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Abstract

Consider the Erdős-Rényi random graph process {Gm}m≥0 in which we start with an empty
graph G0 on the vertex set [n], and in each step form Gi from Gi−1 by adding one new edge chosen
uniformly at random. Resolving a conjecture by Benjamini and Tzalik, we give a simple proof that
w.h.p. as soon as Gm has minimum degree 2 it is globally rigid in the following sense: For any function
d : E(Gm) → R, there exists at most one injective function f : [n] → R (up to isometry) such that
d(ij) = |f(i) − f(j)| for every ij ∈ E(Gm). We also resolve a related question of Girão, Illingworth,
Michel, Powierski, and Scott in the sparse regime for the random graph and give some open problems.

1 Introduction

Let V ⊆ R
d be a finite set of distinct points, and suppose we only know distances between some of

them. The pairs of points with known distances naturally form a graph G on the vertex set V . Which
properties of G are sufficient for the unique reconstruction of V , up to isometry? When d ≥ 2 one needs to
impose further restrictions on V , as otherwise there are examples which show that if G is missing just one
(carefully chosen) edge, a unique reconstruction is not possible. For example, consider the configuration
with n − 2 points on a line and two points outside of the line. Then we cannot decide whether these two
points lie on the same side of the line or not, unless we are given the distance between them. It turns out
that if one restricts the coordinates of V to be algebraically independent over rationals, then whether or
not V is reconstructible from G depends on combinatorial properties of G. This case has been extensively
studied (e.g. see [3, 9, 10, 11, 12, 14]; for a thorough introduction to the topic, see [13]).

Recently, Benjamini and Tzalik [4] studied what happens when V ⊆ R. It is a folklore result that if
the known-distance graph G is 2-connected (e.g. see [13, Chapter 63]) and V is algebraically independent,
then one can uniquely reconstruct V . However, unlike in the case of higher dimensions, there are no clear
obstacles which justify the necessity of algebraic independence in the 1-dimensional case. Indeed, the
main result of Benjamini and Tzalik [4] states that for any given V if the graph of known distances is
distributed as an Erdős-Rényi random graph G ∼ G(n, p) for p ≥ C log n/n, then with high probability
(w.h.p.) V is reconstructible from G. This was strengthened by Girão, Illingworth, Michel, Powierski,
and Scott [8] to a hitting time result, which we now state.

Consider a random graph process {Gm}m≥0 on the vertex set V , where G0 is an empty graph and
each Gi is formed from Gi−1 by adding a new edge uniformly at random. Let τ := τ2 denote the smallest
m such that δ(Gm) ≥ 2. We say that two functions f, f ′ : [n] → R are isometric if there exists b ∈ R and
a ∈ {1, −1} such that f = af ′ + b.

Definition 1.1. Given a function f : [n] → R and graph G on vertex set [n], we define the G-distance
function of f , denoted df,G = d, by d(ij) := |f(i)−f(j)| for every ij ∈ E(G). We also say that a function
f : [n] → R realizes a function d : E(G) → R if d = df,G.

We formulate the theorem of Girão et al. in this terminology.

Theorem 1.2 ([8]). Let f : [n] → R be an injective function. Then in the random graph process {Gm}m≥0

on the vertex set [n], w.h.p. f is the unique (up to isometry) function that realizes df,Gτ
.
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Given a connected graph G and a function d : E(G) → R
+, we can find an f which realizes d as

follows. For each permutation π of [n], we set fπ(1) = 0 and U = {1}, and as long as U 6= [n] find an
edge uv ∈ G with u ∈ U and v /∈ U , and set fπ(v) := fπ(u) + sign(π(v) − π(u))d(uv). At the end we
simply check whether fπ realizes d = df,Gτ

. Assuming there is a unique f (up to isometry) which realizes
d, which is the case in Theorem 1.2, this procedure is guaranteed to find it.

It is important to observe that, in Theorem 1.2, we are first given V and then we construct a graph of
known distances. Benjamini and Tzalik [4] conjectured that a stronger version should also hold, namely
that Gτ not only reconstructs the given V , but in fact it can reconstruct every V . This property is known
as global rigidity. Note that minimum degree 2 is necessary as the embedding of a vertex of degree 1 can
be ambiguous. We resolve the conjecture in the affirmative by showing the following.

