On the length of directed paths in digraphs

Yangyang Cheng* ${ }^{* \dagger}$ Peter Keevash ${ }^{\ddagger \S}$

${ }^{a}$ Mathematical Institute, University of Oxford, UK

Abstract

Thomassé conjectured the following strengthening of the well-known Caccetta-Haggkvist Conjecture: any digraph with minimum out-degree δ and girth g contains a directed path of length $\delta(g-1)$. Bai and Manoussakis gave counterexamples to Thomassé's conjecture for every even $g \geq 4$. In this note, we first generalize their counterexamples to show that Thomassé's conjecture is false for every $g \geq 4$. We also obtain the positive result that any digraph with minimum outdegree δ and girth g contains a directed path of $2 \delta\left(1-\frac{2}{g}\right)$. For small g we obtain better bounds, e.g. for $g=3$ we show that oriented graph with minimum out-degree δ contains a directed path of length 1.5δ. Furthermore, we show that each d-regular digraph with girth g contains a directed path of length $\Omega(d g / \log d)$. Our results give the first non-trivial bounds for these problems.

1 Introduction

The Caccetta-Haggkvist Conjecture [1] states that any digraph on n vertices with minimum outdegree δ contains a directed cycle of length at most $\lceil n / \delta\rceil$; it remains largely open (see the survey [2]). A stronger conjecture proposed by Thomassé (see [3],[2]) states that any digraph with minimum out-degree δ and girth g contains a directed path of length $\delta(g-1)$. Bai and Manoussakis gave counterexamples to Thomassé's conjecture for every even $g \geq 4$. The conjecture remains open for $g=3$, which in itself was highlighted as an unsolved problem in the textbook [4].

Conjecture 1. Any oriented graph with minimum out-degree δ contains a directed path of length 2δ.

In this note, we first generalize the counterexamples to show that Thomassé's conjecture is false for every $g \geq 4$.

Proposition 2. For every $g \geq 2$ and $\delta \geq 1$ there exists a digraph D with girth g and $\delta^{+}(D) \geq \delta$ such that any directed path has length at most $\frac{g \delta}{2}$ if g is even or $\frac{(g+1) \delta}{2}$ if g is odd.

In the positive direction, when g is large we can find a directed path of length close to 2δ.
Theorem 3. Every digraph D with girth g and $\delta^{+}(D) \geq \delta$ contains a directed path of length $2 \delta\left(1-\frac{1}{g}\right)$.

[^0]For the cases $g=3$ or $g=4$, we have the following better bounds.
Theorem 4. Every oriented graph D with $\delta^{+}(D) \geq \delta$ contains a directed path of length 1.5δ. Every digraph D with $\delta^{+}(D) \geq \delta$ and girth $g \geq 4$ contains a directed path of length 1.6535δ.

Finally, we consider the additional assumption of approximate regularity, under which a standard application of the Lovász Local Lemma gives much better bounds, We call a digraph (C, d)-regular if $d^{+}(v) \geq d$ and $d^{-}(v) \leq C d$ for each vertex v.

Theorem 5. For every $C>0$ there exists $c>0$ such that if D is a (C, d)-regular digraph with girth g then D contains a directed path of length at least $c d g / \log d$.

1.1 Notation

We adopt standard notation as in [3]. A digraph D is defined by a vertex set $V(D)$ and arc set $A(D)$, which is a set of ordered pairs in $V(D)$. An oriented graph is a digraph where we do not allow 2-cycles $\{(x, y),(y, x)\}$, i.e. it is obtained from a simple graph by assigning directions to the edges. For each vertex $v \in D$ and any vertex set $S \subseteq V(D)$, let $N^{+}(v, S)$ be the set of out-neighbours of v in S and let $d^{+}(v, S)=\left|N^{+}(v, S)\right|$. If $S=V(D)$, then we simply denote $d^{+}(v, S)$ by $d^{+}(v)$. If H is an induced subgraph of D, then we define $d^{+}(v, H)=d^{+}(v, V(H))$ for short. We let $\delta^{+}(D)=\min _{v} d^{+}(v)$ be the minimum out-degree of D. Indegree notation is similar, replacing + by - .

