{v1, v3, v4, v5}) is a perfect division (also a 2-division). Thus, we suppose that no vertex of C may be complete to N(C).
Recall that each vertex in A has three or four consecutive neighbors on C and each vertex in B is complete to C . For

each i ∈ [5], we define Ti = {t : tvi, tvi+1, tvi+2 ∈ E(G), tvi+3, tvi+4 /∈ E(G)}, and Fi = {f : f vi, f vi+1, f vi+2, f vi+3 ∈

E(G), f vi+4 /∈ E(G)} with the subscripts taken modulo 5. Then, N(C) = B ∪ (∪i∈[5]Ti) ∪ (∪i∈[5]Fi).
Let t1 and t2 be two distinct vertices of Ti, and let f1 and f2 be two distinct vertices in Fi. Since none of G[{t1, t2, vi, vi+2,

vi+4}] and G[{f1, f2, vi, vi+2, vi+4}] can be a banner, we see that both Ti and Fi are cliques. With a similar argument, one
can verify that Ti is complete to Fi−1 ∪ Fi. Let t3 be a vertex of Ti+1. Since G[{t1, t3, vi, vi+2, vi+4}] cannot be a P5, we see
that Ti is complete to Ti+1. Therefore, we have that

Ti ∪ Ti+1 ∪ Fi is a clique. (2)

If M(C) = ∅, then

M(vi) = Fi+1 ∪ Ti+1 ∪ Ti+2 ∪ {vi+2, vi+3},

and

N(v ) = F ∪ F ∪ F ∪ F ∪ T ∪ T ∪ T ∪ {v , v }.
i i i+2 i+3 i+4 i i+3 i+4 i+1 i+4
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y (2), we see that

M(vi) is a clique, (3)

nd so (M(vi) ∪ {vi},N(vi)) is a perfect-division. Therefore, we have

emma 2.2. If M(C) = ∅, then G admits a perfect division.

Now, we can prove Theorem 1.1. First, we show that each (P5, banner)-free graph is perfectly divisible. Suppose to its
ontrary, and let G be a minimal (P5, banner)-free non-perfectly divisible graph. Recall that Proposition 1.1 establishes
he perfect divisibility of graphs with independence number no more than 2. We have α(G) ≥ 3.

If M(C) = ∅, then for each i ∈ [5], (M(vi) ∪ {vi},N(vi)) is a perfect division of G by Lemma 2.2. If M(C) ̸= ∅, then
admits a homogeneous set by Lemma 2.1, a contradiction to Lemma 1.1. Therefore, each (P5, banner)-free graph is
erfectly divisible.
To complete the proof of Theorem 1.1, we shall show that every (P5, banner)-free graph G admits a 2-division, when

(G) ≥ 3. Before that, we need the following lemma.

emma 2.3. Let k ≥ 2 be an integer. If G is a minimal graph that admits no k-division, then G admits no homogeneous subset.

roof. Suppose that G admits a homogeneous subset and is a minimal graph such that G admits no k-division. Let H be
homogeneous subset belonging to G, L = G[V (G) \ H].
Since G is a minimal counterexample, we have that both L and H admit a k-division. Suppose L has a k-division

L1, L2, . . . , Lk) and H has a k-division (H1,H2, . . . ,Hk). Write Gi = Li ∪ Hi for i = [k]. One can observe that ω(G) ≥

(Gi) ≥ max{ω(Li), ω(Hi)}. Let K be a maximum clique in Gi. Obviously, K will not entirely lie in Li or Hi. Since H is
omplete to NG(H) and anticomplete to L \ NG(H), we have K ∩ Hi ̸= ∅, K ∩ NG(H) ̸= ∅ and K ∩ (L \ NG(H)) = ∅. If
K | = ω(G), then K ∩ Hi must be a largest clique in H , a contradiction. ■

