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Abstract

An r-graph is an r-regular graph with no odd cut of size less than
r. A well-celebrated result due to Lovász says that for such graphs the
linear system Ax = 1 has a solution in Z/2, where A is the 0,1 edge to
perfect matching incidence matrix. Note that we allow x to have negative
entries. In this paper, we present an improved version of Lovász’s result,
proving that, in fact, there is a solution x with all entries being either
integer or +1/2 and corresponding to a linearly independent set of perfect
matchings. Moreover, the total number of +1/2’s is at most 6k, where
k is the number of Petersen bricks in the tight cut decomposition of the
graph.

1 Introduction

First, we introduce some terminology.

Def 1 A cut in the graph G = (V,E) is the set of edges with exactly one endpoint
in S for some set S ⊆ V . In this case, S and V /S are called the shores of the
cut.

Def 2 A cut is odd if both shores have odd cardinality. Notice that this requires
V to be even cardinality.

Def 3 A set of edges M ⊆ E is a perfect matching if every vertex is incident
with exactly one edge in M .

Def 4 A connected nontrivial graph is matching-covered if every edge belongs
to a perfect matching. A graph is an r-graph if every vertex has degree r and
all odd cuts have size at least r.
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Extensive work has been done around matching-covered graphs, starting
with [3], [4], [5]. The notion of r-graphs was first introduced by Seymour, who
also showed that an r-graph is always matching-covered [9]. One question that
naturally arises here is whether an r-graph contains r disjoint perfect matchings,
or alternatively, can the edges of an r-graph be covered by r perfect matchings.
One of the central results in this area is due to Lovász, who got a characterization
for the lattice L = {∑αiAi ∶ αi ∈ Z} generated by the perfect matchings Ai

of a matching-covered graph G using dual lattice theory [6]. It follows from
the characterization above that for an r-graph, the vector 2 ⋅ 1 belongs to L.
Hence, 1 can be obtained as a half-integral (but not necessarily non-negative)
combination of the perfect matchings of G. In this paper, we strengthen this
result by proving the existence of a half-integral solution in which there are only
a few fractional coefficients, all equal to exactly +1/2.

More formally, given an r-graph G = (V,E) with n vertices and m edges
(notice 2m = nr), we want to study the set of solutions to Ax = 1, where A
is a {0,1} incidence matrix with rows corresponding to the edges of G and
columns corresponding to the perfect matchings in G (we will adopt this no-
tation throughout the paper). We consider graphs with no loops, but parallel
edges are allowed.

We prove the following:

Theorem 1 (Main theorem) Let G be an r-graph with m edges and n ver-
tices and let A be its edge to perfect matching incidence matrix. Then there is
a solution x∗ to Ax = 1 satisfying the following conditions:

1. x∗ has at most m − n + 1 non-zero entries, which correspond to a linearly
independent set of perfect matchings of G;

2. all non-integral entries of x∗ are equal to +1/2, and the total number of
such entries is at most 6p, where p is the number of Petersen bricks of G.

The notions of a brick and the Petersen brick are defined later, but for a
reference, p is bounded from above by the total number of vertices, n.

2 Tight cut decomposition

Tight cut decomposition plays an essential role in many results regarding perfect
matchings.

Def 5 A tight cut is an odd cut C(⊆ E) such that every perfect matching
intersects C in exactly one edge. A cut is trivial if one of its shores is a single
vertex. Otherwise, it is non-trivial.

One can notice that all trivial cuts are tight since every perfect matching
covers any vertex once. Let us prove the following statement:

Lemma 1 In a matching-covered graph G with Ax = 1 feasible, all tight cuts
have the same size. In particular, G is regular.
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Proof: Consider any tight cut C and its characteristic vector 1C . Then
AT

i 1C = 1 for all columns Ai of the matrix A because every perfect matching
intersects the tight cut at exactly one edge. Moreover, 1T

1C = ∣C ∣. Thus,
multiplying both sides of Ax = 1 by 1C we get ∑i(A

T
i 1C)xi = ∑i xi = ∣C ∣.