For every vertex set $X \subseteq V(D)$, let $N^{+}(X)$ be the set of vertices that are not in X but are out-neighbours of some vertex in X. For every two vertex sets A, B of $V(D)$, let $E(A, B)$ be the set of arcs in $A(D)$ with tail in A and head in B. A digraph D is strongly-connected if for every ordered pair of vertices $u, v \in V(D)$ there exists a directed path from u to v.

The girth $g(D)$ of D is the minimum length of a directed cycle in D (if D is acyclic we define $g(D)=\infty)$. We write $\ell(D)$ for the maximum length of a directed path in D.

2 Construction

We start by constructing counterexamples to Thomassé's conjecture for every $g \geq 4$, as stated in Proposition 2. Suppose that D is a digraph with $d^{+}(v)=\delta$ for each vertex $v \in V(D)$. For each $k \geq 1$, we define the k-lift operation on some fixed vertex v as follows: we delete all arcs with tail v, add $k-1$ disjoint sets of δ new vertices $U_{v, 1}, \ldots, U_{v, k-1}$ to D, write $U_{v, 0}:=\{v\}, U_{v, k}:=N^{+}(v)$ and add arcs so that $U_{v, i-1}$ is completely directed to $U_{v, i}$ for $1 \leq i \leq k$. (For example, a 1-lift does not change the digraph.) We note that any lift preserves the property that all out-degrees are δ.

Write $\vec{K}_{\delta+1}$ for the complete directed graph on $\delta+1$ vertices. Our construction is $D_{a, b}:=$ $\vec{K}_{\delta+1}^{\uparrow}(a, b, \ldots, b)$ for some integer $1 \leq a \leq b$, meaning that starting from $\vec{K}_{\delta+1}$, we a-lift some vertex v_{1} and b-lift all the other vertices.

Claim 6. The girth of $D_{a, b}$ is $a+b$ and the longest path has length δb.
Proof. Let C be any directed cycle in $D_{a, b}$. By construction, we can decompose $E(C)$ into directed paths of the form $v_{i} u_{1} \cdots u_{t} v_{j}$ such that $u_{j} \in U_{v_{i}, j}$ for $1 \leq j \leq t$ where $t=a$ if $i=1$ and $t=b$ if $i \geq 2$. A directed cycle contains at least two such pieces, so its length is at least $a+b$ since $a \leq b$. It is also easy to see $D_{a, b}$ does contain a directed cycle of length $a+b$.

Now suppose P is a directed path in $D_{a, b}$ of maximum length. Similarly, we can decompose $E(P)$ into directed paths of the form $v_{i} u_{1} \cdots u_{t} v_{j}$ such that $u_{j} \in U_{v_{i}, j}$ for $1 \leq j \leq t$ where $t=a$ if $i=1$
and $t=b$ if $i \geq 2$ (the first and last pieces could be shorter). Each piece has length at most b, so P has length at most δb.

Proposition 2 follows from Claim 6 by taking $a=b=\frac{g}{2}$ for g even or $a=\frac{g-1}{2}$ and $b=\frac{g+1}{2}$ for g odd.

3 The key lemma

Here we show that Theorems 3 and 4 follow directly from known results on the Caccetta-Häggkvist conjecture and the following key lemma.

Lemma 7. If D is an oriented graph with $\delta^{+}(D) \geq \delta$ then D either contains a directed path of length 2δ or an induced subgraph S such that $|V(S)| \leq \delta$ and $\delta^{+}(S) \geq 2 \delta-\ell(D)$.

We use the following bounds on Caccetta-Häggkvist in general by Chvátal and Szemerédi [5] and in the case of directed triangles by Hladký, Král, and Norin [6].

Theorem 8. Every digraph D with order n and $\delta^{+}(D) \geq \delta$ contains a directed cycle of length at most $\left\lceil\frac{2 n}{\delta+1}\right\rceil$.

