C_{10} has positive Turán density in the hypercube

Alexandr Grebennikov, João Pedro Marciano

Abstract

The n-dimensional hypercube Q_{n} is a graph with vertex set $\{0,1\}^{n}$ and there is an edge between two vertices if they differ in exactly one coordinate. For any graph H, define $\operatorname{ex}\left(Q_{n}, H\right)$ to be the maximum number of edges of a subgraph of Q_{n} without a copy of H. In this short note, we prove that for any $n \in \mathbb{N}$ $$
\operatorname{ex}\left(Q_{n}, C_{10}\right)>0.024 \cdot e\left(Q_{n}\right)
$$

Our construction is strongly inspired by the recent breakthrough work of Ellis, Ivan, and Leader [12], who showed that "daisy" hypergraphs have positive Turán density with an extremely clever and simple linear-algebraic argument.

1. Introduction

For each $n \in \mathbb{N}$, define the n-dimensional hypercube Q_{n} to be the graph with vertex set $\{0,1\}^{n}$, and with an edge between two vertices if they differ in exactly one coordinate. Erdős [13] initiated the study of $\operatorname{ex}\left(Q_{n}, H\right)$, the maximum number of edges in an H-free subgraph of Q_{n}, in the special case where H is an even cycle. We say that H has positive Turán density in the hypercube if there is some constant $\alpha>0$ such that for every $n \in \mathbb{N}$

$$
\operatorname{ex}\left(Q_{n}, H\right) \geqslant \alpha \cdot e\left(Q_{n}\right)
$$

where $e\left(Q_{n}\right)$ denotes the number of edges of Q_{n}.
It will be useful to identify in the usual way the vertices of Q_{n} with the subsets of $[n]:=$ $\{1, \ldots, n\}$. For any $r \leqslant n$, we define $L_{r}(n)$, the r-th (edge) layer of Q_{n}, to be the subgraph of Q_{n} formed by the edges between $\binom{[n]}{r-1}$ and $\binom{[n]}{r}$, where

$$
\binom{[n]}{r}:=\{S \subset[n]:|S|=r\} .
$$

It is easy to see that $C_{4} \not \subset L_{r}(n)$, thus taking every second layer gives that

$$
\operatorname{ex}\left(Q_{n}, C_{4}\right) \geqslant \frac{1}{2} \cdot e\left(Q_{n}\right)
$$

Erdős [14] offered $\$ 100$ for an answer to whether this bound is optimal, and it remains open until the present date. The best known upper bound, due to Baber [4], is approximately $0.60318 \cdot e\left(Q_{n}\right)$ (see $[9,17,5]$ for previous upper bounds).

Erdős [13] suggested that longer even cycles might not have positive Turan density, but this was shown to be false for C_{6} by Chung [9] and Brouwer, Dejter, and Thomassen [7]. On

[^0]the other hand, it was proved by Chung [9] for every even $t \geqslant 4$, and by Füredi and Özkahya $[15,16]$ for every odd $t \geqslant 7$, that
$$
\operatorname{ex}\left(Q_{n}, C_{2 t}\right)=o\left(e\left(Q_{n}\right)\right)
$$
and a unified proof for all of the above cases was given by Conlon [11]. Thus, the only case for which the problem remained open was C_{10}. The main result of this paper completes the picture, by showing that C_{10} has positive Turán density in the hypercube.

Theorem 1.1. For all $n \in \mathbb{N}$

$$
\operatorname{ex}\left(Q_{n}, C_{10}\right)>0.024 \cdot e\left(Q_{n}\right)
$$

In fact, our proof gives the constant $c / 12$, where

$$
c=\prod_{k=1}^{\infty}\left(1-\frac{1}{2^{k}}\right)>0.288
$$

We also remark that the graph we construct to prove Theorem 1.1 is free of C_{4}, C_{6} and C_{10} simultaneously. The previous best known lower bound in this case was

$$
\operatorname{ex}\left(Q_{n}, C_{10}\right) \geqslant \frac{e\left(Q_{n}\right)}{(\log n)^{\alpha}}
$$