Notice that the left-hand side of the equation ∑i xi = ∣C ∣ does not depend on
the choice of C. ◻

Further, we define bricks and braces.

Def 6 A graph G is a brick if it is 3-connected and for every pair x, y of
vertices, G − x − y has a perfect matching. A bipartite graph G with bipartition
U,W with ∣U ∣ = ∣W ∣ is a brace if each subset X ⊂ U with 0 < ∣X ∣ < ∣U ∣− 1 has at
least ∣X ∣ + 2 neighbors in W .

The following facts are due to Lovász [6]:

Theorem 2 1. The result of contracting one shore of a tight cut of a matching-
covered graph is a matching-covered graph.

2. A matching-covered graph has no non-trivial tight cuts if and only if it is
either a brick or a brace.

This suggests the following decomposition process on an r-graph: find a
tight cut C of G, consider two graphs obtained from G by contracting one of
the shores of C, call them G1 and G2, and continue the decomposition for them.
We stop when a graph has no non-trivial tight cuts i.e. when it is either a brick
or a brace. Notice that the property of being an r-graph is also preserved by the
contraction: any odd cut of G1 corresponds to the same odd cut of G and has
the same size and all degrees are preserved because any tight cut must have size
exactly r. Let us remark that all graphs are allowed to contain parallel edges.

In the next sections we discuss how to use this decomposition to inductively
construct solutions to Ax = 1 with the desired properties.

3 Solution construction

A classical approach is described in Murty [7] and it can be summarized as
follows.

Let G be an r-graph and C be its tight cut. Consider the graphs G1 and
G2 obtained from G by contracting one shore of C and let E1, E2 be the edges
of G1, G2, respectively. Furthermore, let A1 and A2 be the edge to perfect
matching incidence matrices for G1 and G2, respectively. Given y, t satisfying
A1y = 1 and A2t = 1, we will construct a vector x satisfying Ax = 1.

Fix an edge e ∈ C and let {Me
i }i∈Ie be the set of perfect matchings of G1

using e, and let {Ne
j }j∈Je be the set of perfect matchings of G2 using e. Clearly,

all of these matchings do not use any other edges of C. It is easy to see that
Me

i ∪N
e
j =∶K

e
ij is a perfect matching in G for all indices i, j. Define xe

ij ∶= y
e
i t

e
j ,

and let us prove that Ax = 1, which is equivalent to

∑

e∈C
∑

i∈Ie,j∈Je

xe
ijKij = 1.
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It suffices to prove this for projections on E1,E2, and on C. Every edge e ∈ C
appears with coefficients yitj , so the total sum of the entries corresponding to
e in Ax is

∑

i∈Ie,j∈Je

yitj = (∑
i∈Ie

yi)(∑
j∈Je

tj) = 1,

where the last equality follows from A1y = 1 and A2t = 1.
Now, projecting Ax on E1/C:

∑

e∈C
xe
ijK

e
ij = ∑

e∈C
(∑

i∈Ie

yeiM
e
i ∑

j∈Je

tej) = ∑
e∈C
∑

i∈Ie

yeiM
e
i = 1,

and similarly for E2/C.
There are other ways of assigning coefficients xe

ij to Ke
ij , which we will see

in the next section. As long as for each matching Me
i we ensure ∑j∈J xe

ij = yi
and similarly for Ne

j , the proof of feasibility stays the same.

4 Main fact

In this section, we give a different way of combining two solutions for tight cut
contractions, which is a crucial ingredient of 1. A similar approach appears in
the proof of the matching polytope theorem in [8].

4.1 A better way to combine solutions

Lemma 2 There is a solution x∗ to Ax = 1 with all entries being either integral,
or equal to +1/2.

Proof: We prove this by induction on the number of bricks and braces in
a tight cut decomposition of the graph. We will prove the base case for bricks
and braces in the next section, so for now assume it is true.