Theorem 9. Every oriented graph with order n and minimum out-degree $0.3465 n$ contains a directed triangle.

Now we deduce Theorems 3 and 4, assuming the key lemma.
Proof of Theorem 3. Suppose that D is an oriented graph with $\delta^{+}(D) \geq \delta$ and girth g. By Lemma 7. D contains an induced subgraph S with $|S| \leq \delta$ and $\delta^{+}(S) \geq 2 \delta-\ell(D)$. According to Theorem 8. S contains a directed cycle of length at most $\frac{2 \delta}{2 \delta-\ell(D)+1}$. Therefore, $g \leq \frac{2 \delta}{2 \delta-\ell(D)+1}$, so $\ell(D) \geq$ $2 \delta\left(1-\frac{1}{g}\right)+1$.

Proof of Theorem 4. First, suppose that D is an oriented graph with $\delta^{+}(D) \geq \delta$. By Lemma 7 , either D contains a directed path of length 2δ or D contains an induced subgraph S such that $|S| \leq \delta$ and $\delta^{+}(S) \geq 2 \delta-\ell(D)$. Since D is oriented, for some vertex $b \in S$, we have $d^{+}(b, S) \leq \frac{|S|-1}{2}$, which means that $\delta^{+}(S) \leq \frac{|S|-1}{2} \leq \frac{\delta-1}{2}$ and so $\ell(D) \geq 2 \delta+1-\delta^{+}(S) \geq \frac{3}{2} \delta$. Similarly, if D has girth at least 4 then substituting the bound $\delta^{+}(S)<0.3465 \delta$ from Theorem 9 we obtain $\ell(D)>1.6535 \delta$.

In fact, by Lemma 7 , any improved bound towards the Caccetta-Häggkvist conjecture can be used to get a better bound for $\ell(D)$ when $\delta^{+}(D) \geq \delta$ and girth g. The Caccetta-Häggkvist conjecture itself would imply $\ell(D) \geq\left(2-\frac{1}{g}\right) \delta$.

4 Proof of the key lemma

Suppose that D is an oriented graph with $\delta^{+}(D) \geq \delta$ and no directed path of length 2δ. We can assume that D is strongly-connected, as there is a strong component of D with minimum out-degree at least δ. By deleting arcs, we can also assume that all out-degrees are exactly δ. Note that $|V(D)| \geq 2 \delta+1$, since D is oriented and $\delta^{+}(D) \geq \delta$.

Claim 10. D does not contain two disjoint directed cycles of length at least $\delta+1$.

Figure 1: Illustrations for the proofs of Claims 11 and 12 .

Proof. Suppose on the contrary that C_{1} and C_{2} are two such cycles. By strong connectivity, there exists a path P from $u_{1} \in C_{1}$ to $u_{2} \in C_{2}$ with $V(P)$ internally disjoint from $V\left(C_{1}\right) \cup V\left(C_{2}\right)$. Writing $u_{1} u_{1}^{\prime}$ for the out-arc of u_{1} in C_{1} and $u_{2}^{\prime} u_{2}$ for the in-arc of u_{2} in C_{2}, the path $\left\{C_{1}-u_{1} u_{1}^{\prime}\right\}+P+$ $\left\{C_{2}-u_{2}^{\prime} u_{2}\right\}$ has length at least $2 \delta+1$, a contradiction.

Now let $P=v_{0} v_{1} \cdots v_{\ell(D)}$ be a directed path of maximum length, where $\ell(D)<2 \delta$. By maximality of P, the out-neighbours $N^{+}\left(v_{\ell(D)}\right)$ of $v_{\ell(D)}$ must lie on P. Let $v_{a} \in N^{+}\left(v_{\ell(D)}\right)$ such that the index a is minimum among all the out-neighbours of $v_{\ell(D)}$. Thus $C=v_{a} v_{a+1} \cdots v_{\ell(D)} v_{a}$ is a directed cycle; we call $|C|$ the cycle bound of P. For future reference, we record the consequence

$$
\begin{equation*}
\ell(D) \geq g(D) \text { for any digraph } D . \tag{1}
\end{equation*}
$$

Choose P such that the cycle bound of P is also maximum subject to that P is a directed path of length $\ell(D)$. Clearly $a \neq 0$, otherwise using $|V(D)| \geq 2 \delta+1$ and strong connectivity, we can easily add one more vertex to C and get a longer path, contradiction.

