Divisibility and coloring of some P_{5}-free graphs ${ }^{\text {T }}$

Jialei Song ${ }^{\text {a,* }}$, Baogang Xu ${ }^{\text {b }}$
${ }^{\text {a }}$ School of Mathematical Sciences, Key Laboratory of MEA (Ministry of Education) \& Shanghai Key Laboratory of PMMP, East China Normal University, Shanghai, 200241, China
${ }^{\mathrm{b}}$ Institute of Mathematics, School of Mathematical Sciences, Nanjing Normal University, Nanjing, 210023, China

ARTICLE INFO

Article history:

Received 9 October 2022
Received in revised form 16 September 2023
Accepted 20 January 2024
Available online xxxx

MSC:

05 C 15
05C78

Keywords:

P_{5}-free
Perfect
Perfect division
2-division

Abstract

A P_{5} is a path on 5 vertices, a banner is a graph obtained by adding a pendant edge to a vertex of a quadrilateral and a hammer is a graph obtained from a K_{5} by deleting a banner as a partial subgraph. A graph G is perfect if $\chi(H)=\omega(H)$ for each induced subgraph H of G. We say that G admits a perfect division if $V(G)$ can be partitioned into two subsets A and B such that $G[A]$ is perfect and $\omega(G[B])<\omega(G)$, and say that G admits a 2-division if $E(G)=\emptyset$ or $V(G)$ can be partitioned into two subsets A and B such that $\max \{\omega(G[A]), \omega(G[B])\}<\omega(G)$. Furthermore, G is perfectly divisible if each induced subgraph H of G admits a perfect division, and G is 2-divisible if each induced subgraph H admits a 2-division. In this paper, we show that each (P_{5}, banner)-free graph is perfectly divisible, and show that each $\left(P_{5}, C_{5}\right.$, banner, hammer)-free graph G is $\omega^{\frac{3}{2}}(G)$-colorable. For every P_{5}-free graph G with $\alpha(G) \geq 3$, we show that G admits a 2 -division if G is banner-free, and G is perfect if G is connected and $K_{1,3}$-free.

© 2024 Elsevier B.V. All rights reserved.

1. Introduction

All graphs considered in this paper are finite and simple. Let k be a positive integer. We use [k] to denote the set $\{1,2, \ldots, k\}$. Let G be a graph. We use $\chi(G), \omega(G)$ and $\alpha(G)$ to denote the chromatic number, clique number and independent number of G, respectively. A path (resp. cycle) on k vertex is denoted by P_{k} (resp. C_{k}). We say a graph G is bipartite, if G can be partitioned into two parts S and T such that every edge in G intersects both S and T nonempty. In particular, G is complete bipartite, if every vertex in S connects every vertex in T, and we denote G by $K_{s, t}$, where $|S|=s$ and $|T|=t$. For $x \in V(G)$ and $X \subseteq V(G)$, let $N(x)$ be the set of neighbors of x, let $N[x]=N(x) \cup\{x\}$, and let $N(X)=\bigcup_{v \in X} N(v)$. Let $M(x)=V(G) \backslash N[x]$, and let $M(X)=V(G) \backslash(N(X) \cup X)$. We say that X dominates G if $V(G)=X \cup N(X)$, say that x is complete (resp. anticomplete) to X, if $X \subseteq N(x)$ (resp. $X \subseteq M(x)$), and say that x is mixed to X if x is neither complete nor anticomplete to X.

Let X and Y be two subsets of $V(G)$. If each vertex of X is complete (resp. anticomplete) to Y, then we say that X is complete (resp. anticomplete) to Y. We say that X is mixed to Y if X is neither complete nor anticomplete to Y. Let $G[X]$ be the subgraph of G induced by X. We say that G induces H if G has an induced subgraph isomorphic to H, and say that G is H-free if G does not induce H. For a given family \mathscr{H} of graphs, we say that G is \mathscr{H}-free if G is H-free for each member H of \mathscr{H}.

[^0]A hole of G is an induced cycle of length at least 4. The complement of a hole is called an antihole. A hole (resp. an antihole) C is called an odd hole (resp. odd antihole) if C has odd number of vertices. A graph is perfect if $\chi(H)=\omega(H)$ for each induced subgraph H of G. The famous Strong Perfect Graph Theorem states that a graph is perfect if and only if it induces neither an odd hole nor an odd antihole [7].

Let $k \geq 2$ be an integer. We say that G admits a perfect division if $V(G)$ can be partitioned into two subsets A and B such that $G[A]$ is perfect and $\omega(G[B])<\omega(G)$, and say that G admits a k-division if either $E(G)=\emptyset$ or $V(G)$ can be partitioned into k subsets $V_{1}, V_{2}, \ldots, V_{k}$ such that $\omega\left(G\left[V_{i}\right]\right)<\omega(G)$ for all $i \in[k]$. A graph G is perfectly divisible [14] if each induced subgraph H of G admits a perfect division, and G is k-divisible [15] if each induced subgraph H admits a k-division. By induction, it is easy to verify that each perfectly divisible graph G is $\binom{\omega(G)+1}{2}$-colorable, and each k-divisible graph G is $k^{\omega(G)-1}$-colorable.

Hoàng and McDiarmid [15] proved that every (odd hole, $K_{1,3}$)-free graph is 2-divisible, and they also proposed a conjecture, the Hoàng and McDiarmid Conjecture for short, claiming that a graph is 2-divisible if and only if it is odd hole free. The necessity of this conjecture is easy since each odd hole is not 2-divisible. Note that the 2-divisibility of G implies that $\chi(G) \leq 2^{\omega(G)-1}$. The trueness of Hoàng and McDiarmid Conjecture will determine a better upper bound on the chromatic number of odd hole free graphs than $\frac{2^{2 \omega(G)+2}}{48(\omega(G)+2)}$, the best known upper bound, due to Scott and Seymour [19].

Scott and Seymour mentioned a conjecture of Hoàng, which claims that $\chi(G) \leq \omega^{2}(G)$ for every odd hole free graph (see page 498 of [19]). Sivaraman [21] proposed a conjecture, that is a weakening version of Hoàng's conjecture, claiming that if G is a (hole of length at least 5)-free graph then $\chi(G) \leq \omega^{2}(G)$. It is easy to see that P_{5}-free graphs must be of (hole of length at least 6)-free. The currently best known upper bound to chromatic number of P_{5}-free graphs is due to Esperet et al. [12] who showed that $\chi(G) \leq 5 \cdot 3^{\omega(G)-3}$ if G is P_{5}-free with $\omega(G) \geq 3$. A still open conjecture of Choudum, Karthick and Shalu [5] claiming that there is a constant c such that $\chi(G) \leq c \omega^{2}(G)$ for all P_{5}-free graphs. There are quite a lot upper bounds to the chromatic number of P_{5}-free graphs by avoiding some further small graphs.

We use diamond to denote the graph obtained from K_{4} by removing an edge, use cricket to denote the graph obtained from a $K_{1,4}$ by adding an edge between two pendant vertices of $K_{1,4}$. Let $v_{1} v_{2} v_{3} v_{4} v_{5}$ denote the path P_{5} with vertices v_{i} for $i \in$ [5] and edges $v_{i} v_{i+1}$ for $i \in$ [4]. We call $P_{5}+v_{1} v_{3}$ a hammer, call $P_{5}+v_{2} v_{4}$ a bull, call $P_{5}+v_{1} v_{4}$ a banner, call $P_{5}+\left\{v_{1} v_{4}, v_{1} v_{5}\right\}$ a house, call $P_{5}+\left\{v_{1} v_{3}, v_{1} v_{4}\right\}$ a cochair, call $P_{5}+\left\{v_{1} v_{4}, v_{2} v_{4}\right\}$ a dart, and call $P_{5}+\left\{v_{1} v_{3}, v_{1} v_{4}, v_{1} v_{5}\right\}$ a gem. A gem ${ }^{+}$is obtained from a gem by adding a vertex adjacent to its vertex of degree 4.