For the inductive step, consider any graph G with a tight cut C and consider
any edge e ∈ C. Keeping the notations of A1,A2, y, t from the previous section,
let further S1 and S2 be the indices at which y and t have negative integers as
entries, P1 and P2 be the indices with positive integers, and H1 and H2 be the
indices with +1/2. From A1y = 1 and A2t = 1 it follows that

∑

i∈P1

yi + ∑
i∈H1

1/2 − ∑
i∈S1

∣yi∣ = 1 = ∑
i∈P2

ti + ∑
i∈H2

1/2 − ∑
i∈S2

∣ti∣.

Say −L1 ∶= ∑i∈S1
yi and −L2 ∶= ∑i∈S2

ti (so that both L1, L2 are nonnegative).
If L1 ≠ L2, then without loss of generality L1 < L2 and let us duplicate one
matching of G1 from P1 with the largest coefficient s and split it as s = (s−L1+

L2)+(L1−L2), where s−L1+L2 will now correspond to the nonnegative entries
P1 and L1 −L2 will be negative. This way, the sums of negative coefficients are
equal and ∑i∈P1

yi +∑i∈H1
1/2 = ∑i∈P2

ti +∑i∈H2
1/2.

Now, we will show how to pair positive and negative coefficients separately.
Suppose we have two sets a1, . . . , an and b1, . . . , bm (the positive (negative) en-
tries of y, t) satisfying ∑

n
i=1 ai = ∑

m
j=1 bj =∶ d. We may assume both sequences are
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non-decreasing. Mark the points of the form a1+a2+ . . .+ai and b1+b2+ . . .+bj
(a total of n+m points including 0 and d) on the line segment [0, d]. For every
line segment (w,w′) of this partition not containing any other partition points,
let i be the smallest index with a1 + . . . + ai ≥ w′ and similarly let j be the
smallest index for which b1 + . . . + bj ≥ w

′. Then let w′ − w be the i + j − 1-th
entry of the new vector c (notice that this is well-defined since each subsequent
point will have either i or j index increased). This c has all entries integral,
and its i + j − 1’st entry will correspond to the union of the perfect matchings
associated with ai and bj .

We make a small adjustment if there are entries equal to 1/2 (by the hy-
pothesis, the only non-integral entries are 1/2). By construction, the fractional
coefficients of a and b are listed first. Assuming without loss of generality that
a has fewer fractional terms, each 1/2 in a’s is paired with a 1/2 in b’s. Until
the sequence of b’s runs out of 1/2’s, all entries of c are 1/2 and the remaining
entries of c are determined the same way as the all-integral case. Hence, c will
have all entries either integral, or equal to 1/2. ◻

4.2 Analysis

In fact, the above algorithm of combining two solutions preserves several other
properties. Let us prove the following statement.

Proposition 1 Suppose the method described in Lemma 2 results in a solution
x∗ after combining two solutions y, t of the two contractions. Then, the following
properties hold:

i. the support size of x∗ satisfies supp(x∗) ≤ supp(y) + supp(t);

ii. the largest entry of x∗ satisfies ∥x∗∥∞ ≤max(∥y∥∞, ∥t∥∞);

iii. the total number of +1/2’s in x∗ is at most number of +1/2’s in y and t
combined;

iv. if both y and t only used linearly independent perfect mathcings, then so
does x∗.

For convenience, let us say a perfect matching is used in x∗ if the corre-
sponding coefficient of x∗ is non-zero.

Proof: Using the same notation as in the proof of Lemma 2, for every e ∈ C
the total number of positive terms in y (t) is H1(2)+P1(2) and negative is S1(2).
In the proposed algorithm to match ai and bj , the total number of entries of c is
≤m+n−1. Since we might have added an extra term to make L1 = L2, we create
a total of at most ∑i=1,2(Hi +Pi +Si) nonzero entries of x∗ corresponding to e.
Summing this over all e ∈ C gives (i). Similarly, each entry ci+j−1 is less than
both ai and bj , thus all entries of c are at most min(max(ai),max(bj)). Finally,
notice that at most one of ai, bj was artificially augmented by making L1 = L2, so
at least one of max(ai),max(bj) is ≤max(∥y∥∞, ∥t∥∞), implying (ii). (iii) holds
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since for each e ∈ C the construction yields at most max(∣H1∣, ∣H2∣) ≤ ∣H1∣+ ∣H2∣

terms equal to +1/2. Summing this up over all e we get the desired result.
Suppose (iv) does not hold, i.e. there is a linear combination Aw = 0 where

w has the same support as x∗. Notice that any column of A is of the form
(M ∣ 1e ∣ N)