Suppose that α(G) ≥ 3. Notice that (odd holes, banner)-free graphs are 2-divisible (see [14]). By Lemmas 2.1 and 2.3,
e may suppose that M(C) = ∅. For convenience, we use co-triangle to denote an independent set of size 3.
Since M(vi) is a clique for each i ∈ [5] by (3), if there exists a vi such that M(vi) is not a maximum clique of G, then

N(vi),M(vi) ∪ {vi}) is a 2-division. So, we suppose that

M(vi) is a maximum clique of G for each i ∈ [5]. (4)

We will complete the proof of Theorem 1.1 by showing

G contains no co-triangles. (5)

Suppose that (5) does not hold and let C0 be a co-triangle of G. It is certain that |C0 ∩ V (C)| ≤ 2.
Recall that C = v1v2v3v4v5v1. If |C0 ∩ V (C)| = 2, we suppose, by symmetry, that C0 = {u, v1, v3}, then u /∈ (A ∪ B),

ontradicting (1). If |C0 ∩ V (C)| = 1, we suppose that C0 = {u1, u2, v1} (where u1, u2 /∈ C), then u1, u2 ∈ T2 ∪ T3 ∪ F2 as
(C) = ∅, contradicting (2) by taking i = 2. Therefore, C0 contains no vertex of C .
Suppose that C0 = {u1, u2, u3}. By (2), we have the following possibilities, for some i ∈ [5], on the locations of the

ertices of C0.

(a) u1 ∈ Fi, u2 ∈ Fi+1, and u3 ∈ Fi+2 ∪ Ti+3.
(b) u1 ∈ Fi, u2 ∈ Fi+2, and u3 ∈ Fi+3 ∪ Ti−1.
(c) u1 ∈ Fi ∪ Ti, u2 ∈ Fi+1, and u3 ∈ B.
(d) u1 ∈ Fi ∪ Ti, u2 ∈ Fi+2 ∪ Ti+2, and u3 ∈ B.
(e) u1 ∈ Fi ∪ Ti, u2, u3 ∈ B.
(f ) u1 ∈ Ti, u2 ∈ Ti+2, and u3 ∈ Fi+3.
(g) C0 ⊆ B.

Since G[{u1, u2, u3, vi, vi+2}] is a banner in cases (a) to (c) and a P5 in case (f ), and G[{u1, u2, u3, vi−1, vi+2}] is a banner
n cases (d) and (e), we turn to case (g).

Suppose that C0 ⊆ B, and let v be a vertex in Ti∪Fi. The vertex v exists, for otherwise A = ∅, and so C is a homogeneous
et of G, a contradiction to Lemma 2.3. If v is anticomplete to C0, then G[{v, vi+1, u1, u2, vi+4}] is a banner. If v has exactly
ne neighbor in C0, say vu1 ∈ E(G) by symmetry, then G[{v, vi+1, u2, u3, vi+4}] is a banner. If v has exactly two neighbors
n C0, say vu3 /∈ E(G) by symmetry, then G[{v, u1, u2, vi+4, u3}] is a banner. So, we have that C0 is complete to Ti ∪ Fi. By
ymmetry between the pair (Ti, Fi) and the pair (Ti+1, Fi), one can verify easily that C0 is complete to Ti+1∪Fi. Therefore, C0
s complete to Ti∪Ti+1∪Fi if C0 ⊆ B. Recall that M(vi−1) = Fi∪Ti∪Ti+1∪{vi+1, vi+2}. Since u1 ∈ B, we see that M(vi−1)∪{u1}
s a clique larger than M(vi−1). This contradiction to (4) proves (5), and completes the proof of Theorem 1.1. ■
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. (P5, K1,3)-free graphs

We prove Theorem 1.2 in this section. Below lemma is very useful to our proof.

emma 3.1 (Ben Rebea’s Lemma, see [9]). Let G be a K1,3-free graph which induces an odd antihole. If α(G) ≥ 3, then G
ontains an induced cycle of length 5.