Claim 11. Every vertex in $N^{+}\left(v_{a-1}\right)$ must be on P.
Proof. Suppose on the contrary that there exists an out-neighbour w_{1} of v_{a-1} such that $w_{1} \in V(D) \backslash$ $V(P)$. Let D_{1} be the induced graph of D on $V(D) \backslash V(P)$. We extend the vertex w_{1} to a maximal directed path $P_{1}=w_{1} w_{2} \cdots w_{m}$ in D_{1}. Since P_{1} is maximal in D_{1}, all the out-neighbours of w_{m} must be on $V(P) \cup V\left(P_{1}\right)$, see Figure 1(a).

We cannot have $w \in N^{+}\left(u_{m}\right)$ such that $w \in V(C)$. Indeed, writing w^{-}for the in-neighbour of w in C, the directed path $P^{\prime}=v_{0} \ldots v_{a-1} P_{1} w+\left(C-w^{-} w\right)$ would be longer than P, a contradiction. Thus we conclude that $N^{+}\left(w_{m}\right) \subseteq V\left(P_{1}\right) \cup\left\{v_{0}, \ldots, v_{a-1}\right\}$. Choose a vertex $z \in N^{+}\left(w_{m}\right)$ that has the largest distance to u_{m} on the path $P_{2}=v_{0} \ldots v_{a-1} u_{1} \ldots u_{m}$. Then $P_{2} \cup w_{m} z$ contains a cycle C_{1} of length at least $\delta+2$. Now C_{1} and C are two disjoint directed cycles of length at least $\delta+2$, which contradicts Claim 10 .

Let $A=N^{+}\left(v_{a-1}\right) \cap\left\{v_{0}, \ldots, v_{a-1}\right\}$ and $B=N^{+}\left(v_{a-1}\right) \cap V(C)$. Also, let $B^{-}=\{u: u \in$ $V(C), u v \in E(C)$ for some $v \in B\}$.

Claim 12. $N^{+}\left(B^{-}\right) \subseteq V(C)$.
Proof. Suppose not, then there exists a vertex $w \in V(D) \backslash V(C)$ such that $b w \in A(D)$ for some $b \in B^{-}$. By definition of B, there exists some vertex $b^{+} \in B$ such that $v_{a-1} b^{+} \in A(D)$ and $b b^{+} \in A(C)$. We cannot have $w \in V(D) \backslash V(P)$, as then the path $v_{0} v_{1} \ldots v_{a-1} b^{+}+\left(C-b b^{+}\right)+b w$ has length $\ell(D)+1$, a contradiction.

It remains to show that we cannot have $w \in V(P) \backslash V(C)$. Suppose that we do, with $w=v_{i}$ for some $0 \leq i \leq a-1$. Then the cycle $v_{i} v_{i+1} \ldots v_{a-1} b^{+}+\left(C-b b^{+}\right)+b v_{i}$ is longer than C. However, $P_{1}=v_{0} \ldots v_{a-1} b^{+}+\left(C-b b^{+}\right)$has length $\ell(D)$ and cycle bound larger than P, which contradicts our choice of P, see Figure 1(b).

Now let S be the induced digraph of D on B^{-}. Fix $x \in B^{-}$with $N_{S}^{+}(x)=\delta^{+}(S)$. Then $N^{+}(x) \subseteq V(C)$ by Claim 12, As $\left|N^{+}(x)\right|=\delta$ we deduce $|C| \geq|V(S)|-\delta^{+}(S)+\delta$.