Fouquet et al. [13] proved that (P_{5}, house)-free graphs are perfectly divisible. Schiermeyer [18] proved that $\chi(G) \leq$ $\omega^{2}(G)$ if G is $\left(P_{5}, H\right)$-free for $H \in\left\{\right.$ cricket, dart, diamond, gem, gem $\left.{ }^{+}, K_{1,3}\right\}$. Hoàng [14] showed that every (odd holes, banner)-free graph is both 2-divisible and perfectly divisible. Chudnovsky and Sivaraman [8] showed that (P_{5}, bull)-free graphs and (odd hole, bull)-free graphs are both perfectly divisible, and (P_{5}, C_{5})-free graphs are 2-divisible. Dong, Xu and Xu [10] proved that ($P_{5}, C_{5}, K_{2,3}$)-free graphs are perfectly divisible and $\chi(G) \leq 2 \omega^{2}(G)-\omega(G)-3$ if G is ($P_{5}, K_{2,3}$)-free with $\omega(G) \geq 2$. Improving the results of [3] and [5], Chudnovsky et al. [6] proved that $\chi(G) \leq\left\lceil\frac{5 \omega(G)}{4}\right\rceil$ if G is (P_{5}, gem)-free. Let a 4-wheel be the graph obtained from a C_{4} by adding a vertex complete to C_{4}, and let a paraglider be the graph obtained from a C_{4} by adding a vertex joining to three vertices of C_{4}. Char and Karthick [4] showed that every ($P_{5}, 4$-wheel)-free graph G satisfies $\chi(G) \leq \frac{3 \omega(G)}{2}$. Huang and Karthick [16] showed that every (P_{5}, paraglider)-free graph G satisfies $\chi(G) \leq\left\lceil\frac{3 \omega(G)}{2}\right\rceil$. Very recently, Brause et al. [1] proved that every (P_{5}, banner)-free graph G is $\Theta\left(\frac{\omega^{2}(G)}{\log \omega(G)}\right)$-colorable. Let x be a vertex of the complete graph K_{5}. Let K_{5}^{-}be the graph obtained from K_{5} by removing an edge incident with x, let HVN be the graph obtained from K_{5} by removing two edges incident with x, and let K_{4}^{+}be the graph obtained from K_{5} by removing three edges incident with x. Dong, Xu and $\mathrm{Xu}[11]$ proved that $\chi(G) \leq \max \{15,2 \omega(G)\}$ if G is $\left(P_{5}, K_{4}^{+}\right)$-free. Improving slightly a result of Malyshev [17], Xu [23] proved that $\chi(G) \leq \max \{\max \{16, \omega(G)+3\}, \omega(G)+1\}$ for all (P_{5}, HVN)-free graphs. $\mathrm{Xu}[24]$ proved also that $\chi(G) \leq \max \{13, \omega(G)+1\}$ for all $\left(P_{5}, K_{5}^{-}\right)$-free graphs.

In this paper, we show that each (P_{5}, banner)-free graph is perfectly divisible. We note that (P_{5}, banner)-free graphs are not necessarily 2-divisible, since the C_{5} is a trivial counterexample. However, we can find a 2-division for (P_{5}, banner)-free graphs with independent number at least 3 , and we can do even better with ($P_{5}, K_{1,3}$)-free graphs.

Theorem 1.1. Let G be a (P_{5}, banner)-free graph. Then, G is perfectly divisible, and G admits a 2-division if $\alpha(G) \geq 3$.
As a corollary of Theorem 1.1, we have that $\chi(G) \leq\binom{\omega(G)+1}{2}$ for all $\left(P_{5}\right.$, banner)-free graphs. We can do better on $\left(P_{5}\right.$, $\left.K_{1,3}\right)$-free graphs with independent number at least 3 .

Theorem 1.2. If G is a connected ($P_{5}, K_{1,3}$)-free graph with $\alpha(G) \geq 3$, then G is perfect.
The restriction $\alpha(G) \geq 3$ in Theorems 1.1 and 1.2 are necessary, since C_{5} is (P_{5}, banner)-free with independent number 2 but admits no 2-division, and all odd antiholes are ($P_{5}, K_{1,3}$)-free with independent number 2 but imperfect.

Chudnovsky and Sivaraman [8] proved that (P_{5}, C_{5})-free graphs are 2-divisible, and Scott, Seymour and Spirkl [20] proved that $\chi(G) \leq \omega(G)^{\log _{2} \omega(G)}$ if G is P_{5}-free. Up to now, no polynomial binding function has been found even for $\left(P_{5}, C_{5}\right)$-graphs. Theorem 1.1 asserts that (P_{5}, banner)-free graphs are perfectly divisible, which provides us with an $O\left(\omega^{2}\right)$ binding function for such graphs. By a conclusion from [2] there is no linear binding function for (P_{5}, banner)-free graphs. Even for (P_{5}, C_{5}, banner)-free graphs, it seems difficult to get a binding function better than $O\left(\omega^{2}\right)$. We study $\left(P_{5}, C_{5}\right.$, banner, hammer)-free graphs, and prove the following theorem.

Theorem 1.3. Every $\left(P_{5}, C_{5}\right.$, banner, hammer)-free graph G is $\omega^{\frac{3}{2}}(G)$-colorable.
Before we begin our proofs, we list the following useful lemmas. A subset X of $V(G)$ is called a homogeneous set if $2 \leq|X| \leq|V(G)|-1$ and every vertex in $V(G) \backslash X$ is either complete or anticomplete to X.

Lemma 1.1 (Theorem 3.6, [8]). If G is not perfectly divisible with minimum number of vertices, then G admits no homogeneous subset.

A graph G is a 5-ring if its vertex set can be partitioned into sets X_{1}, \ldots, X_{5} such that for $i \in$ [5], X_{i} is a stable set and $x y$ is an edge for any $x \in X_{i}, y \in X_{i+1}$ with the subscript taken modulo 5 .

Lemma 1.2 (Theorem 3.5, [22]). A connected graph G is $\left(P_{5}, K_{3}\right)$-free if and only if G is either bipartite or a 5-ring.

Proposition 1.1 (Lemma 7.3, [14]). Each graph with independent number at most 2 is perfectly divisible.

We will prove Theorem 1.1 in Section 2, prove Theorem 1.2 in Section 3, and prove Theorem 1.3 in Section 4.

2. Proof of Theorem 1.1

Hoàng has proved the perfect divisibility and 2-divisibility of (odd hole, banner)-free graphs [14], and Chudnovsky and Sivaraman have proved the 2-divisibility of (P_{5}, C_{5})-free graphs [8]. When consider the perfectly divisibility or 2-divisibility of (P_{5}, banner)-free graphs, we may assume that those graphs are connected and contain a hole of length 5 .

Let G be a (P_{5}, banner)-free graph, and let $C=v_{1} v_{2} v_{3} v_{4} v_{5} v_{1}$ be the chordless cycle with vertices v_{i} for $i \in$ [5] and edges $v_{i} v_{i+1}$ for $i \in[5]$ with the subscript taken modulo 5 . If G is triangle-free, then $G=C$ by Lemma 1.2 . So, we suppose that $\omega(G) \geq 3$.

Define A to be the set of all vertices of $N(C)$ of which each has exactly three or four consecutive neighbors in C, and define B to be the set of all vertices of $N(C)$ of which each is complete to C. It is easy to check that

$$
\begin{equation*}
N(C)=A \cup B, \tag{1}
\end{equation*}
$$

as otherwise each $x \in N(C) \backslash(A \cup B)$ together with the cycle C will induce a P_{5} or a banner.
By Proposition 1.1, we suppose that $\alpha(G) \geq 3$. Before proving Theorem 1.1, we first present some structural properties of G. Let B_{1} be the set of all vertices of B of which each has a neighbor in $M(C)$, and let $B_{2}=B \backslash B_{1}$.