Theorem 1.3. In the random graph process {Gm}m≥0 on the vertex set [n], w.h.p. Gτ has the following
property: For every function d : E(Gτ ) → R

+, up to isometry there exists at most one injective function
f : [n] → R which realizes d. In particular, Gτ is globally rigid.

Note that in Theorem 1.3 we do not impose any restriction on d, and it very well may be that no
injective function f satisfies the desired property. In the case where d comes from a given embedding of
[n] in R, we know that f is a unique function which realizes df,Gτ

.
As discussed earlier, for sparser random graphs one cannot hope for a unique function which realizes

every d. However, Girão et al. [8] showed that given an injective f : [n] → R, the Erdős-Rényi random
graph G(n, p) with p = ω(1/n) contains w.h.p. a subset V ′ ⊆ [n] such that f ′ = f |V ′ is the unique
function which realizes df ′,G[V ′]. They asked if 1/n is a threshold for the property that G(n, p) uniquely
reconstructs a constant fraction of vertices for any injective function f . We show that this is indeed the
case. Moreover, we show that we can always reconstruct the same set of vertices, the size of which is
a fraction of n arbitrarily close to 1. For simplicity, we work with the G(n, m) random graph model
(the equivalent statement for G(n, p) follows by [7, Theorem 1.4]), where a graph is chosen uniformly at
random among all labeled graphs with n vertices and m edges.

Theorem 1.4. For every ε > 0 there exists C > 0 such that the following holds. Let G ∼ G(n, m) for
m ≥ Cn. Then w.h.p. there exists a subset V ′ ⊆ V (G) of size |V ′| ≥ (1 − ε)n such that the induced
subgraph G′ = G[V ′] has the following property: For every function d : E(G′) → R

+, up to isometry there
exists at most one injective function f : V ′ → R which realizes d.

We prove Theorems 1.3 and 1.4 in Section 2, before finishing with some open problems in Section 3.

Acknowledgement. We thank the research institute MATRIX, in Creswick, Australia, where this
research was performed, for its hospitality, and the organisers and participants of the workshop on
Extremal Problems in Graphs, Designs, and Geometries for a stimulating research environment. We also
thank Thomas Lesgourgues, Brendan McKay, and Marcelo De Sa Oliveira Sales for productive discussions.

2 Proof

The following lemma is the crux of our proofs. Both Theorem 1.3 and Theorem 1.4 are then derived as
easy corollaries from it.

Lemma 2.1. Let G be a graph with V (G) = [n], and suppose it satisfies the following two properties:

(P1) For every disjoint U, W ⊆ V (G) of size |U |, |W | ≥ n/15 there is an edge in G between U and W .

(P2) For every U ⊆ V (G) of size n/15 ≤ |U | < n, there exists a vertex v ∈ V (G) \ U with at least two
neighbors in U .

Then, every distance function d : E(G) → R
+ is realizable (up to isometry) by at most one injective

function.

Proof. Let f and g : [n] → R be two injective functions which realize d. Let

Lf :=
{

i ∈ [n] : |{x ∈ [n] : f(i) < f(x)}| ≥ ⌈n/2⌉
}

Rf :=
{

i ∈ [n] : |{x ∈ [n] : f(x) < f(i)}| ≥ ⌈n/2⌉
}

be the left-half and right-half of f (omitting the middle vertex when n is odd), and define Lg and Rg

analogously.
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We can assume without loss of generality that |Lf ∩ Lg| ≥ ⌈(|Lf | − 1)/2⌉ ≥ ⌈(n − 3)/4⌉ > n/5
(otherwise we consider instead the function −g, which is isometric to g, and use that L−g = Rg), where
we note that the result is trivial if n = 1, so that we can assume n > 1 and hence, from (P2), that n > 15.
Then |Rf ∩Rg| = |Rf |+ |Rg|−|Rf ∪Rg| ≥ n−1−|(Lf ∩ Lg)| ≥ n/5. Set L := Lf ∩Lg and R := Rf ∩Rg.

We first prove that the induced bipartite graph G[L, R] contains a sufficiently large connected com-
ponent. Let C(1), . . . , C(k) be any ordering of the connected components of G[L, R]. Toward a contradic-
tion, assume that each connected component contains at most n/15 vertices, i.e. for all j ∈ [k], we have
|C(j)| ≤ n/15. Let i > 1 be the smallest index such that

i
∑

j=1

|C(j) ∩ L| > n/15,

and without loss of generality assume that
∑i

j=1 |C(j) ∩ R| ≤
∑i

j=1 |C(j) ∩ L|. Then, using |C(j)| ≤ n/15
for all j ∈ [k], by minimality of i we have

i
∑

j=1

|C(j) ∩ R| ≤
i

∑

j=1

|C(j) ∩ L| ≤ 2n/15,

and therefore
k

∑

j=i+1

|C(j) ∩ R| ≥ n/15.