Note that $|P| \geq|A|+1+|C| \geq|A|+1+|B|-\delta^{+}(S)+\delta$, as $|V(S)|=\left|B^{-}\right|=|B|$ and $A \subseteq\left\{v_{0}, \ldots, v_{a-1}\right\}$. But $|A|+|B| \geq\left|N^{+}\left(v_{a-1}\right)\right| \geq \delta$, so $\ell(D)=|P| \geq 2 \delta+1-\delta^{+}(S)$ and $\delta^{+}(S) \geq 2 \delta+1-\ell(D)$.

This completes the proof of Lemma 7 .

5 Long directed paths in almost-regular digraphs

In this section, we prove Theorem 5. We start by stating some standard probabilistic tools (see [7]). We use the following version of Chernoff's inequality.

Lemma 13. Let X_{1}, \ldots, X_{n} be independent Bernoulli random variables with $\mathbb{P}\left[X_{i}=1\right]=p_{i}$ and $\mathbb{P}\left[X_{i}=0\right]=1-p_{i}$ for all $i \in[n]$. Let $X=\sum_{i=1}^{n} X_{i}$ and $E[X]=\mu$. Then for every $0<a<1$, we have

$$
\mathbb{P}[|X-\mu| \geq a \mu] \leq 2 e^{-a^{2} \mu / 3}
$$

We will also use the following version of Lovász Local Lemma.
Lemma 14. Let A_{1}, \ldots, A_{n} be a collection of events in some probability space. Suppose that each $\mathbb{P}\left[A_{i}\right] \leq p$ and each A_{i} is mutually independent of a set of all the other events A_{j} but at most d, where $\operatorname{ep}(d+1)<1$. Then $\mathbb{P}\left[\cap_{i=1}^{n} \overline{A_{i}}\right]>0$.

Next we deduce the following useful partitioning lemma.
Lemma 15. For every $C>0$ there exists $c>0$ such that for any positive integer d with $t:=$ $\lfloor c d / \log d\rfloor \geq 1$, for any (C, d)-regular digraph D there exists a partition of $V(D)$ into $V_{1} \cup \cdots \cup V_{t}$ such that $\left|\left|V_{i}\right|-\left|V_{j}\right|\right| \leq 1$ and $d^{+}\left(v, V_{j}\right) \geq \frac{\log d}{2 c}$ for each $i, j \in[n]$ and $v \in V_{i}$.

Proof. We start with an arbitrary partition $U_{1} \cup \cdots \cup U_{s}$ of $V(D)$ where $\left|U_{1}\right|=\cdots=\left|U_{s-1}\right|=t$ and $1 \leq\left|U_{s}\right| \leq t$, so that $n / t \leq s<n / t+1$. We add $t-\left|U_{s}\right|$ isolated 'fake' vertices into U_{s} to make it a set of size t. We consider independent uniformly random permutations $\sigma_{i}=\left(\sigma_{i, 1}, \ldots, \sigma_{i, t}\right)$ of each U_{i}. Now let $V_{j}=\left\{\sigma_{1, j}, \ldots, \sigma_{s, j}\right\}$ for each $1 \leq j \leq t$. We will show that $V_{1} \cup \cdots \cup V_{t}$ (with fake vertices deleted) gives the required partition with positive probability.

We consider the random variables $X(v, j):=d^{+}\left(v, V_{j}\right)$ for each $v \in V$ and $j \in[t]$. Note that each is a sum of independent Bernoulli random variables with $\mathbb{E}[X(v, j)]=d^{+}(v) / t$. We let $E_{v, j}$ be the event that $\left|X(v, j)-\frac{d^{+}(v)}{t}\right| \geq \frac{d^{+}(v)}{2 t}$. Then $\mathbb{P}\left[E_{v, j}\right] \leq 2 e^{-\frac{d^{+}(v)}{12 t}} \leq 2 e^{-\frac{d}{12 t}}$ by Chernoff's inequality.