Lemma 2.1. If $M(C) \neq \emptyset$, then A is anticomplete to $M(C)$, and B_{1} is complete to $A \cup B_{2} \cup C$.
Proof. Suppose that $M(C) \neq \emptyset$.
Suppose that A is not anticomplete to $M(C)$, and let $m \in M(C)$ and $n \in A$ with $m n \in E(G)$. If n has exactly three consecutive neighbors in C, we suppose, by symmetry, that $n v_{1}, n v_{2}, n v_{3} \in E(G)$ and $n v_{4}, n v_{5} \notin E(G)$, then $m n v_{3} v_{4} v_{5}$ is a P_{5}. If n has four consecutive neighbors in C, we may suppose that v_{5} is the only non-neighbor of n on C, then $G\left[\left\{m, n, v_{1}, v_{4}, v_{5}\right\}\right]$ is a banner. Therefore, A is anticomplete to $M(C)$.

Since G is connected and $M(C) \neq \emptyset$, we see that $B_{1} \neq \emptyset$. Let b_{1} be a vertex of B_{1}, and let m be a neighbor of b_{1} in $M(C)$. For each pair of $a \in A$ and $b_{2} \in B_{2}$, we may suppose, by symmetry, that $c_{1}, c_{3} \in N(a) \cap N\left(b_{1}\right)$, and so $a b_{1} \in E(G)$ to avoid a banner on $\left\{a, b_{1}, c_{1}, c_{3}, m\right\}$, and $b_{1} b_{2} \in E(G)$ to avoid a banner on $\left\{b_{1}, b_{2}, c_{1}, c_{3}, m\right\}$. Thus, B_{1} is complete to $A \cup B_{2} \cup C$.

Lemma 2.1 asserts that if $M(C) \neq \emptyset$, then $A \cup B_{2} \cup C$ is a homogeneous subset of G.
Next, we consider the case that $M(C)=\emptyset$. If C has a vertex complete to $N(C)$, say v_{1}, then $\left(\left\{v_{1}, v_{3}, v_{4}, v_{5}\right\}, V(G) \backslash\right.$ $\left\{v_{1}, v_{3}, v_{4}, v_{5}\right\}$) is a perfect division (also a 2 -division). Thus, we suppose that no vertex of C may be complete to $N(C)$.

Recall that each vertex in A has three or four consecutive neighbors on C and each vertex in B is complete to C. For each $i \in$ [5], we define $T_{i}=\left\{t: t v_{i}, t v_{i+1}, t v_{i+2} \in E(G), t v_{i+3}, t v_{i+4} \notin E(G)\right\}$, and $F_{i}=\left\{f: f v_{i}, f v_{i+1}, f v_{i+2}, f v_{i+3} \in\right.$ $\left.E(G), f v_{i+4} \notin E(G)\right\}$ with the subscripts taken modulo 5. Then, $N(C)=B \cup\left(\cup_{i \in[5]} T_{i}\right) \cup\left(\cup_{i \in[5]} F_{i}\right)$.

Let t_{1} and t_{2} be two distinct vertices of T_{i}, and let f_{1} and f_{2} be two distinct vertices in F_{i}. Since none of $G\left[\left\{t_{1}, t_{2}, v_{i}, v_{i+2}\right.\right.$, $\left.\left.v_{i+4}\right\}\right]$ and $G\left[\left\{f_{1}, f_{2}, v_{i}, v_{i+2}, v_{i+4}\right\}\right]$ can be a banner, we see that both T_{i} and F_{i} are cliques. With a similar argument, one can verify that T_{i} is complete to $F_{i-1} \cup F_{i}$. Let t_{3} be a vertex of T_{i+1}. Since $G\left[\left\{t_{1}, t_{3}, v_{i}, v_{i+2}, v_{i+4}\right\}\right]$ cannot be a P_{5}, we see that T_{i} is complete to T_{i+1}. Therefore, we have that

$$
\begin{equation*}
T_{i} \cup T_{i+1} \cup F_{i} \text { is a clique. } \tag{2}
\end{equation*}
$$

$$
\begin{aligned}
& \text { If } M(C)=\emptyset \text {, then } \\
& \qquad M\left(v_{i}\right)=F_{i+1} \cup T_{i+1} \cup T_{i+2} \cup\left\{v_{i+2}, v_{i+3}\right\},
\end{aligned}
$$

and

$$
N\left(v_{i}\right)=F_{i} \cup F_{i+2} \cup F_{i+3} \cup F_{i+4} \cup T_{i} \cup T_{i+3} \cup T_{i+4} \cup\left\{v_{i+1}, v_{i+4}\right\}
$$

By (2), we see that

$$
\begin{equation*}
M\left(v_{i}\right) \text { is a clique, } \tag{3}
\end{equation*}
$$

and so $\left(M\left(v_{i}\right) \cup\left\{v_{i}\right\}, N\left(v_{i}\right)\right)$ is a perfect-division. Therefore, we have
Lemma 2.2. If $M(C)=\emptyset$, then G admits a perfect division.
Now, we can prove Theorem 1.1. First, we show that each (P_{5}, banner)-free graph is perfectly divisible. Suppose to its contrary, and let G be a minimal (P_{5}, banner)-free non-perfectly divisible graph. Recall that Proposition 1.1 establishes the perfect divisibility of graphs with independence number no more than 2 . We have $\alpha(G) \geq 3$.

If $M(C)=\emptyset$, then for each $i \in[5],\left(M\left(v_{i}\right) \cup\left\{v_{i}\right\}, N\left(v_{i}\right)\right)$ is a perfect division of G by Lemma 2.2. If $M(C) \neq \emptyset$, then G admits a homogeneous set by Lemma 2.1, a contradiction to Lemma 1.1. Therefore, each (P_{5}, banner)-free graph is perfectly divisible.

To complete the proof of Theorem 1.1, we shall show that every (P_{5}, banner)-free graph G admits a 2-division, when $\alpha(G) \geq 3$. Before that, we need the following lemma.

Lemma 2.3. Let $k \geq 2$ be an integer. If G is a minimal graph that admits no k-division, then G admits no homogeneous subset.
Proof. Suppose that G admits a homogeneous subset and is a minimal graph such that G admits no k-division. Let H be a homogeneous subset belonging to $G, L=G[V(G) \backslash H]$.

Since G is a minimal counterexample, we have that both L and H admit a k-division. Suppose L has a k-division $\left(L_{1}, L_{2}, \ldots, L_{k}\right)$ and H has a k-division $\left(H_{1}, H_{2}, \ldots, H_{k}\right)$. Write $G_{i}=L_{i} \cup H_{i}$ for $i=[k]$. One can observe that $\omega(G) \geq$ $\omega\left(G_{i}\right) \geq \max \left\{\omega\left(L_{i}\right), \omega\left(H_{i}\right)\right\}$. Let K be a maximum clique in G_{i}. Obviously, K will not entirely lie in L_{i} or H_{i}. Since H is complete to $N_{G}(H)$ and anticomplete to $L \backslash N_{G}(H)$, we have $K \cap H_{i} \neq \emptyset, K \cap N_{G}(H) \neq \emptyset$ and $K \cap\left(L \backslash N_{G}(H)\right)=\emptyset$. If $|K|=\omega(G)$, then $K \cap H_{i}$ must be a largest clique in H, a contradiction.