roof of Theorem 1.2. Suppose to the contrary that Theorem 1.2 does not hold. Let G be an imperfect (P5, K1,3)-free
raph with α(G) ≥ 3. Since G is P5-free, G contains an odd antihole as induced subgraph. By Lemma 3.1, G contains a hole
f length 5. Let C = v1v2v3v4v5v1 be a hole of length five in G.
We still define A to be the set of all vertices of N(C) of which each has exactly three or four consecutive neighbors on

, define B to be the set of all vertices of N(C) of which each is complete to C , and define Ti and Fi for each i ∈ [5] in the
ame way as that of last section. Then, A = (∪i∈[5]Ti) ∪ (∪i∈[5]Fi), and N(C) = A ∪ B as G is certainly (P5, banner)-free.
If M(C) ̸= ∅, we may choose w to be a vertex in M(C) that has a neighbor, say w′, in N(C), then {w, w′

} together with
two nonadjacent neighbors of w′ on C would induce a K1,3. Therefore, M(C) = ∅.

Since α(G) ≥ 3, we may choose a stable set of size 3, say S = {u1, u2, u3}. Note that each (P5, K1,3)-free graph must be
(P5, banner)-free. Since M(C) = ∅, both (2) and (3) still hold for each i ∈ [5].

Since G is K1,3-free, we see that S ̸⊆ B, and either S ∩ V (C) = ∅ or S ∩ B = ∅ as B is complete to C . If |S ∩ B| = 2, we
suppose by symmetry that u1, u2 ∈ B, and let v be a neighbor of u3 on C . If |S ∩ B| = 1, we suppose u1 ∈ B, and let v be
common neighbor of u2 and u3 on C . In both cases, we have a K1,3 induced by S ∪ {v}. Therefore, we have S ∩ B = ∅.
Recall that for each i ∈ [5], both Fi and Ti are cliques by (2).
If |S ∩ (∪i∈[5]Fi)| ≥ 2, we suppose that u1, u2 ∈ ∪i∈[5]Fi by symmetry, then there exists j ∈ [5] such that the common

eighbors of u1 and u2 on C is either {vj, vj+1, vj+2} or {vj, vj+1, vj+3}. Since u3 has at least 3 neighbors on C , one can
lways find a vertex, say v, on C such that G[S ∪ {v}] is a K1,3.
If |S ∩ (∪i∈[5]Fi)| = 1, we may suppose that u1 ∈ F1 by symmetry, then u2, u3 ∈ T3 ∪ T4 ∪ T5 ∪ {v5} by (2), and so

{u2, u3} ∩ T3| = 1 = |{u2, u3} ∩ T5|, which implies an induced P5 = u1v3u2v5u3 or u1v3u3v5u2.
So, we have that S ∩ (∪i∈[5]Fi) = ∅ as well, and thus S ⊆ ∪i∈[5]Ti ∪ V (C). But G[∪i∈[5]Ti ∪ V (C)] is a graph obtained by

lowing up each vertex of a C5 into a clique, which has independent number 2. This contradiction to α(G) ≥ 3 completes
he proof of Theorem 1.2. ■

. (P5, C5, banner, hammer)-free graphs

We prove Theorem 1.3 in this section.
Let G be a (P5, C5, banner, hammer)-free graph on n vertices. Following the Strong Perfect Graph Theorem [7], G is perfect

f n ≤ 6. If n = 7, G is imperfect if and only if G is an odd antihole, and χ (G) = 4 ≤
4
3ω(G) ≤ ω

3
2 (G). If G is triangle-free,

then G is bipartite by Lemma 1.2, and χ (G) = 2 ≤ 2
3
2 . So, Theorem 1.3 holds for n ≤ 7 or ω(G) ≤ 2.