Then by (P1) there exists an edge between
∑i

j=1 |C(j) ∩ L| and
∑k

j=i+1 |C(j) ∩ R|, which contradicts the

assumption that C(1), . . . , C(k) are the connected components of G[L, R].
Let C be the vertices of the largest connected component of G[L, R]. As we have just showed,

|C| ≥ n/15. Let y1 ∈ C ∩ L be an arbitrary vertex and let g′ = g − g(y1) + f(y1), i.e. the translation
of g that agrees with f on y1. Note that Lg = Lg′ and Rg = Rg′ . Let U := {u ∈ [n] : f(u) = g′(u)}
be the set of vertices on which f agrees with g′. By the definition, we have y1 ∈ U . We claim that
the whole connected component C is contained in U . This is because for any vertex x ∈ U and edge
xy ∈ E(G) of C, we also have y ∈ U : Suppose first that x ∈ Lf ∩ Lg′ and y ∈ Rf ∩ Rg′ ; the other case
is analogous. Since x is in the left-half of f , y is in the right-half of f and because f realizes d we have
f(y) = f(x) + d(xy). Similarly, we obtain g′(y) = g′(x) + d(xy). Using that x ∈ U , we conclude that
f(y) = g′(y), so y ∈ U .

Now C ⊆ U implies |U | ≥ n/15. If U = [n] we are done. Otherwise (P2) can be applied and we take
a vertex v ∈ V (G) \ U which has two neighbors u1, u2 in U . Assume, by relabelling if necessary, that
f(u1) = g′(u1) < f(u2) = g′(u2). Since f realizes d, the f -value of v is determined by f(u1), f(u2), d(u1v)
and d(u2v). Indeed, depending on whether d(u1v), d(u2v) or |f(u1)−f(u2)| is the largest among the three,
f(v) is equal to f(u1) + d(u1v) = f(u2) + d(u2v), f(u1) − d(u1v) = f(u2) − d(u2v), or f(u1) + d(u1v) =
f(u2)−d(u2v), respectively. Since g′ also realizes d, the value of g′(v) is determined analogously. Finally,
since f(u1) = g′(u1) and f(u2) = g′(u2), the values f(v) and g′(v) coming from the analogous formulas
also agree. That means v ∈ U , contradicting v ∈ V (G) \ U . Thus, U = V (G), and therefore, as f = g′,
f and g are isometric.

We now need the following simple property of random graphs.

Lemma 2.2. For every ε > 0 there exists C > 0 such that if m ≥ Cn, then G ∼ G(n, m) w.h.p. has the
following property:

(P3) For every disjoint X, Y ⊆ V (G) of size |X |, |Y | ≥ εn, there exists an edge between X and Y in G.

Proof. For fixed X and Y , the probability that there is no edge between X and Y is

(
(

n
2

)

− |X ||Y |
m

)

/

(
(

n
2

)

m

)

≤ e−|X||Y |m/n2

< e−ε2Cn.

There are at most 22n ways to choose X and Y , thus, for C > 2/ε2, w.h.p. this bad event does not
happen for any such pair of sets.

With Lemma 2.1 and Lemma 2.2 at hand, the proofs of Theorems 1.3 and 1.4 are straightforward.
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Proof of Theorem 1.3. For the proof of Theorem 1.3 we check that w.h.p. both (P1) and (P2) hold for
Gτ , so that the result follows directly by Lemma 2.1.

Let C be a constant given by Lemma 2.2 for ε = 1/28. It is well known [5] that w.h.p. τ ≥ Cn := m
(with C as given by Lemma 2.2). As Gm is uniformly distributed among all graphs with n vertices and
exactly m edges, by Lemma 2.2 we have that w.h.p. (P3) holds in Gm. Since (P3) is monotone, it also
holds in Gτ .