Suppose that $\alpha(G) \geq 3$. Notice that (odd holes, banner)-free graphs are 2-divisible (see [14]). By Lemmas 2.1 and 2.3, we may suppose that $M(C)=\emptyset$. For convenience, we use co-triangle to denote an independent set of size 3 .

Since $M\left(v_{i}\right)$ is a clique for each $i \in[5]$ by (3), if there exists a v_{i} such that $M\left(v_{i}\right)$ is not a maximum clique of G, then $\left(N\left(v_{i}\right), M\left(v_{i}\right) \cup\left\{v_{i}\right\}\right)$ is a 2 -division. So, we suppose that

$$
\begin{equation*}
M\left(v_{i}\right) \text { is a maximum clique of } G \text { for each } i \in[5] . \tag{4}
\end{equation*}
$$

We will complete the proof of Theorem 1.1 by showing

G contains no co-triangles.

Suppose that (5) does not hold and let C_{0} be a co-triangle of G. It is certain that $\left|C_{0} \cap V(C)\right| \leq 2$.
Recall that $C=v_{1} v_{2} v_{3} v_{4} v_{5} v_{1}$. If $\left|C_{0} \cap V(C)\right|=2$, we suppose, by symmetry, that $C_{0}=\left\{u, v_{1}, v_{3}\right\}$, then $u \notin(A \cup B)$, contradicting (1). If $\left|C_{0} \cap V(C)\right|=1$, we suppose that $C_{0}=\left\{u_{1}, u_{2}, v_{1}\right\}$ (where $u_{1}, u_{2} \notin C$), then $u_{1}, u_{2} \in T_{2} \cup T_{3} \cup F_{2}$ as $M(C)=\emptyset$, contradicting (2) by taking $i=2$. Therefore, C_{0} contains no vertex of C.

Suppose that $C_{0}=\left\{u_{1}, u_{2}, u_{3}\right\}$. By (2), we have the following possibilities, for some $i \in$ [5], on the locations of the vertices of C_{0}.
(a) $u_{1} \in F_{i}, u_{2} \in F_{i+1}$, and $u_{3} \in F_{i+2} \cup T_{i+3}$.
(b) $u_{1} \in F_{i}, u_{2} \in F_{i+2}$, and $u_{3} \in F_{i+3} \cup T_{i-1}$.
(c) $u_{1} \in F_{i} \cup T_{i}, u_{2} \in F_{i+1}$, and $u_{3} \in B$.
(d) $u_{1} \in F_{i} \cup T_{i}, u_{2} \in F_{i+2} \cup T_{i+2}$, and $u_{3} \in B$.
(e) $u_{1} \in F_{i} \cup T_{i}, u_{2}, u_{3} \in B$.
(f) $u_{1} \in T_{i}, u_{2} \in T_{i+2}$, and $u_{3} \in F_{i+3}$.
(g) $C_{0} \subseteq B$.

Since $G\left[\left\{u_{1}, u_{2}, u_{3}, v_{i}, v_{i+2}\right\}\right]$ is a banner in cases (a) to (c) and a P_{5} in case (f), and $G\left[\left\{u_{1}, u_{2}, u_{3}, v_{i-1}, v_{i+2}\right\}\right]$ is a banner in cases (d) and (e), we turn to case (g).

Suppose that $C_{0} \subseteq B$, and let v be a vertex in $T_{i} \cup F_{i}$. The vertex v exists, for otherwise $A=\emptyset$, and so C is a homogeneous set of G, a contradiction to Lemma 2.3. If v is anticomplete to C_{0}, then $G\left[\left\{v, v_{i+1}, u_{1}, u_{2}, v_{i+4}\right\}\right]$ is a banner. If v has exactly one neighbor in C_{0}, say $v u_{1} \in E(G)$ by symmetry, then $G\left[\left\{v, v_{i+1}, u_{2}, u_{3}, v_{i+4}\right\}\right]$ is a banner. If v has exactly two neighbors in C_{0}, say $v u_{3} \notin E(G)$ by symmetry, then $G\left[\left\{v, u_{1}, u_{2}, v_{i+4}, u_{3}\right\}\right]$ is a banner. So, we have that C_{0} is complete to $T_{i} \cup F_{i}$. By symmetry between the pair $\left(T_{i}, F_{i}\right)$ and the pair (T_{i+1}, F_{i}), one can verify easily that C_{0} is complete to $T_{i+1} \cup F_{i}$. Therefore, C_{0} is complete to $T_{i} \cup T_{i+1} \cup F_{i}$ if $C_{0} \subseteq B$. Recall that $M\left(v_{i-1}\right)=F_{i} \cup T_{i} \cup T_{i+1} \cup\left\{v_{i+1}, v_{i+2}\right\}$. Since $u_{1} \in B$, we see that $M\left(v_{i-1}\right) \cup\left\{u_{1}\right\}$ is a clique larger than $M\left(v_{i-1}\right)$. This contradiction to (4) proves (5), and completes the proof of Theorem 1.1.

3. ($P_{5}, K_{1,3}$)-free graphs

We prove Theorem 1.2 in this section. Below lemma is very useful to our proof.
Lemma 3.1 (Ben Rebea's Lemma, see [9]). Let G be a $K_{1,3}$-free graph which induces an odd antihole. If $\alpha(G) \geq 3$, then G contains an induced cycle of length 5.

Proof of Theorem 1.2. Suppose to the contrary that Theorem 1.2 does not hold. Let G be an imperfect $\left(P_{5}, K_{1,3}\right)$-free graph with $\alpha(G) \geq 3$. Since G is P_{5}-free, G contains an odd antihole as induced subgraph. By Lemma 3.1, G contains a hole of length 5 . Let $C=v_{1} v_{2} v_{3} v_{4} v_{5} v_{1}$ be a hole of length five in G.

We still define A to be the set of all vertices of $N(C)$ of which each has exactly three or four consecutive neighbors on C, define B to be the set of all vertices of $N(C)$ of which each is complete to C, and define T_{i} and F_{i} for each $i \in$ [5] in the same way as that of last section. Then, $A=\left(\cup_{i \in[5]} T_{i}\right) \cup\left(\cup_{i \in[5]} F_{i}\right)$, and $N(C)=A \cup B$ as G is certainly (P_{5}, banner)-free.

If $M(C) \neq \emptyset$, we may choose w to be a vertex in $M(C)$ that has a neighbor, say w^{\prime}, in $N(C)$, then $\left\{w, w^{\prime}\right\}$ together with two nonadjacent neighbors of w^{\prime} on C would induce a $K_{1,3}$. Therefore, $M(C)=\emptyset$.

Since $\alpha(G) \geq 3$, we may choose a stable set of size 3 , say $S=\left\{u_{1}, u_{2}, u_{3}\right\}$. Note that each ($P_{5}, K_{1,3}$)-free graph must be (P_{5}, banner)-free. Since $M(C)=\emptyset$, both (2) and (3) still hold for each $i \in[5]$.

Since G is $K_{1,3}$-free, we see that $S \nsubseteq B$, and either $S \cap V(C)=\emptyset$ or $S \cap B=\emptyset$ as B is complete to C. If $|S \cap B|=2$, we suppose by symmetry that $u_{1}, u_{2} \in B$, and let v be neighbor of u_{3} on C. If $|S \cap B|=1$, we suppose $u_{1} \in B$, and let v be a common neighbor of u_{2} and u_{3} on C. In both cases, we have a $K_{1,3}$ induced by $S \cup\{v\}$. Therefore, we have $S \cap B=\emptyset$.