for some constant $\alpha>0$, recently shown by Axenovich, Martin, and Winter [3, Theorem 5].
The Ramsey problem for even cycles in the hypercube has also attracted a great deal of attention over the years. In particular, Chung [9] and Brouwer, Dejter, and Thomassen [7] found 4-colourings of the hypercube without a monochromatic C_{6}, and Conder [10] found a 3-colouring with the same property, implying the best known lower bound for this case of $\operatorname{ex}\left(n, C_{6}\right) \geqslant \frac{1}{3} e\left(Q_{n}\right)$. However, it was shown by Alon, Radoičić, Sudakov, and Vondrák [1] that for any k-colouring of the edges of Q_{n} there is a monochromatic copy of C_{10}. Our result therefore gives, to the best of our knowledge, the first example of a Ramsey graph which has positive Turán density in the hypercube. The best upper bound we are aware of is $\operatorname{ex}\left(Q_{n}, C_{10}\right) \leqslant \frac{1}{\sqrt{2}} \cdot e\left(Q_{n}\right)$ by Axenovich and Martin [2, Theorem 3.3].

Our proof of Theorem 1.1 is heavily inspired by a recent breakthrough work of Ellis, Ivan, and Leader [12], who gave an extremely clever and simple linear-algebraic construction which shows that "daisies" have positive Turán density in hypergraphs, disproving a conjecture of Bollobás, Leader, and Malvenuto [6] and Bukh [8]. The argument we use is essentially a slight modification of their approach.

We will need another important idea, first observed by Alon, Radoičić, Sudakov, and Vondrák [1] and Axenovich and Martin [2]: it is possible to find a 4-colouring of $E\left(Q_{n}\right)$ without monochromatic chordless C_{10}. More precisely, define ex* $\left(Q_{n}, C_{6}^{-}\right)$to be the maximum number of edges of a subgraph of Q_{n} such that there is no embedding of C_{6} minus one edge that can be extended to a C_{6} in Q_{n}. We will make use of the following result of Axenovich, Martin, and Winter [3], which is based on the 3-colouring given by Conder [10].

Theorem 1.2 (Lemma 19 in [3]).

$$
\operatorname{ex}\left(Q_{n}, C_{10}\right) \geqslant \frac{1}{3} \cdot \operatorname{ex}^{*}\left(Q_{n}, C_{6}^{-}\right)
$$

Thus, the core of the proof will be to show the following theorem.
Theorem 1.3. For any $r, n \in \mathbb{N}$ with $r \leqslant n$, there exists a C_{6}-free induced subgraph G_{r} of $L_{r}(n)$ with

$$
e\left(G_{r}\right)>\frac{c}{2} \cdot e\left(L_{r}(n)\right)
$$

Proof of Theorem 1.1 from Theorem 1.3. Take G to be the union of the graphs G_{r} given by Theorem 1.3 for every odd $r \leqslant n$, so that G_{r} is disconnected from $G_{r^{\prime}}$ for every $r \neq r^{\prime}$.

Observe that every induced subgraph of a layer containing a C_{6}^{-}also contains a C_{6}; thus, since G_{r} is a C_{6}-free induced subgraph of $L_{r}(n)$, it is also free of C_{6}^{-}. This implies

$$
\operatorname{ex}^{*}\left(Q_{n}, C_{6}^{-}\right) \geqslant e(G)>\frac{c}{2} \sum_{r=1}^{\lceil n / 2\rceil} e\left(L_{2 r-1}(n)\right)=\frac{c}{4} \cdot e\left(Q_{n}\right)
$$

which, by Theorem 1.2, concludes the proof.

2. Proof of Theorem 1.3

Similarly to the argument used in [12], we consider the vector space \mathbb{F}_{2}^{r}. Also we fix a nonzero vector $v_{0} \in \mathbb{F}_{2}^{r}$. For each $i \in[n]$, pick a uniform random vector $v_{i} \in \mathbb{F}_{2}^{r} \backslash\{0\}$. Now each vertex of our hypercube layer $L_{r}(n)$ corresponds to a certain collection of vectors in \mathbb{F}_{2}^{r} (of size r or $r-1$). Define the sets

$$
\begin{gathered}
B_{r}=\left\{\left.S \in\binom{[n]}{r} \right\rvert\,\left\{v_{i}: i \in S\right\} \text { form a basis of } \mathbb{F}_{2}^{r}\right\} \\
B_{r-1}=\left\{\left.S \in\binom{[n]}{r-1} \right\rvert\,\left\{v_{i}: i \in S\right\} \cup\left\{v_{0}\right\} \text { form a basis of } \mathbb{F}_{2}^{r}\right\}
\end{gathered}
$$

and consider the induced subgraph G_{r} on $B_{r-1} \cup B_{r}$.
We will show that this (random) graph G_{r} is C_{6}-free (deterministically) and has a large expected number of edges, and therefore has the desired properties with positive probability.