T , where e = uv ∈ C and M , N are some perfect matchings in
G1 − {u, v} and G2 − {u, v}. Comparing projections on G1 and G2, we get that
for every matching M of G1 or G2, the sum of entries of w that correspond to
a column of A that uses M , is zero by assumption on y, t. Hence, it means that
for any e ∈ C, the set of perfect matchings containing e has linear combination
equal to 0. Now it suffices to prove that the perfect matchings used in x∗ that
correspond to the same e ∈ C are linearly independent. Indeed, notice that each
new matching (going over the matchings in order of the coefficients c) either
uses a new matching of G1 or of G2, thus does not belong to the linear hull of
the previous matchings.

◻

To complete the proof of 2, we must consider the base case. We will sepa-
rately treat braces, Petersen bricks, and non-Petersen bricks. The braces result-
ing in the tight cut decomposition of an r-graphs must necessarily be bipartite
and r-regular. One can check that all regular bipartite graphs satisfy Hall’s
condition, and hence always contain a perfect matching. Deleting the corre-
sponding edges from the graph again gives a regular bipartite graph. Thus,
repeating this process we obtain a union of disjoint perfect matchings that uses
all edges (for a more detailed explanation, one can refer to [1], Section 5.2). We
remark that these perfect matchings are disjoint, and hence linearly indepen-
dent. This means that in fact we obtain a {0,1} solution with non-zero entries
corresponding to linearly independent matchings, so it satisfies the conditions
of the Theorem 1.

We will now proceed to the case of bricks, which requires some deeper anal-
ysis.

5 Petersen brick solutions

Following the proof of Lemma 2, we begin with an r-graph G and apply tight
cut decomposition to it. Let B be any brick in the tight cut decomposition of
G whose underlying graph is the Petersen graph. Notice that B might have
parallel edges and it must be r-regular. For convenience, consider a simple
graph B′, isomorphic to the Petersen graph, whose edges are assigned weights
equal to the corresponding number of parallel arcs in B.

First, let us see which weight assignments for the edges of B′ are feasi-
ble. Let ci be the weight of the edge i, then we are looking for the 16-tuples
(c1, c2, . . . , c15, r) of positive integers satisfying deg(v) = r for every vertex v.
This gives 10 constraints, which can be checked to be linearly independent.
Thus, the set of solutions has dimension 6 (here, we drop the positive integer
requirement). On the other hand, we can construct a dimension 6 set of solu-
tions by taking all possible linear combinations of the 6 perfect matchings of the
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Figure 1: Edges of the Petersen graph labeled by the perfect matchings they
belong to

Petersen graph. Therefore, any edge weight assignment c can be represented as
c = ∑

6
i=1 αiMi where Mi are the perfect matchings of the Petersen graph.

Lemma 3 If c ∈ Z>0, then αi ≥ 0 and either αi ∈ Z for all i, or αi ∈ 1/2 +Z for
all i.

Proof: Indeed, notice that the total weight of any edge is αi+αj for some match-
ings Mi and Mj because every edge belongs to exactly two perfect matchings.
Hence these indices satisfy αi ≡ −αj mod 1. Moreover, any two perfect match-
ings intersect in one edge, meaning that for any two i, j there is an edge whose
weight is exactly αi + αj , so the previous congruence holds for any pair i ≠ j
of indices. This implies that for any distinct i, j, k we have αi ≡ −αk ≡ αj , so
αi ≡ αj . This together with αi ≡ −αj implies 2αi ≡ 0, so either αi is integer and
hence all other αj are integer, or αi ≡ 1/2 mod 1.