Recall that for each $i \in$ [5], both F_{i} and T_{i} are cliques by (2).
If $\left|S \cap\left(\cup_{i \in[5]} F_{i}\right)\right| \geq 2$, we suppose that $u_{1}, u_{2} \in \cup_{i \in[5]} F_{i}$ by symmetry, then there exists $j \in$ [5] such that the common neighbors of u_{1} and u_{2} on C is either $\left\{v_{j}, v_{j+1}, v_{j+2}\right\}$ or $\left\{v_{j}, v_{j+1}, v_{j+3}\right\}$. Since u_{3} has at least 3 neighbors on C, one can always find a vertex, say v, on C such that $G[S \cup\{v\}]$ is a $K_{1,3}$.

If $\left|S \cap\left(\cup_{i \in[5]} F_{i}\right)\right|=1$, we may suppose that $u_{1} \in F_{1}$ by symmetry, then $u_{2}, u_{3} \in T_{3} \cup T_{4} \cup T_{5} \cup\left\{v_{5}\right\}$ by (2), and so $\left|\left\{u_{2}, u_{3}\right\} \cap T_{3}\right|=1=\left|\left\{u_{2}, u_{3}\right\} \cap T_{5}\right|$, which implies an induced $P_{5}=u_{1} v_{3} u_{2} v_{5} u_{3}$ or $u_{1} v_{3} u_{3} v_{5} u_{2}$.

So, we have that $S \cap\left(\cup_{i \in[5]} F_{i}\right)=\emptyset$ as well, and thus $S \subseteq \cup_{i \in[5]} T_{i} \cup V(C)$. But $G\left[\cup_{i \in[5]} T_{i} \cup V(C)\right]$ is a graph obtained by blowing up each vertex of a C_{5} into a clique, which has independent number 2 . This contradiction to $\alpha(G) \geq 3$ completes the proof of Theorem 1.2.

4. (P_{5}, C_{5}, banner, hammer)-free graphs

We prove Theorem 1.3 in this section.
Let G be a (P_{5}, C_{5}, banner, hammer)-free graph on n vertices. Following the Strong Perfect Graph Theorem [7], G is perfect if $n \leq 6$. If $n=7, G$ is imperfect if and only if G is an odd antihole, and $\chi(G)=4 \leq \frac{4}{3} \omega(G) \leq \omega^{\frac{3}{2}}(G)$. If G is triangle-free, then G is bipartite by Lemma 1.2, and $\chi(G)=2 \leq 2^{\frac{3}{2}}$. So, Theorem 1.3 holds for $n \leq 7$ or $\omega(G) \leq 2$.

Suppose that $n \geq 8, \omega(G) \geq 3$, and G is a counterexample to Theorem 1.3 with minimum n. We may assume that G is imperfect, and
if $u v \notin E(G)$, then neither $N(u) \subseteq N(v)$ nor $N(v) \subseteq N(u)$ holds.
Let $k \geq 7$ be an odd integer, and let C be an odd antihole of G with vertex set $\left\{c_{1}, c_{2}, \ldots, c_{k}\right\}$ such that c_{i} is adjacent to all vertices but c_{i-1} and c_{i+1} of C, here the subscripts are taken modulo k.

Let v be a vertex in $N(C)$. We call v an (i, j)-neighbor of C if v is complete to $\left\{c_{i}, c_{i+1}, \ldots, c_{i+j-1}\right\}$ and anticomplete to $\left\{c_{i-1}, c_{i+j}\right\}$. Especially, an ($i, 1$)-neighbor of C is a vertex adjacent to c_{i} but nonadjacent to c_{i-1} and c_{i+1}. To avoid a 5-hole $c_{i} c_{i+2} c_{i-1} c_{i+1} v c_{i}$, we see that
no vertex of $N(C)$ can be an (i,2)-neighbor of C.
If v is an $(i, 1)$-neighbor of C for some i, then $v c_{i-2} \in E(G)$ to avoid a $P_{5}=v c_{i} c_{i-2} c_{i+1} c_{i-1}$, and $v c_{i+2} \in E(G)$ to avoid a $P_{5}=v c_{i} c_{i+2} c_{i-1} c_{i+1}$. Therefore, we have
$v c_{i-2} \in E(G)$ and $v c_{i+2} \in E(G)$ for each (i,1)-neighbor v of C,
and consequently, each vertex of $N(C)$ has at least two neighbors in C.
Let $B \subset N(C)$ be the set of all vertices complete to C, and let $A=N(C) \backslash B$. We first claim that
each vertex of A is an (i, j)-neighbor of C for some $i \in[k]$ and $j \geq 3$.
If it is not the case, we may suppose, without loss of generality, that $v \in A$ is a vertex such that $c_{1} v \in E(G), c_{2} v \notin E(G)$ and $c_{k} v \notin E(G)$ by (7), then $c_{3} v \in E(G)$ and $c_{k-1} v \in E(G)$ by (8). Repeating this argument with odd integer $i \in\{1,3,5, \ldots, k-2\}$, since k is odd, we have that $c_{k} v \in E(G)$, contradicting our assumption that $c_{k} v \notin E(G)$. Therefore, (9) holds.

For each $j \in[k]$ and $c_{j} v \in E(G)$, since $\left\{v, c_{j}, c_{j+1}, c_{j+3}, c_{j+4}\right\}$ cannot induce a banner, we know that
there will not exist j such that $v c_{j} \in E(G)$ and $v c_{j+i} \notin E(G)$ for all $i \in[4]$.
We consider two possibilities depending on $M(C)=\emptyset$ or not.

Case 1. First suppose that $M(C) \neq \emptyset$.
Let B_{1} be the set of all vertices of B of which each has a neighbor in $M(C)$, and let $B_{2}=B \backslash B_{1}$. We show that
A is anticomplete to $M(C)$, and B_{1} is complete to $A \cup B_{2} \cup C$.
The proof of (11) is almost the same as that of Lemma 2.1.
Let v be a vertex of A. Suppose that v has a neighbor, say w, in $M(C)$. By (9), we may suppose by symmetry that v is a ($1, j$)-neighbor for some $j \geq 3$. Then, $\left\{w, v, c_{2}, c_{3}, c_{k}\right\}$ induces a banner. So, A is anticomplete to $M(C)$.

Since G is connected, we see that B cannot be anticomplete to $M(C)$, and so $B_{1} \neq \emptyset$. Let b_{1} be a vertex of B_{1}, and let w be a neighbor of b_{1} in $M(C)$. For each pair of $a \in A$ and $b_{2} \in B_{2}$, we may suppose that, for some $i, c_{i}, c_{i+1} \in N(a) \cap N\left(b_{1}\right)$ by (9), and so $a b_{1} \in E(G)$ to avoid a banner on $\left\{a, b_{1}, c_{i}, c_{i+1}, w\right\}$, and $b_{1} b_{2} \in E(G)$ to avoid a banner on $\left\{b_{1}, b_{2}, c_{i}, c_{i+1}, w\right\}$. This proves (11).

Furthermore, we can also show that

$$
\begin{equation*}
B_{1} \text { is complete to } M(C) \tag{12}
\end{equation*}
$$

as otherwise, let $w^{\prime} \in N_{M(C)}(w) \backslash N\left(b_{1}\right)$, then $\left\{w^{\prime}, w, b_{1}, c_{i}, c_{i+2}\right\}$ induces a hammer.
Combine (11) and (12), we have that B_{1} is complete to $G \backslash B_{1}$, and so $\omega(G) \leq \omega\left(B_{1}\right)+\omega\left(G \backslash B_{1}\right)$. Since G is a minimum counterexample to Theorem 1.3, we know that B_{1} is $\omega^{\frac{3}{2}}\left(B_{1}\right)$-colorable and $G \backslash B_{1}$ is $\omega^{\frac{3}{2}}\left(G \backslash B_{1}\right)$-colorable. Then,

$$
\begin{aligned}
\chi(G) & \leq \chi\left(B_{1}\right)+\chi\left(G \backslash B_{1}\right) \\
& \leq \omega^{\frac{3}{2}}\left(B_{1}\right)+\omega^{\frac{3}{2}}\left(G \backslash B_{1}\right) \\
& \leq \omega^{\frac{3}{2}}(G),
\end{aligned}
$$

a contradiction.
Case 2. Now, we can suppose that $M\left(C^{\prime}\right)=\emptyset$ holds for any odd antihole C^{\prime} in G. For $i \in[k]$, we denote the edge $c_{i} c_{i+2}$ by $e_{i, i+2}$, call such an edge as a main edge, and define $M_{i, i+2}$ to be the set of all vertices which are anticomplete to $\left\{c_{i}, c_{i+2}\right\}$.