Suppose that n ≥ 8, ω(G) ≥ 3, and G is a counterexample to Theorem 1.3 with minimum n. We may assume that G is
mperfect, and

if uv /∈ E(G), then neither N(u) ⊆ N(v) nor N(v) ⊆ N(u) holds. (6)

Let k ≥ 7 be an odd integer, and let C be an odd antihole of G with vertex set {c1, c2, . . . , ck} such that ci is adjacent
to all vertices but ci−1 and ci+1 of C , here the subscripts are taken modulo k.

Let v be a vertex in N(C). We call v an (i, j)-neighbor of C if v is complete to {ci, ci+1, . . . , ci+j−1} and anticomplete to
{ci−1, ci+j}. Especially, an (i, 1)-neighbor of C is a vertex adjacent to ci but nonadjacent to ci−1 and ci+1. To avoid a 5-hole
cici+2ci−1ci+1vci, we see that

no vertex of N(C) can be an (i, 2)-neighbor of C . (7)

If v is an (i, 1)-neighbor of C for some i, then vci−2 ∈ E(G) to avoid a P5 = vcici−2ci+1ci−1, and vci+2 ∈ E(G) to avoid a
P5 = vcici+2ci−1ci+1. Therefore, we have

vci−2 ∈ E(G) and vci+2 ∈ E(G) for each (i, 1)-neighbor v of C , (8)

and consequently, each vertex of N(C) has at least two neighbors in C .
Let B ⊂ N(C) be the set of all vertices complete to C , and let A = N(C) \ B. We first claim that

each vertex of A is an (i, j)-neighbor of C for some i ∈ [k] and j ≥ 3. (9)

If it is not the case, we may suppose, without loss of generality, that v ∈ A is a vertex such that c1v ∈ E(G), c2v ̸∈ E(G) and
ckv ̸∈ E(G) by (7), then c3v ∈ E(G) and ck−1v ∈ E(G) by (8). Repeating this argument with odd integer i ∈ {1, 3, 5, . . . , k−2},
since k is odd, we have that ckv ∈ E(G), contradicting our assumption that ckv ̸∈ E(G). Therefore, (9) holds.

For each j ∈ [k] and cjv ∈ E(G), since {v, cj, cj+1, cj+3, cj+4} cannot induce a banner, we know that

there will not exist j such that vcj ∈ E(G) and vcj+i /∈ E(G) for all i ∈ [4]. (10)

We consider two possibilities depending on M(C) = ∅ or not.
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C

a

b
b

e

ase 1. First suppose that M(C) ̸= ∅.
Let B1 be the set of all vertices of B of which each has a neighbor in M(C), and let B2 = B \ B1. We show that

A is anticomplete to M(C), and B1 is complete to A ∪ B2 ∪ C . (11)

The proof of (11) is almost the same as that of Lemma 2.1.
Let v be a vertex of A. Suppose that v has a neighbor, say w, in M(C). By (9), we may suppose by symmetry that v is

(1, j)-neighbor for some j ≥ 3. Then, {w, v, c2, c3, ck} induces a banner. So, A is anticomplete to M(C).
Since G is connected, we see that B cannot be anticomplete to M(C), and so B1 ̸= ∅. Let b1 be a vertex of B1, and let w

e a neighbor of b1 in M(C). For each pair of a ∈ A and b2 ∈ B2, we may suppose that, for some i, ci, ci+1 ∈ N(a) ∩ N(b1)
y (9), and so ab1 ∈ E(G) to avoid a banner on {a, b1, ci, ci+1, w}, and b1b2 ∈ E(G) to avoid a banner on {b1, b2, ci, ci+1, w}.

This proves (11).
Furthermore, we can also show that

B1 is complete to M(C), (12)

as otherwise, let w′
∈ NM(C)(w) \ N(b1), then {w′, w, b1, ci, ci+2} induces a hammer.

Combine (11) and (12), we have that B1 is complete to G \ B1, and so ω(G) ≤ ω(B1) + ω(G \ B1). Since G is a minimum
counterexample to Theorem 1.3, we know that B1 is ω

3
2 (B1)-colorable and G \ B1 is ω

3
2 (G \ B1)-colorable. Then,

χ (G) ≤ χ (B1) + χ (G \ B1)

≤ ω
3
2 (B1) + ω

3
2 (G \ B1)

≤ ω
3
2 (G),

a contradiction.