Claim 2.1. G_{r} is C_{6}-free.
Proof. Suppose there is a copy of C_{6} in G_{r}. There are exactly three different coordinates flipped by its edges, so it must form the middle layer of some 3-dimensional subcube of Q_{n}. More precisely, by permuting the coordinates, we may assume that this copy of C_{6} is exactly of the form $L_{r}(n)\left[A_{1} \cup A_{2}\right]$, where

$$
A_{1}=\{\{i\} \cup I \quad \mid 1 \leqslant i \leqslant 3\} \quad \text { and } \quad A_{2}=\{\{i, j\} \cup I \mid 1 \leqslant i<j \leqslant 3\}
$$

for some $I \subset[n] \backslash\{1,2,3\}$ with $|I|=r-2$. Also let $U=\left\{v_{i} \mid i \in I\right\}$ be the collection of vectors corresponding to the coordinates in I.

Observe that, since $\{1,2\} \cup I \in A_{2} \subset B_{r}$, the collection of vectors $\left\{v_{1}, v_{2}\right\} \cup U$ is a basis of \mathbb{F}_{2}^{r}, so, in particular, the vectors in U are linearly independent. Therefore, after taking the quotient of \mathbb{F}_{2}^{r} by $\langle U\rangle$ we obtain a vector space V isomorphic to \mathbb{F}_{2}^{2}.

Define $x_{0}, x_{1}, x_{2}, x_{3} \in V$ to be the images of $v_{0}, v_{1}, v_{2}, v_{3}$, respectively, under the quotient map. Since $A_{2} \subset B_{r}$ we have that

$$
\left\{v_{i}, v_{j}\right\} \cup U \text { form a basis of } \mathbb{F}_{2}^{r} \text { for any } 1 \leqslant i<j \leqslant 3,
$$

i.e.,

$$
\left\{x_{i}, x_{j}\right\} \text { form a basis of } V \text { for any } 1 \leqslant i<j \leqslant 3
$$

Similarly, from $A_{1} \subset B_{r-1}$, by the same argument as above, we obtain

$$
\left\{x_{0}, x_{i}\right\} \text { form a basis of } V \text { for any } 1 \leqslant i \leqslant 3
$$

In particular, this implies that $x_{i} \neq 0$ for each $i \in\{0,1,2,3\}$ and that $x_{i} \neq x_{j}$ for any $i \neq j$. But $|V \backslash\{0\}|=3$, which yields a contradiction.

Claim 2.2. $\mathbb{E}\left[e\left(G_{r}\right)\right]>\frac{c}{2} \cdot e\left(L_{r}(n)\right)$.
Proof. Consider an edge of $L_{r}(n)$ connecting two sets $x=\left\{j_{1}, \ldots, j_{r-1}\right\}$ and $y=\left\{j_{1}, \ldots, j_{r}\right\}$. Define the vector spaces

$$
V_{k}=\left\langle v_{0}, v_{j_{1}}, \ldots, v_{j_{k}}\right\rangle \quad \text { for } 0 \leqslant k \leqslant r-1, \text { and } \quad V_{r}=\left\langle v_{j_{1}}, \ldots, v_{j_{r}}\right\rangle .
$$

Note that

$$
\begin{equation*}
\mathbb{P}\left(x y \in G_{r}\right)=\mathbb{P}\left(x \in B_{r-1} \text { and } y \in B_{r}\right)=\mathbb{P}\left(\operatorname{dim} V_{r-1}=\operatorname{dim} V_{r}=r\right) \tag{1}
\end{equation*}
$$