Let $A_{i}=N\left(c_{i}\right) \backslash N\left(c_{i+2}\right), B_{i}=N\left(c_{i+2}\right) \backslash N\left(c_{i}\right)$, and $D_{i, i+2}=N\left(c_{i}\right) \cap N\left(c_{i+2}\right)$, where the summation of subindexes are taken modulo k. We partition $D_{i, i+2}$ into two subsets $D_{i, i+2,1}$ and $D_{i, i+2,2}$ such that each vertex in $D_{i, i+2,1}$ has a neighbor in $M_{i, i+2}$ and $D_{i, i+2,2}=D_{i, i+2} \backslash D_{i, i+2,1}$. Since C is an odd antihole, we have that $c_{i+3} \in A_{i}, c_{i-1} \in B_{i}$ and $c_{i+4}, c_{i-2} \in D_{i, i+2,1}$, which imply that $A_{i}, B_{i}, D_{i, i+2,1} \neq \emptyset$.

We will show that, for each $i \in[k]$,

$$
\begin{equation*}
A_{i} \cup B_{i} \cup M_{i, i+2} \text { is a clique. } \tag{13}
\end{equation*}
$$

By symmetry, we may take $e=e_{1,3}$ as an example. Denote $M=M_{1,3}, D=D_{1,3}, D_{1}=D_{1,3,1}$ and $D_{2}=D_{1,3,2}$ for simplicity. Since c_{2} is anticomplete to e, we have that $c_{2} \in M$. Let a_{1} be a vertex in A_{1}, and b_{1} a vertex in B_{1}. If $a_{1} c_{2} \notin E(G)$, then $a_{1} c_{1} c_{3} c_{k} c_{2}$ is an induced P_{5} or banner, a contradiction. This shows that $a_{1} c_{2} \in E(G)$. Similarly, we have that $b_{1} c_{2} \in E(G)$. Therefore,
c_{2} is complete to $A_{1} \cup B_{1}$.
If $N_{M}\left(a_{1}\right) \neq N_{M}\left(b_{1}\right)$, we may suppose $m \in N_{M}\left(a_{1}\right) \backslash N_{M}\left(b_{1}\right)$, then $\left\{m, a_{1}, b_{1}, c_{1}, c_{3}\right\}$ will induce a P_{5} or a banner. So, $N_{M}\left(a_{1}\right)=N_{M}\left(b_{1}\right)$. Since G is C_{5}-free, we have that $a_{1} b_{1} \in E(G)$, and thus
A_{1} is complete to B_{1}.
Let $a_{1}^{\prime} \in A_{1}$. Since $G\left[\left\{a_{1}, a_{1}^{\prime}, c_{1}, c_{2}, c_{3}\right\}\right]$ is not a banner, we know that $a_{1} a_{1}^{\prime} \in E(G)$, which implies that A_{1} is a clique. Similarly, we have that B_{1} is also a clique. So,
$A_{1} \cup B_{1}$ is a clique.
Let a be a vertex in $A_{1} \cup B_{1} \cup D_{1}$ and M^{\prime} be a component of $G[M]$ such that a has a neighbor in M^{\prime}. If a is not complete to M^{\prime}, then there exists an edge $w_{1} w_{2} \in E\left(M^{\prime}\right)$ such that $\left\{a, w_{1}, w_{2}\right\}$ forms a P_{3} and thus $\left\{c_{1}, c_{3}, a, w_{1}, w_{2}\right\}$ is a P_{5} or a hammer. Therefore,

$$
A_{1} \cup B_{1} \cup D_{1} \text { is complete to } M^{\prime} .
$$

We will show further that

$$
\begin{equation*}
w c_{2} \in E(G) \text { for each vertex } w \in M \tag{14}
\end{equation*}
$$

Suppose that $w c_{2} \notin E(G)$ for some $w \in M$. Then, $w c_{1}, w c_{2}, w c_{3} \notin E(G)$. Since $M(C)=\emptyset$, there exists i such that $w c_{i} \in E(G)$. Suppose such an i makes $\min \{|i-1|,|i-3|\}$ minimum under taking index modulo k. Then, it is not hard to verify $w c_{4}, w c_{k} \in E(G)$ by (10) and hence $\left\{w, c_{2}, c_{3}, c_{4}, c_{5}\right\}$ will induce a P_{5} or a banner. Therefore, (14) holds, and thus $G[M]$ is connected, which implies that $A_{1} \cup B_{1} \cup D_{1}$ is complete to M. By symmetry, we have that

$$
\begin{equation*}
A_{i} \cup B_{i} \cup D_{i, i+2,1} \text { is complete to } M_{i, i+2} \text { for each } i \in[k] . \tag{15}
\end{equation*}
$$

To prove (13), it remains to show that
M is a clique.
If it is not the case, then let w_{1}, w_{2} be two nonadjacent vertices in M. Since $E(G) \cap\left\{w_{1} c_{1}, w_{1} c_{3}, w_{2} c_{1}, w_{2} c_{3}\right\}=\emptyset$, we have $\left\{w_{1} c_{4}, w_{1} c_{k}, w_{2} c_{4}, w_{2} c_{k}\right\} \subseteq E(G)$ by (8). For $v \in\left\{w_{1}, w_{2}\right\}$, as $\left\{v, c_{2}, c_{3}, c_{t}, c_{t+1}\right\}$ will not induce a banner, we have that
there will not exist t with $5 \leq t \leq k-1$ such that $v c_{t}, v c_{t+1} \notin E(G)$.
If $\left\{w_{1}, w_{2}\right\}$ is not anticomplete $\left\{c_{5}, c_{k-1}\right\}$, we may suppose $w_{1} c_{5} \in E(G)$, then $\left\{w_{1}, w_{2}, c_{3}, c_{4}, c_{5}\right\}$ will induce a banner or a P_{5}, a contradiction. So, $\left\{w_{1} c_{5}, w_{1} c_{k-1}, w_{2} c_{5}, w_{2} c_{k-1}\right\} \cap E(G)=\emptyset$, which implies that $\left\{w_{1} c_{6}, w_{2} c_{6}, w_{1} c_{k-2}, w_{2} c_{k-2}\right\} \subseteq E(G)$ by (8) and (17). Consider iteratively the subsets $\left\{w_{1}, w_{2}, c_{1+2 t}, c_{2+2 t}, c_{3+2 t}\right\}$ for $1 \leq t \leq \frac{k-7}{2}$. With almost the same arguments as above, one can verify, by (8) and (17), that $\left\{w_{1} c_{1+2 t}, w_{2} c_{1+2 t}\right\} \cap E(G)=\emptyset$ and $\left\{w_{1} c_{2+2 t}, w_{2} c_{2+2 t}\right\} \subseteq E(G)$ for $1 \leq t \leq \frac{k-5}{2}$. This shows that $\left\{w_{1} c_{k-4}, w_{2} c_{k-4}\right\} \cap E(G)=\emptyset$ and $\left\{w_{1} c_{k-3}, w_{2} c_{k-3}\right\} \subseteq E(G)$. This contradicts (7), as $\left\{w_{1} c_{k-2}, w_{2} c_{k-2}\right\} \subseteq E(G)$ and $\left\{w_{1} c_{k-1}, w_{2} c_{k-1}\right\} \cap E(G)=\emptyset$. Therefore, (16) follows and so does (13).