Property (P3) is straightforwardly stronger than (P1) and also implies (P2) in the case n/15 ≤ |U | ≤
n/2. Indeed, for the latter let S ⊆ V (G) \ U be a subset of size εn. By (P3) we have

|N(S) ∩ U | ≥ |U | − εn > |S|,

thus there exists a vertex in S with two neighbours in U . The remaining case |U | > n/2 of the property
(P2) is proven to hold w.h.p., for example, in [11, Proposition 2.3].

Proof of Theorem 1.4. We can assume ε > 0 is sufficiently small. By Lemma 2.2, G ∼ G(n, m) w.h.h.p
has the property (P3). This immediately implies (P1), thus to apply Lemma 2.1 we just need to find a
large subset V ′ ⊆ V (G) such that G′ = G[V ′] satisfies (P2). We define V ′ := V (G) \ A, where A ⊆ V (G)
is a largest subset such that |A| ≤ εn and |N(A)| ≤ |A|.

To check (P2) for a subset U ⊆ V ′ of size |V ′|/15 ≤ |U | < |V ′| − εn we consider a subset S ⊆ V ′ \ U
of size εn ≤ |V ′ \ U |. Applying (P3) we have

|N(S) ∩ U)| ≥ |U | − εn > |S|,

which verifies that there is vertex in S with two G′-neighbors in U , for otherwise |N(S) ∩ U | ≤ |U |.
If U ⊆ V ′ is of size |U | ≥ |V ′| − εn, then we claim that for S = V ′ \ U we have |N(S) \ A| > |S|,

which in turn implies that some vertex of S has two neighbors in U . Otherwise we have

|N(A ∪ S)| ≤ |A| + |S| = |A ∪ S|,

which implies εn < |A ∪ S| ≤ 2εn by the maximality of A. We can then apply (P3) to obtain

|N(A ∪ S)| ≥ n − |A ∪ S| − εn > |A ∪ S|,

a contradiction.

3 Open problems

Random regular graphs. Following Benjamini and Tzalik [4], we studied the problem of global rigidity
of random graphs in R. A related natural question is, for which d is a random d-regular graph globally
rigid with high probability? Using a result of Friedman [6] which shows that the second largest absolute
eigenvalue of a random d-regular graph is, w.h.p., at most 2

√
d − 1 + ε for any ε > 0, together with the

Expander Mixing Lemma and [1, Theorem 9.2.1], it is straightforward to verify that condition (P1) and
(P2) hold for d ≥ 6. This leaves the following problem open.

Problem 3.1. Determine the smallest d ≥ 3 for which a random d-regular graph with n vertices is
globally rigid.

Note that (P2) does not hold w.h.p. for a random 3-regular graph. Indeed, a random 3-regular graph
w.h.p. contains a cycle C of length O(log n), thus (P2) fails for U = V (G) \ V (C). This does not rule
out the possibility that 3-random regular graphs are globally rigid, however a different strategy is likely
needed.

Algorithmic problem. We note that in the case of a fixed function f , Benjamini and Tzalik [4], as well
as Girão, Illingworth, Michel, Powierski, and Scott [8], also considered the algorithmic problem of finding
f which realizes d : E(G) → R

+ when G is a random graph. They obtain algorithms with polynomial
expected running time. In our setup, where we generate only one random graph to reconstruct any
function f , our proof only provides a reconstruction algorithm with running time O(2n). We wonder
whether this could be improved.

Problem 3.2. Find an algorithm A with the following property: Let G ∼ G(n, p) for p ≫ log n/n. Then
w.h.p. G is such that, for any injective f : V (G) → R, A(G, df,G) finds in polynomial time (depending
only on n) a function f ′ which realizes df,G.
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Higher dimensions. Finally, while one cannot hope for an extension of Theorem 1.3 to R
d for d ≥ 2,

it is conceivable that a statement of Theorem 1.4 is true for any d ≥ 2. Even showing this for a given
f : [n] → R is an open problem, already suggested in [8], with some recent progress by Barnes, Petr,
Portier, Shaw, and Sergeev [2]. Here we state the global rigidity version.

Problem 3.3. Show that, for every integer d ≥ 2 and ε > 0, there exists C > 0 such that the following
holds. Let G ∼ G(n, p) for p ≥ C/n. Then G w.h.p. has the following property: For every injective
f ∈ V (G) → R

d there exists a subset V ′ ⊆ V (G) of size |V ′| ≥ (1 − ε)n such that f ′ is the only function
(up to isometry) which realizes df ′,G′ , where G′ = G[V ′] and f ′ = f |V ′ .
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