Observe that, if the vectors $v_{0}, v_{j_{1}}, \ldots, v_{j_{k-1}}$ (for $1 \leqslant k \leqslant r-1$) are fixed and linearly independent, then there are exactly $2^{r}-2^{k}$ admissible choices for the next vector $v_{j_{k}}$. Similarly, if the vectors $v_{j_{1}}, \ldots, v_{j_{r-1}}$ are fixed and linearly independent, then there are $2^{r}-2^{r-1}$ admissible choices for the last vector $v_{j_{r}}$. Therefore, by (1), we have

$$
\begin{aligned}
\mathbb{P}\left(x y \in G_{r}\right) & =\left(\prod_{k=1}^{r-1} \mathbb{P}\left(v_{j_{k}} \notin V_{k-1} \mid \operatorname{dim} V_{k-1}=k\right)\right) \cdot \mathbb{P}\left(v_{j_{r}} \notin\left\langle v_{j_{1}}, \ldots, v_{j_{r-1}}\right\rangle \mid \operatorname{dim} V_{r-1}=r\right) \\
& =\left(\prod_{k=1}^{r-1} \frac{2^{r}-2^{k}}{2^{r}-1}\right) \cdot \frac{2^{r}-2^{r-1}}{2^{r}-1}>\frac{1}{2} \prod_{k=1}^{\infty}\left(1-\frac{1}{2^{k}}\right)=\frac{c}{2}
\end{aligned}
$$

The claim now follows from linearity of expectation.

As observed above, it follows from Claims 2.1 and 2.2 that there exists a choice of the vectors v_{1}, \ldots, v_{n} such that

$$
e\left(G_{r}\right)>\frac{c}{2} \cdot e\left(L_{r}(n)\right)
$$

and G_{r} is C_{6}-free, as required.

References

[1] N. Alon, R. Radoičić, B. Sudakov, and J. Vondrák. A Ramsey-type result for the hypercube. J. Graph Theory, 53:196-208, 2006.
[2] M. Axenovich and R. Martin. A note on short cycles in a hypercube. Disc. Math., 306: 2212-2218, 2006.
[3] M. Axenovich, R. Martin, and C. Winter. On graphs embeddable in a layer of a hypercube and their extremal numbers. arXiv:2303.15529, 2023.
[4] R. Baber. Turán densities of hypercubes. arXiv:1201.3587, 2012.
[5] J. Balogh, P. Hu, B. Lidickỳ, and H. Liu. Upper bounds on the size of 4- and 6-cycle-free subgraphs of the hypercube. European J. Combin., 35:75-85, 2014.
[6] B. Bollobás, I. Leader, and C. Malvenuto. Daisies and other Turán problems. Combin., Probab. Computing, 20:743-747, 2011.
[7] A.E. Brouwer, I.J. Dejter, and C. Thomassen. Highly symmetric subgraphs of hypercubes. J. Algeb. Combin., 2:25-29, 1993.
[8] B. Bukh. Set families with a forbidden subposet. Electron. J. Combin., 16, 2009.
[9] F. Chung. Subgraphs of a hypercube containing no small even cycles. J. Graph Theory, 16:273-286, 1992.
[10] M. Conder. Hexagon-free subgraphs of hypercubes. J. Graph Theory, 17:477-479, 1993.
[11] D. Conlon. An extremal theorem in the hypercube. Electron. J. Combin., 17, 2010.
[12] D. Ellis, Maria-Romina Ivan, and I. Leader. Turán densities for daisies and hypercubes. arXiv:2401.16289, 2024.
[13] P. Erdős. On some problems in graph theory, combinatorial analysis and combinatorial number theory. Graph Theory Combin., pages 1-17, 1984.
[14] P. Erdős. Some of my favourite unsolved problems. A tribute to Paul Erdős, 46:467-478, 1990.
[15] Z. Füredi and L. Özkahya. On 14-cycle-free subgraphs of the hypercube. Combin., Probab. Computing, 18:725-729, 2009.
[16] Z. Füredi and L. Özkahya. On even-cycle-free subgraphs of the hypercube. J. Combin. Theory, Ser. A, 118:1816-1819, 2011.
[17] A. Thomason and P. Wagner. Bounding the size of square-free subgraphs of the hypercube. Disc. Math., 309:1730-1735, 2009.

IMPA, Estrada Dona Castorina 110, Jardim Botânico, Rio de Janeiro, RJ, Brazil
Email address: joao.marciano@impa.br
IMPA, Estrada Dona Castorina 110, Jardim Botânico, Rio de Janeiro, RJ, Brazil
Email address: sagresash@yandex.ru

[^0]: This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Brasil (CAPES).