Let $d \in D_{2}$. Since $G\left[\left\{d, c_{1}, c_{2}, c_{3}, a_{1}\right\}\right]$ and $G\left[\left\{d, c_{1}, c_{2}, c_{3}, b_{1}\right\}\right]$ cannot be hammers, we have that $a_{1} d \in E(G)$ and $b_{1} d \in E(G)$. By symmetry, we have that
$D_{i, i+2,2}$ is complete to $A_{i} \cup B_{i}$ for each $i \in[k]$.
Now, we consider the main edge $e_{k, 2}$. Since $D_{1,3,1}$ is complete to $M_{1,3}$ by (15), we have that $D_{1,3,1} \subseteq N\left(c_{2}\right)$. Since $D_{1,3,2}$ is complete to $A_{1} \cup B_{1}$ by (18), we have that $D_{1,3,2} \subseteq N\left(c_{k}\right)$. Notice that $A_{1} \cup B_{1} \cup M_{1,3} \backslash\left\{c_{k}, c_{2}\right\} \subseteq N\left(c_{2}\right) \cap N\left(c_{k}\right)$ by (13). We have that $A_{k}=N\left(c_{k}\right) \backslash N\left(c_{2}\right)=D_{1,3,2} \cup\left\{c_{3}\right\}$, and thus $D_{1,3,2}$ is a clique as A_{k} is a clique by (13). With the similar argument, we can show that $M_{k, 2}=\left\{c_{1}\right\}$. By symmetry, we have that, for each $i \in[k]$,

$$
\begin{equation*}
N\left(c_{i}\right) \backslash N\left(c_{i+2}\right)=D_{i+1, i+3,2} \cup\left\{c_{i+3}\right\}, \text { which is a clique, and } M_{i, i+2}=\left\{c_{i+1}\right\} \tag{19}
\end{equation*}
$$

Recall that $D_{1}=D_{1,3,1}$ and $D_{2}=D_{1,3,2}$. Let $t \geq 0$, and let $D_{2}=\left\{d_{1}, d_{2}, \ldots, d_{t}\right\}$. By (19), we have that $D_{2} \cup\left\{c_{1}, c_{3}\right\}$ is a clique.

For a subset $Z \subset V(G)$ and a vertex $x \in V(G)$, let $M_{Z}(x)$ be the set of vertices of Z which are not adjacent to x. For $i \in[t]$, let $U_{i}=M_{D_{1}}\left(d_{i}\right)$, which is the set of non-neighbors of d_{i} in D_{1}. By (18), we have that $U_{i}=M_{A_{1} \cup B_{1} \cup D_{1}}\left(d_{i}\right)$. We will prove that

$$
\begin{equation*}
\bigcup_{v \in D_{2} \cup\left\{c_{1}, c_{3}\right\}} M_{A_{1} \cup B_{1} \cup D_{1}}(v) \text { is a clique. } \tag{20}
\end{equation*}
$$

To prove (20), we first prove that

$$
\begin{equation*}
M_{A_{1} \cup B_{1} \cup D_{1}}(v) \text { is a nonempty clique for each vertex } v \in D_{2} \cup\left\{c_{1}, c_{3}\right\} . \tag{21}
\end{equation*}
$$

Since $M_{A_{1} \cup B_{1} \cup D_{1}}\left(c_{1}\right)=B_{1}$ and $M_{A_{1} \cup B_{1} \cup D_{1}}\left(c_{3}\right)=A_{1}$, which are both cliques by (13), we only need to verify that (21) holds for the vertices in D_{2}. If $U_{i}=\emptyset$ for some i, then $N\left(c_{1}\right) \subseteq N\left(d_{i}\right)$ by (18), contradicting (6). Therefore, $U_{i} \neq \emptyset$ for all $i \in[t]$. If there exists an $i \in[t]$ and two nonadjacent vertices $u_{i}, u_{i}^{\prime} \in U_{i}$, then $G\left[\left\{d_{i}, u_{i}, u_{i}^{\prime}, c_{1}, c_{2}\right\}\right]$ is a banner, a contradiction. So, U_{i} is a clique for all $i \in[t]$, and thus (21) holds.

If $U_{i} \cap U_{j} \neq \emptyset$ for some $1 \leq i<j \leq t$, then there exists $u \in U_{i} \cap U_{j}$ such that $d_{i} u \notin E(G)$ and $d_{j} u \notin E(G)$, which implies $G\left[\left\{d_{i}, d_{j}, u, c_{1}, c_{2}\right\}\right]$ is a hammer. Therefore,
$U_{1}, U_{2}, \ldots, U_{t}$ are pairwisely disjoint,
and consequently, $A_{1}, B_{1}, U_{1}, U_{2}, \ldots, U_{t}$ are pairwisely disjoint.
Let $a_{1} \in A_{1}$ and $b_{1} \in B_{1}$. For integers $1 \leq i<i^{\prime} \leq t$, let $u_{i} \in U_{i}$ and $u_{i^{\prime}} \in U_{i^{\prime}}$. From (18), we have that $a_{1} d_{i}, b_{1} d_{i}, a_{1} d_{i^{\prime}}, b_{1} d_{i^{\prime}} \in E(G)$. If $u_{i} u_{i^{\prime}} \notin E(G)$, then $G\left[\left\{d_{i}, d_{i^{\prime}}, u_{i}, u_{i^{\prime}}, c_{2}\right\}\right]$ is a C_{5}. So, $u_{i} u_{i^{\prime}} \in E(G)$. If $a_{1} u_{i} \notin E(G)$, then $G\left[\left\{d_{i}, c_{3}, u_{i}, a_{1}, c_{2}\right\}\right]$ is a C_{5}. So, $a_{1} u_{i} \in E(G)$. Similarly, we have that $b_{1} u_{i} \in E(G)$. Therefore, $U_{i}, U_{i^{\prime}}, A_{1}, B_{1}$ are pairwisely complete for $1 \leq i<i^{\prime} \leq t$. By (21), we have (20) holds.

If $\omega\left(G \backslash\left\{c_{2}\right\}\right)<\omega(G)$, then

$$
\begin{aligned}
\chi(G) & \leq \chi\left(G \backslash\left\{c_{2}\right\}\right)+1 \\
& \leq(\omega(G)-1)^{\frac{3}{2}}+1 \\
& <\omega^{\frac{3}{2}}(G) .
\end{aligned}
$$

So, $\omega\left(G \backslash\left\{c_{2}\right\}\right)=\omega(G)$. Let $W_{0}=\left\{c_{1}, c_{3}\right\} \cup D_{2}$ and $W_{1}=A_{1} \cup B_{1} \cup U_{1} \cup U_{2} \cup \cdots \cup U_{t}$. By (19) and (20), we have W_{0} and W_{1} are cliques. By (21), we have $\omega\left(W_{0}\right) \leq \omega\left(W_{1}\right)$. Since c_{2} is complete to $A_{1} \cup B_{1} \cup D_{1}, A_{1} \cup B_{1} \cup D_{1}$ contains no maximum cliques, which means both $G \backslash\left(W_{0} \cup\left\{c_{2}\right\}\right)$ and $G\left[W_{1}\right]$ contain no maximum cliques. Therefore, $\omega\left(G \backslash\left(W_{0} \cup\left\{c_{2}\right\}\right)\right)<\omega(G)$ and $\omega\left(W_{1}\right)<\omega(G)$.