Now $E_{v, j}$ is determined by those σ_{i} with $U_{i} \cap N^{+}(v) \neq \emptyset$, so is mutually independent of all but at most $C(d t)^{2}$ other events $E_{v^{\prime}, j^{\prime}}$, using $\Delta^{-}(D) \leq C d$. For c sufficiently small, for example $c \leq \frac{1}{100 \log C}$, we get $2 e^{-\frac{d}{12 t}+1}\left(C(d t)^{2}+1\right)<1$. By Lemma 14 we conclude that with positive probability no $E_{v, j}$ occurs, and so $V_{1} \cup \cdots \cup V_{t}$ (with fake vertices deleted) gives the required partition.

Proof of Theorem 5. Suppose that D is a (C, d)-regular digraph with girth g. We will show $\ell(D) \geq$ $\frac{c d g}{2 \log d}$ with c as in Lemma 15. As $\ell(D) \geq g(D)$ by (1), we can assume $c d / \log d \geq 1$, so $t=$ $\lfloor c d / \log d\rfloor \geq 1$. By Lemma $\overline{15}$ we can partition $V(D)$ into $V_{1} \cup \cdots \cup V_{t}$ such that $\| V_{i}\left|-\left|V_{j}\right|\right| \leq 1$ and each $d^{+}\left(v, V_{j}\right) \geq \frac{\log d}{2 c}$. We note that $\frac{\log d}{2 c}>1$ for $c<0.1$, say.

Let P_{1} be a maximal directed path in $D\left[V_{1}\right]$ starting from any vertex x_{1}, ending at some y_{1}. Then $\left|P_{1}\right| \geq g$ by (1). By choice of partition, y_{1} has an out-neighbour x_{2} inside $D\left[V_{2}\right]$. Similarly, we can find a maximal directed path of length at least g inside $D\left[V_{2}\right]$ starting from x_{2}. We repeat the process until we find t directed paths P_{1}, \ldots, P_{t} of length at least g, that can be connected into a directed path of length at least $t g \geq \frac{c d g}{2 \log d}$. This completes the proof.

6 Concluding remarks

We propose the following weaker version of Thomassé's conjecture.
Conjecture 16. There is some $c>0$ such that $\ell(D) \geq c g(D) \delta^{+}(D)$ for any digraph D.
By Proposition 2, the best possible c in this conjecture satisfies $c \leq 1 / 2$. We do not even know whether it holds for regular digraphs, or whether $\ell(D) / \delta^{+}(G) \rightarrow \infty$ as $g \rightarrow \infty$.

Acknowledgments. We are grateful to António Girão for helpful discussions.

References

[1] Louis Caccetta and Roland Haggkvist. On minimal digraphs with given girth. Department of Combinatorics and Optimization, University of Waterloo, 1978.
[2] B.D. Sullivan. A summary of problems and results related to the Caccetta-Häggkvist conjecture. arXiv:math/0605646, 2006.
[3] J. Bang-Jensen and G. Gutin. Digraphs: Theory, Algorithms and Applications. Springer-Verlag London, 2008.
[4] J.A. Bondy and U.S.R. Murty. Graph Theory. Springer, Berlin, 2008.
[5] V. Chvátal and E. Szemerédi. Short cycles in directed graphs. Journal of Combinatorial Theory, Series B, 35(3):323-327, 1983.
[6] J. Hladký, D. Král, and S. Norin. Counting flags in triangle-free digraphs. Combinatorica, 3(1):49-76, 2017.
[7] N. Alon and J.H. Spencer. The Probabilistic Method. John Wiley\&Sons, Inc.,, 1992.

[^0]: *E-mail address: Yangyang.Cheng@maths.ox.ac.uk
 ${ }^{\dagger}$ Supported by a PhD studentship of ERC Advanced Grant 883810.
 ${ }^{\ddagger}$ E-mail address: Peter.Keevash@maths.ox.ac.uk
 ${ }^{\S}$ Supported by ERC Advanced Grant 883810.