Case 2. Now, we can suppose that M(C ′) = ∅ holds for any odd antihole C ′ in G. For i ∈ [k], we denote the edge cici+2 by
i,i+2, call such an edge as a main edge, and define Mi,i+2 to be the set of all vertices which are anticomplete to {ci, ci+2}.
Let Ai = N(ci) \N(ci+2), Bi = N(ci+2) \N(ci), and Di,i+2 = N(ci)∩N(ci+2), where the summation of subindexes are taken

modulo k. We partition Di,i+2 into two subsets Di,i+2,1 and Di,i+2,2 such that each vertex in Di,i+2,1 has a neighbor in Mi,i+2
and Di,i+2,2 = Di,i+2 \ Di,i+2,1. Since C is an odd antihole, we have that ci+3 ∈ Ai, ci−1 ∈ Bi and ci+4, ci−2 ∈ Di,i+2,1, which
imply that Ai, Bi,Di,i+2,1 ̸= ∅.

We will show that, for each i ∈ [k],

Ai ∪ Bi ∪ Mi,i+2 is a clique. (13)

By symmetry, we may take e = e1,3 as an example. Denote M = M1,3, D = D1,3, D1 = D1,3,1 and D2 = D1,3,2 for
simplicity. Since c2 is anticomplete to e, we have that c2 ∈ M . Let a1 be a vertex in A1, and b1 a vertex in B1. If a1c2 ̸∈ E(G),
then a1c1c3ckc2 is an induced P5 or banner, a contradiction. This shows that a1c2 ∈ E(G). Similarly, we have that b1c2 ∈ E(G).
Therefore,

c2 is complete to A1 ∪ B1.

If NM (a1) ̸= NM (b1), we may suppose m ∈ NM (a1) \ NM (b1), then {m, a1, b1, c1, c3} will induce a P5 or a banner. So,
NM (a1) = NM (b1). Since G is C5-free, we have that a1b1 ∈ E(G), and thus

A1 is complete to B1.

Let a′

1 ∈ A1. Since G[{a1, a′

1, c1, c2, c3}] is not a banner, we know that a1a′

1 ∈ E(G), which implies that A1 is a clique.
Similarly, we have that B1 is also a clique. So,

A1 ∪ B1 is a clique.

Let a be a vertex in A1 ∪ B1 ∪D1 and M ′ be a component of G[M] such that a has a neighbor in M ′. If a is not complete
to M ′, then there exists an edge w1w2 ∈ E(M ′) such that {a, w1, w2} forms a P3 and thus {c1, c3, a, w1, w2} is a P5 or a
hammer. Therefore,

A1 ∪ B1 ∪ D1 is complete to M ′.

We will show further that

wc2 ∈ E(G) for each vertex w ∈ M. (14)

Suppose that wc2 ̸∈ E(G) for some w ∈ M . Then, wc1, wc2, wc3 /∈ E(G). Since M(C) = ∅, there exists i such that
wci ∈ E(G). Suppose such an i makes min{|i − 1|, |i − 3|} minimum under taking index modulo k. Then, it is not hard to
verify wc4, wck ∈ E(G) by (10) and hence {w, c2, c3, c4, c5} will induce a P5 or a banner. Therefore, (14) holds, and thus
G[M] is connected, which implies that A1 ∪ B1 ∪ D1 is complete to M . By symmetry, we have that

A ∪ B ∪ D is complete to M for each i ∈ [k]. (15)
i i i,i+2,1 i,i+2
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{

b

To prove (13), it remains to show that

M is a clique. (16)