If $\omega\left(W_{1}\right) \geq \omega^{2}\left(W_{0}\right)$, then

$$
\begin{aligned}
\chi(G) & \leq \chi\left(G \backslash\left(W_{0} \cup\left\{c_{2}\right\}\right)\right)+\chi\left(W_{0} \cup\left\{c_{2}\right\}\right) \\
& \leq \omega^{\frac{3}{2}}\left(G \backslash\left(W_{0} \cup\left\{c_{2}\right\}\right)\right)+\omega\left(W_{0}\right) \\
& \leq(\omega(G)-1)^{\frac{3}{2}}+\omega^{\frac{1}{2}}\left(W_{1}\right) \\
& \leq(\omega(G)-1)^{\frac{3}{2}}+(\omega(G)-1)^{\frac{1}{2}} \\
& \leq(\omega(G)-1)^{\frac{1}{2}} \cdot \omega(G) \\
& \leq \omega^{\frac{3}{2}}(G) .
\end{aligned}
$$

Suppose that $\omega\left(W_{1}\right)<\omega^{2}\left(W_{0}\right)$. Let $d_{0} \in W_{0}$ be a vertex such that its corresponding nonadjacent clique $U_{0} \subseteq W_{1}$ has minimum size among $A_{1}, B_{1}, U_{1}, U_{2}, \ldots, U_{t}$. We have that $\omega\left(W_{0}\right) \cdot \omega\left(U_{0}\right)=(t+2) \omega\left(U_{0}\right) \leq \omega\left(A_{1}\right)+\omega\left(B_{1}\right)+$ $\sum_{i=1}^{t} \omega\left(U_{i}\right) \omega\left(W_{1}\right)<\min \left\{\omega^{2}\left(W_{0}\right), \omega(G)\right\}$, which implies that $\omega\left(U_{0}\right)<\omega\left(W_{0}\right)$ and $\omega\left(U_{0}\right)<(\omega(G)-1)^{\frac{1}{2}}$. Since d_{0} is complete to $G \backslash\left(U_{0} \cup\left\{c_{2}, d_{0}\right\}\right)$, we have $\omega\left(G \backslash\left(U_{0} \cup\left\{c_{2}, d_{0}\right\}\right)\right) \leq \omega(G)-1$ and then

$$
\begin{aligned}
\chi(G) & \leq \chi\left(G \backslash\left(U_{0} \cup\left\{c_{2}, d_{0}\right\}\right)\right)+\chi\left(U_{0} \cup\left\{d_{0}\right\}\right)+\chi\left(\left\{c_{2}\right\}\right) \\
& \leq \omega^{\frac{3}{2}}\left(G \backslash\left(U_{0} \cup\left\{c_{2}, d_{0}\right\}\right)\right)+\omega\left(U_{0}\right)+1 \\
& \leq(\omega(G)-1)^{\frac{3}{2}}+\left((\omega(G)-1)^{\frac{1}{2}}-1\right)+1 \\
& \leq(\omega(G)-1)^{\frac{1}{2}} \cdot \omega(G) \\
& \leq \omega^{\frac{3}{2}}(G) .
\end{aligned}
$$

Thus, $\chi(G) \leq \omega^{\frac{3}{2}}(G)$ holds and so does Theorem 1.3.

Data availability

No data was used for the research described in the article.

References

[1] C. Brause, M. Geißer, I. Schiermeyer, Homogeneous sets, clique-separators, critical graphs, and optimal χ-binding functions, Discrete Appl. Math. 320 (2022) 211-222.
[2] C. Brause, B. Randerath, I. Schiermeyer, E. Vumar, On the chromatic number of $2 K_{2}$-free graphs, Discrete Appl. Math. 253 (2019) 14-24.
[3] K. Cameron, S. Huang, O. Merkel, A bound for the chromatic number of (P_{5}, gem)-free graphs, Bull. Austr. Math. Soc. 100 (2019) 182-188.
[4] A. Char, T. Karthick, Coloring of ($P_{5}, 4$-wheel)-free graphs, Discrete Math. 345 (2022) 211-222.
[5] S.A. Choudum, T. Karthick, M.A. Shalu, Perfect coloring and linearly χ-bounded P_{6}-free graphs, J. Graph Theory 54 (2007) $293-306$.
[6] M. Chudnovsky, T. Karthick, P. Maceli, F. Maffray, Coloring graphs with no induced five-vertex path or gem, J. Graph Theory 95 (2020) $527-542$.
[7] M. Chudnovsky, N. Robertson, P. Seymour, R. Thomas, The strong perfect graph theorem, Annal. Math. 164 (2006) 51-229.
[8] M. Chudnovsky, V. Sivaraman, Perfect divisibility and 2-divisibility, J. Graph Theory 90 (2019) 54-60.
[9] V. Chvátal, N. Sbihi, Recognizing claw-free perfect graphs, J. Combin. Theory Ser. B 44 (1988) 154-176.
[10] W. Dong, B. Xu, Y. Xu, On the chromatic number of some P_{5}-free graphs, Discrete Math. 345 (2022) 113004.
[11] W. Dong, B. Xu, Y. Xu, A tight linear bound to the chromatic number of ($P_{5}, K_{1}+\left(K_{1} \cup K_{3}\right)$)-free graphs, Graphs Combin. 43 (2023) 43 , http://dx.doi.org/10.1007/s00373-023-02642-y.
[12] L. Esperet, L. Lemoine, F. Maffray, G. Morel, The chromatic number of $\left\{P_{5}, K_{4}\right\}$-free graphs, Discrete Math. 313 (2013) 743-754.
[13] J.-L. Fouquet, V. Giakoumakis, F. Maire, H. Thuillier, On graphs without P_{5} and P_{5}, Discrete Math. 146 (1995) 33-44.
[14] C.T. Hoàng, On the structure of (banner, odd hole)-free graphs, J. Graph Theory 89 (2018) 395-412.
[15] C.T. Hoàng, C. McDiarmid, On the divisibility of graphs, Discrete Math. 242 (2002) 145-156.
[16] S. Huang, T. Karthick, On graphs with no induced five-vertex path or paraglider, 2019, arXiv:1903.11268v1.[math.CO]. https://arxiv.org.
[17] D.S. Malyshev, Two cases of polynomial-time solvablity for the coloring problem, J. Comb. Optm. 31 (2016) 833-845.
[18] I. Schiermeyer, Chromatic number of P_{5}-free graphs: Reed's conjecture, Discrete Math. 343 (2016) 1940-1943.
[19] A. Scott, P. Seymour, Induced subgraphs of graphs with large chromatic number. I. Odd holes, J. Combin. Theory Ser. B 121 (2016) 68-84.
[20] A. Scott, P. Seymour, S. Spirkl, Polynomial bounds for chromatic number. IV: A near-polynomial bound for excluding the five-vertex path, Combinatorica 43 (2023) 845-852.
[21] V. Sivaraman, Some problems on induced subgraphs, Discrete Appl. Math. 236 (2018) 422-427
[22] D.P. Sumner, Subtrees of a graph and the chromatic number, in: The Theory and Applications of Graphs (Kalamazoo, Mich., 1980), Wiley, New York, 1981, pp. 557-576.
[23] Y. Xu, The chromatic number of ($P_{5}, H V N$)-free graphs, in: To Appear in Acta Appl. Math. Sinica English Ser, arXiv:2204.06460. [math.CO].
[24] Y. Xu, The chromatic number of ($P_{5}, K_{5}-e$)-free graphs, Appl. Math. Comput. (2024) http://dx.doi.org/10.1016/j.amc.2023.128314.

[^0]: \star Supported in part by Science and Technology Commission of Shanghai Municipality, China (No. 22DZ2229014) and National Natural Science Foundation of China (Nos. 11931006, 12126339).

 * Corresponding author.

 E-mail addresses: jialsong@foxmail.com (J. Song), baogxu@njnu.edu.cn (B. Xu).