Removing the edges corresponding to M1 from B leaves us with a union of
two vertex-disjoint 5-cycles, meaning that M1 is an odd cut. Because B is an
r-graph, every odd cut must have size at least r. The size of this cut is the sum
of weights of the edges used in M1, which is 5α1 +α2 + . . .+α6 since every edge
in M1 belongs to one other matching. Hence r ≤ 5α1+α2+ . . .+α6. On the other
hand, the degree of each vertex is exactly ∑i αi = r, so

α1 + α2 + . . . + α6 = r ≤ 5α1 + α2 + . . . + α6,

implying α1 ≥ 0. Similarly, all other αi are non-negative. ◻

This proves that the graph B′ has its edge weights c = ∑
6
i=1 αiMi for αi ≥ 0

either all integer, or all half-integer. Now, we show how to return to the original
brick B with parallel edges.

1. If all αi are integer, write ∑
6
i=1 αiMi as a sum of ∑

6
i=1 αi single term. Then,

for each edge e of B′, its weight c(e) equals the total number of terms
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using e. This means one can replace the instances of e with e1, . . . , ec(e),
which are the parallel arc in B corresponding to e. Repeating this for
every e ∈ B′, we obtain a set of perfect matchings that use each edge of B
exactly once, as wanted.

2. If all αi are half-integer. Let βi = αi − 1/2 ∈ Z≥0. Cover an arbitrary
subset of edges forming a Petersen graph by ∑

6
i=1Mi, and the remaining

is reduced to the previous case.

Hence, we have a solution with at most 6 half-integer coefficients for any
Petersen brick. In fact, there are either no fractional coefficients or there are
exactly 6 of them. We will again remark that the perfect matchings used in
the solution are linearly independent. To see this, notice that the six mathcings
of the Petersen graph Mi are independent and by adding parallel arcs the set
remains linearly independent.

6 Non-Petersen brick solutions

In the case of non-Petersen bricks, Carvalho, Lucchesi, and Murty [2] show the
following:

Theorem 3 For every non-Petersen brick G with m edges and n vertices, the
dimension of its matching lattice is m−n+1 and it has an integral basis consisting
of perfect matching vectors.

Due to Lovász [6], 1 belongs to the matching lattice of G, it can be expressed
as an integral combination of at most m−n+1 perfect matching vectors (which
are also linearly independent). Moreover, the construction in [2] results in the
basis of perfect matchings M1,M2, . . . ,Md such that each Mi+1 contains an edge
ei+1 not used by M1, . . . ,Mi for 1 ≤ i ≤ m + n − 2. Let us prove the following
bound:

Lemma 4 If x is a solution to ∑
d
i=1Mixi = 1, then ∣xd−i∣ ≤ 2i.

Proof: By induction on i. In the base case i = 0, project ∑
d
1 xiMi = 1 onto

ed to get xd = 1 since ed is only used in the matching Md. Now, assuming the
statement for all previous i, projecting ∑

d
1 xiMi = 1 onto the ed−i−1 coordinate,

we get:

xd−i−1 = 1 − (xd−iMd−i + xd−i+1Md−i+1 + . . . + xdMd)ed−i−1.

Recall that each of xd−j for j ≤ i is bounded in absolute value by 2j , and so are
xd−jMd−jed−i−1. Also, 1 − xdMded−i−1 = 1 −Mded−i−1 is either 0 or 1, so it is
bounded in absolute value by 1. Hence,

∣xd−i−1∣ ≤
i

∑

j=1
2j + 1 = 2i+1,
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as wanted. ◻

Combining the results from before, we get the following statement, which is
a strengthening of Theorem 1:

Theorem 4 Let G be an r-graph and let A be its edge to perfect matching
incidence matrix. Then there is a solution x∗ to Ax = 1 satisfying the following
conditions:

1. x∗ has at most m − n + 1 non-zero entries, which correspond to a linearly
independent set of perfect matchings of G;

2. all non-integral entries of x∗ are equal to +1/2, and the total number of
such entries is at most 6p, where p is the number of Petersen bricks of G;

3. the coefficients of x∗ is are at most 2d in absolute value where d is the
largest dimension of the matching lattice (i.e. m − n + 1) over the non-
Petersen bricks of G. If G has no non-Petersen bricks, then the largest
entry of x∗ in absolute value is at most 1.
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