If it is not the case, then let w1, w2 be two nonadjacent vertices in M . Since E(G) ∩ {w1c1, w1c3, w2c1, w2c3} = ∅, we
have {w1c4, w1ck, w2c4, w2ck} ⊆ E(G) by (8). For v ∈ {w1, w2}, as {v, c2, c3, ct , ct+1} will not induce a banner, we have
that

there will not exist t with 5 ≤ t ≤ k − 1 such that vct , vct+1 /∈ E(G). (17)

If {w1, w2} is not anticomplete {c5, ck−1}, we may suppose w1c5 ∈ E(G), then {w1, w2, c3, c4, c5} will induce a banner or
a P5, a contradiction. So, {w1c5, w1ck−1, w2c5, w2ck−1}∩E(G) = ∅, which implies that {w1c6, w2c6, w1ck−2, w2ck−2} ⊆ E(G)
by (8) and (17). Consider iteratively the subsets {w1, w2, c1+2t , c2+2t , c3+2t} for 1 ≤ t ≤

k−7
2 . With almost the same

arguments as above, one can verify, by (8) and (17), that {w1c1+2t , w2c1+2t} ∩ E(G) = ∅ and {w1c2+2t , w2c2+2t} ⊆ E(G)
for 1 ≤ t ≤

k−5
2 . This shows that {w1ck−4, w2ck−4} ∩ E(G) = ∅ and {w1ck−3, w2ck−3} ⊆ E(G). This contradicts (7), as

w1ck−2, w2ck−2} ⊆ E(G) and {w1ck−1, w2ck−1} ∩ E(G) = ∅. Therefore, (16) follows and so does (13).
Let d ∈ D2. Since G[{d, c1, c2, c3, a1}] and G[{d, c1, c2, c3, b1}] cannot be hammers, we have that a1d ∈ E(G) and

1d ∈ E(G). By symmetry, we have that

Di,i+2,2 is complete to Ai ∪ Bi for each i ∈ [k]. (18)

Now, we consider the main edge ek,2. Since D1,3,1 is complete to M1,3 by (15), we have that D1,3,1 ⊆ N(c2). Since D1,3,2
is complete to A1 ∪B1 by (18), we have that D1,3,2 ⊆ N(ck). Notice that A1 ∪B1 ∪M1,3 \ {ck, c2} ⊆ N(c2)∩N(ck) by (13). We
have that Ak = N(ck)\N(c2) = D1,3,2 ∪{c3}, and thus D1,3,2 is a clique as Ak is a clique by (13). With the similar argument,
we can show that Mk,2 = {c1}. By symmetry, we have that, for each i ∈ [k],

N(ci) \ N(ci+2) = Di+1,i+3,2 ∪ {ci+3}, which is a clique, and Mi,i+2 = {ci+1}. (19)

Recall that D1 = D1,3,1 and D2 = D1,3,2. Let t ≥ 0, and let D2 = {d1, d2, . . . , dt}. By (19), we have that D2 ∪ {c1, c3} is a
clique.

For a subset Z ⊂ V (G) and a vertex x ∈ V (G), let MZ (x) be the set of vertices of Z which are not adjacent to x. For
i ∈ [t], let Ui = MD1 (di), which is the set of non-neighbors of di in D1. By (18), we have that Ui = MA1∪B1∪D1 (di). We will
prove that⋃

v∈D2∪{c1,c3}
MA1∪B1∪D1 (v) is a clique. (20)

To prove (20), we first prove that

MA1∪B1∪D1 (v) is a nonempty clique for each vertex v ∈ D2 ∪ {c1, c3}. (21)

Since MA1∪B1∪D1 (c1) = B1 and MA1∪B1∪D1 (c3) = A1, which are both cliques by (13), we only need to verify that (21) holds
for the vertices in D2. If Ui = ∅ for some i, then N(c1) ⊆ N(di) by (18), contradicting (6). Therefore, Ui ̸= ∅ for all i ∈ [t].
If there exists an i ∈ [t] and two nonadjacent vertices ui, u′

i ∈ Ui, then G[{di, ui, u′

i, c1, c2}] is a banner, a contradiction. So,
Ui is a clique for all i ∈ [t], and thus (21) holds.

If Ui ∩ Uj ̸= ∅ for some 1 ≤ i < j ≤ t , then there exists u ∈ Ui ∩ Uj such that diu ̸∈ E(G) and dju ̸∈ E(G), which implies
G[{di, dj, u, c1, c2}] is a hammer. Therefore,

U1,U2, . . . ,Ut are pairwisely disjoint,

and consequently, A1, B1,U1,U2, . . . ,Ut are pairwisely disjoint.
Let a1 ∈ A1 and b1 ∈ B1. For integers 1 ≤ i < i′ ≤ t , let ui ∈ Ui and ui′ ∈ Ui′ . From (18), we have that

a1di, b1di, a1di′ , b1di′ ∈ E(G). If uiui′ /∈ E(G), then G[{di, di′ , ui, ui′ , c2}] is a C5. So, uiui′ ∈ E(G). If a1ui /∈ E(G), then
G[{di, c3, ui, a1, c2}] is a C5. So, a1ui ∈ E(G). Similarly, we have that b1ui ∈ E(G). Therefore, Ui,Ui′ , A1, B1 are pairwisely
complete for 1 ≤ i < i′ ≤ t . By (21), we have (20) holds.

If ω(G \ {c2}) < ω(G), then

χ (G) ≤ χ (G \ {c2}) + 1

≤ (ω(G) − 1)
3
2 + 1

< ω
3
2 (G).

So, ω(G \ {c2}) = ω(G). Let W0 = {c1, c3} ∪D2 and W1 = A1 ∪ B1 ∪U1 ∪U2 ∪ · · · ∪Ut . By (19) and (20), we have W0 and
W1 are cliques. By (21), we have ω(W0) ≤ ω(W1). Since c2 is complete to A1 ∪ B1 ∪D1, A1 ∪ B1 ∪D1 contains no maximum
cliques, which means both G \ (W0 ∪ {c2}) and G[W1] contain no maximum cliques. Therefore, ω(G \ (W0 ∪ {c2})) < ω(G)
and ω(W ) < ω(G).
1
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h∑

D

R

If ω(W1) ≥ ω2(W0), then

χ (G) ≤ χ (G \ (W0 ∪ {c2})) + χ (W0 ∪ {c2})

≤ ω
3
2 (G \ (W0 ∪ {c2})) + ω(W0)

≤ (ω(G) − 1)
3
2 + ω

1
2 (W1)

≤ (ω(G) − 1)
3
2 + (ω(G) − 1)

1
2

≤ (ω(G) − 1)
1
2 · ω(G)

≤ ω
3
2 (G).

Suppose that ω(W1) < ω2(W0). Let d0 ∈ W0 be a vertex such that its corresponding nonadjacent clique U0 ⊆ W1
as minimum size among A1, B1,U1,U2, . . . ,Ut . We have that ω(W0) · ω(U0) = (t + 2)ω(U0) ≤ ω(A1) + ω(B1) +
t
i=1 ω(Ui)ω(W1) < min{ω2(W0), ω(G)}, which implies that ω(U0) < ω(W0) and ω(U0) < (ω(G)−1)

1
2 . Since d0 is complete

to G \ (U0 ∪ {c2, d0}), we have ω(G \ (U0 ∪ {c2, d0})) ≤ ω(G) − 1 and then

χ (G) ≤ χ (G \ (U0 ∪ {c2, d0})) + χ (U0 ∪ {d0}) + χ ({c2})

≤ ω
3
2 (G \ (U0 ∪ {c2, d0})) + ω(U0) + 1

≤ (ω(G) − 1)
3
2 + ((ω(G) − 1)

1
2 − 1) + 1

≤ (ω(G) − 1)
1
2 · ω(G)

≤ ω
3
2 (G).

Thus, χ (G) ≤ ω
3
2 (G) holds and so does Theorem 1.3. ■
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